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Abstract. Gaussian processes (GPs) are effective tools in machine learn-
ing. Unfortunately, due to their unfavorable scaling, a more widespread
use has probably been impeded. By leveraging sparse approximation
methods, sparse Gaussian processes extend the applicability of GPs to a
richer data. Multimodal data are common in machine learning applica-
tions. However, there are few sparse multimodal approximation methods
for GPs applicable to multimodal data. In this paper, we present two
kinds of sparse multimodal approaches for multi-view GPs, the maxi-
mum informative vector machine (mIVM) and the alternative manifold-
preserving (aMP), which are inspired by the information theory and the
manifold preserving principle, respectively. The aMP uses an alternative
selection strategy for preserving the high space connectivity. In the ex-
periments, we apply the proposed sparse multimodal methods to a recent
framework of multi-view GPs, and results have verified the effectiveness
of the proposed methods.

Keywords: Classification, Kernel methods, Sparse Gaussian processes,
Multimodal learning

1 Introduction

Gaussian processes (GPs) are widely used in machine learning and statistics
as a powerful and flexible Bayesian nonparametric tool for probabilistic model-
ing [1]. However, computational requirements of the GPs grow as the cube of the
size of the training set, impeding their widespread use to the scenario of scal-
able data. In order to address this limitation, researchers have recently proposed
some sparse approximations [2–9]. They can be grouped into four classes. The
first one uses only a subset of the data and focuses on the strategies of selecting
the representative data points to form the subset [4]. The second kind of method
concentrates on using a reduced-rank matrix to approximate the covariance ma-
trix [2]. Another kind of method seeks to give a low rank approximation to the
covariance matrix based on inducing points [6], while the fourth uses the method
of variational inducing points [7, 8]. These methods lead to a significant reduc-
tion of the computational complexity, which makes sparse Gaussian processes
(SGPs) efficiently applied to a richer class of data [10, 11, 9].

Typically, standard SGPs only pay attention to the scenario where data from
a single modality are provided. In practice, multimodal data are common in ap-
plications of machine learning. They refer to the kind of data involving associated
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descriptive information from multiple domains, which are also called multi-view
data. For instance, in speaker recognition, audio and visual data are correlated
descriptions as phonemes and lip pose have correlations. In image classification,
an image can be described by different features such as texture, shape, and color.
As multiple modalities often provide complementary information, better perfor-
mance is likely to be expected by utilizing multimodal instead of single-modal
representations. Therefore, there has been a wealth of interest in multimodal
learning recently [12–14]. However, SGPs, as popular and efficient methods in
machine learning, are barely applied in multimodal learning. In this paper, our
motivation is to study the sparse multimodal methods for GPs applicable to
multimodal data.

We propose two kinds of sparse multimodal methods, the maximum infor-
mative vector machine (mIVM) and the alternative manifold-preserving (aMP),
which are inspired by principles in information theory [4] and manifold learn-
ing [15], respectively. In the multimodal setting, the sparse multimodal methods
need to consider all modalities together efficiently. On the one hand, the mIVM
leverages a Gaussian process (GP) to model data from the same modality. Since
data involve multiple related modalities, the mIVM uses multiple GPs, which
are potentially correlated with each other as data from different modalities de-
scribe the same objective. For every example, it calculates the associated entropy
reduction of each modality, and use the maximum entropy reduction among all
the modalities as the overall entropy reduction of that data point. At each selec-
tion, the data point with the maximum overall entropy reduction is added to the
sought sparse set. By using these strategies, the mIVM takes into consideration
the entropy reduction of every modality for each data point. Overall, it tries to
obtain the maximum of information among all the modalities with the minimum
number of examples.

On the other side, for each modality, the aMP constructs a graph using the
corresponding data. Vertices in different graphs are corresponding to each other
if these vertices represent the same data point. Initially, the candidate set con-
tains all the data points, while the sought sparse set is null. For each data point
in the candidate set, the aMP calculates the degree of the corresponding ver-
tex in each graph. To start the selection, it first chooses a modality randomly.
Next, it selects a vertex with the maximum degree in the graph corresponding
to the chosen modality. At the same time, all the vertices in other graphs cor-
responding to this chosen vertex are also selected. Then we include the data
point associated with the chosen vertex into the sought sparse set and remove it
from the candidate set. At the same time, we remove the chosen vertex and all
the associated edges from each graph. Another round of selection will start with
the alternative chosen modality. Overall, inspired by the manifold-preserving
principle, the aMP makes use of data from all modalities by an alternative selec-
tion strategy for preserving the high space connectivity. Among the GP related
multimodal learning methods [16–19], the two sparse multimodal approaches
employ the recent framework of multi-view GPs [19] to evaluate the validity. It
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was a straightforward extension of GPs to multimodal learning with convenient
implementation.

The contributions of our work are summarized as follows. First, we study the
sparse multimodal methods for GPs from two different aspects and propose two
kinds of sparse multimodal approaches. On the one hand, we present the mIVM
to accommodate the multimodal data from the perspective of information the-
ory. On the other hand, we present the aMP for multimodal sparsity from the
manifold-preserving perspective. Secondly, we apply our two sparse multimodal
methods to a recent multi-view GP framework. Finally, the proposed sparse mul-
timodal methods can reduce the training time significantly with slight reduction
of the accuracy, which extend the multimodal GPs to the scenario of scalable
data.

The structure of the remainder of the paper is as follows. In Section 2, we
briefly review GPs and propose the mIVM, our first sparse multimodal approach.
Section 3 review the manifold-preserving principle, and present the other sparse
multimodal method, aMP. A recent framework of multimodal GPs and our novel
application are described in Section 4. Experimental results are reported in Sec-
tion 5. Finally, we conclude this paper in Section 6.

2 Maximum Informative Vector Machine

This section first reviews the GP model, and then introduces the maximum
Informative Vector Machine (mIVM), our first sparse multimodal approach. For
the sake of clarity, in this section and Section 3, we take the case that data from
two modalities are available as an example to illustrate our sparse multimodal
methods. Similar algorithms can be mimicked if data concerning more than two
modalities are adopted for the sparse multimodal GPs.

2.1 Gaussian Processes

GPs have proven their effectiveness as successful tools for classification and re-
gression. They are frequently applied to describe a distribution over functions,
and can be completely specified by its mean function and covariance function [1].

Suppose the training data areX,Y withN points, whereX = [x1,x2, ...,xN ]T,
xi ∈ RM is the ith input, Y = [y1, y2, ..., yN ]T, and yi ∈ R is the ith output.
The latent function of the data is denoted as f .

Following standard settings for GPs, the prior distribution for f is supposed
to be Gaussian with a zero mean and a covariance matrix K, f |X ∼ N (0,K),
and the covariance function k(xi,xj) determines the element Kij of K. Numer-
ous kernel functions can be applied in GPs. Since the squared exponential kernel
is a frequently-used covariance function, we select it as the covariance function
in this paper. The Gaussian likelihood for regression is Y |f ∼ N (f , σ2I), and
the marginal likelihood can be written as Y |X ∼ N (0,K +σ2I). The posterior
of the latent function is

f |Y ∼ N (µ,Σ), (1)
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where µ = K(K + σ2I)−1Y is the mean of the posterior distribution and
Σ = K −K(K + σ2I)−1K is the covariance of the posterior distribution.

The prediction of a new point x∗ is also Gaussian,

f∗|X,Y ,x∗ ∼ N (f̄∗, cov(f∗)), (2)

where f̄∗ = k∗T[K + σ2I]−1Y , cov(f∗) = k(x∗,x∗) − k∗T[K + σ2I]−1k∗, k
is the covariance function, and k∗ is the vector of covariance function values
between x∗ and the training data X.

Typically, if N is the size of training data, GPs need O(N3) time and O(N2)
memory for training, and at least O(N) time for prediction on a test point.

2.2 Algorithm

Keeping the GP predictor only on a smaller subset of the data is a simple ap-
proximation to the full-sample GP predictor. This kind of approximation method
makes sense if the information contained in points of the subset is sufficiently
close to the information obtained by the full data set. Clearly, it is pivotal to
select the points in the subset, which is called as the sparse set in this paper.
Based on the information theory, [4] proposed to select the point with maximum
differential entropy score to be included into the sparse set at every selection. In
other words, they chose the point with the most information for inclusion. By
the most information, it means that for a point the quantity

∆Hini = −1

2
log |Σini |+

1

2
log |Σi−1| (3)

is maximized, where Σini is the posterior covariance after choosing the nith
point at the ith selection, and Σi−1 is the posterior covariance after the (i−1)th
choice. This quantity is the reduction in the posterior process entropy associ-
ated with selecting the nith point at the ith selection [4]. Inspired by these
thoughts, we concentrate on the multimodal cases and propose the mIVM for
sparse multimodal GPs.

The mIVM use a GP to model data from the same modality, which means
that for each modality, the mIVM models data by a GP. In each selection, for
each candidate point, it first calculates the entropy reduction associated with
every modality. Next, the overall entropy reduction associated with the candidate
is determined by the maximum among all the modalities. Then the candidate
giving the largest overall reduction in the posterior process entropy is added to
the sparse set.

Formally, assume that we have a data set D = {(x1
i ,x

2
i , yi)}Ni=1 with N

examples, where x1
i ∈ RM1 is the ith observation from the first modality, x2

i ∈
RM2 is the ith observation from the second modality, and yi ∈ {+1,−1} is
the corresponding label. Denote X1 = [x1

1, ...,x
1
N ]T, X2 = [x2

1, ...,x
2
N ]T, and

Y = [y1, ..., yN ]T. Let T denote the sparse set, I denote the candidate set, and
t denote the number of points in the sparse set, namely the size of the sought
sparse set.
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The mIVM use two GPs to model two modalities of data. Specifically, it uses
one GP to modal data from the first modality, i.e. {X1,Y }, and uses the other
GP to modal data from the second modality, i.e. {X2,Y }. That is, the prior
distributions for the latent functions f1 on the first modality of data and f2

on the second modality of data are assumed to be Gaussian, i.e. p(f1|X1) =
N (0,K1), and p(f2|X2) = N (0,K2), where K1 is the covariance matrix about
the first modality of data and K2 is the covariance matrix about the second
modality of data. As for the likelihood, we use the Gaussian likelihood here.
Although the Gaussian noise model is originally developed for regression, it
has also been proved effective for classification, and its performance typically
is comparable to the more complex probit and logit likelihood models used in
classification problems [20]. Therefore, we also use Gaussian noise model for
classification tasks in this paper.

Initially, T is a null set and I contains all the N examples. At the ith (i =
1...t) selection, the entropy reductions with the nith point for the first modality
and the second modality are obtained by

∆H1
ini

= −1

2
log |Σ1

ini
|+ 1

2
log |Σ1

i−1|, (4)

and

∆H2
ini

= −1

2
log |Σ2

ini
|+ 1

2
log |Σ2

i−1|, (5)

respectively, where Σ1
ini

is the posterior covariance for the first modality of
data after choosing the nith point at the ith selection, Σ1

i−1 is the posterior
covariance for the first modality of data after the (i − 1)th choice, and Σ2

ini

and Σ2
i−1 are defined analogously for the second modality. The overall entropy

reduction associated with the nith point is given by

∆Hini = max(∆H1
ini

, ∆H2
ini

). (6)

Then, at the ith selection, the n∗
i th data point is selected for inclusion at the

sparse set T and removed from the candidate set I, where

n∗
i = max

ni

({∆Hini}ni∈I). (7)

The selection procedure repeats until t points are added into the sparse set T .
The mIVM explores a sparse representation of multimodal data, which lever-

ages the information from the input data and corresponding output labels. It
attempts to obtain the maximum amount of information among all the modal-
ities with the minimum number of data points. The computational complexity
of the mIVM is O(t2N), where t is the number of data points included in the
sparse multimodal representation.

3 Alternative Manifold-Preserving

We first review the principle of manifold-preserving. Then we introduce our
second sparse multimodal method, the alternative Manifold-Preserving (aMP).
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3.1 Manifold-Preserving

Assume we are given a graphG(V,E,W ) corresponding to a manifold with vertex
set V = {vi}mi=1, edge set E, and weight matrix W , and the number of vertices
reserved in the desired sparse graphs is s. Manifold-preserving seeks a sparse
graph G′, which is a subgraph of G with s vertices, having a high connectivity
with G, that is to say, a candidate that maximizes the quantity

1

m− s

m∑
i=s+1

( max
j=1,..,s

Wij), (8)

where Wij characterizes the similarity or closeness between the ith vertex and
the jth vertex, and a small value denotes a low similarity [15].

The manifold-preserving sparse graph G′ focuses on reducing the number
of vertices, and the edge weights from the original graph G to sparse graph G′

need not change. The high demand for space connectivity inclines to choose vital
data points and thus remove outliers and noisy points, which can maintain the
manifold structure. The maximum preservation of the manifold structure can be
beneficial to machine learning tasks. Inspired by this thought, we propose the
aMP in the following section.

3.2 Algorithm

To make this section self-contained, we repeat the data notations. We are given
data D = {(x1

i ,x
2
i , yi)}Ni=1 with N examples, where x1

i ∈ RM1 is the ith
observation from the first modality, x2

i ∈ RM2 is the ith observation from
the second modality, and yi ∈ {+1,−1} is the corresponding output. Denote
X1 = [x1

1, ...,x
1
N ]T, X2 = [x2

1, ...,x
2
N ]T, and Y = [y1, ..., yN ]T.

We use {X1,Y } to construct the graphG1(V 1, E1,W 1), where V 1 = {v1i }Ni=1

is the vertex set of graph G1. The graph G2(V 2, E2,W 2) is constructed by using
{X2,Y }, where V 2 = {v2i }Ni=1 is the vertex set of graph G2. Clearly, graph G1 is
associated with the first modality of data, while graph G2 is associated with the
second modality. There are many methods to create the graphs. In this paper,
we do not investigate the distinctions of properties of graphs constructed by
different methods, but assume that a reasonable graph can be constructed.

Note that the vertex v1i corresponds to the vertex v2i since they are associated
with the same example, namely the ith example. In fact, the ith example has
observation (x1

i ,x
2
i ) and label yi, and is corresponding to the vertex v1i in graph

G1, and vertex v2i in graph G2.
The degree d1(i) associated with vertex v1i is defined to be d1(i) =

∑
i∼j W

1
ij ,

where i ∼ j denotes that there is an edge connecting the vertex v1i and vertex
v1j (if there is no edge between two vertices, their similarity is regarded as 0).

For the degree d2(i) associated with vertex v2i , the definition is similar. Suppose
that the number of retained examples is t. Our goal is to seek t examples to
form a sparse set T = {x1

i ,x
2
i , yi}i∈TI , where TI is the index set of the sought
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sparse set, from the original N examples. Inspired by the manifold-preserving
principle, we present the aMP whose details are described as follows.

The aMP first chooses a modality from the two modalities at random, for
example, the second modality. Next, the vertex v2w1

with the maximum degree in
the graph associated with the chosen modality is selected. As we have mentioned
above, the vertex v2w1

is associated with the w1th data point and vertex v1w1
in

the other graph. Thus, the vertex v1w1
is also selected. All the edges and weights

linked to the vertex v2w1
from the original graph G2 are then removed and all the

edges and weights associated with the vertex v1w1
in the other graph G1 are also

removed as they represent the same data point. At the same time, the chosen
vertices and edges linking these vertices are added from the original graphs G1

and G2 to the corresponding sparse graphs G1
s and G2

s (which are null initially),
respectively. Add the corresponding example w1 to the index set TI . Then a
similar selection proceed on the resultant graphs with the first modality as the
chosen modality. The alternative selection procedure repeats until t data points
are added into the index set TI . We summarize aMP in Algorithm 1.

Algorithm 1 Alternative Manifold-Preserving

Input: graphs G1(V 1, E1,W 1), G2(V 2, E2,W 2) with N vertices, t for the size of the
sparse set, training data {(x1

i ,x
2
i , yi)}Ni=1.

Output: the index set TI of sparse set, the sparse set T .

1: Initialize: a is randomly set in {1, 2}; TI = ∅.
2: for j = 1, ..., t do
3: b = a, a = (a mod 2) + 1.
4: compute degree da(i) (i = 1, ..., N − j + 1).
5: pick one vertex vaw in graph Ga with the maximum degree.
6: remove vaw and associated edges from graph Ga, remove vbw and associated edges

from graph Gb.
7: add w to the index set TI .
8: end for
9: The sparse set is T = {x1

i ,x
2
i , yi}i∈TI .

The aMP focuses on the sparse point selection for multimodal data. Moti-
vated by the manifold preserving, it uses an alternative selection strategy to
preserve the high space connectivity. Assume the maximum number of edges
linked to a vertex in the original graphs G1 and G2 is dE . The computational
complexity of the aMP is

O[dE(N + (N − 1) + ..+ (N − t+ 1))] = O(dENt), (9)

Since the aMP is simple and efficient, it is quite straightforward to be applied
to scalable data.
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4 Application to Multi-view GPs

The framework of multi-view Gaussian processes (MvGPs) has recently been
proposed as a straightforward extension of the GPs for multimodal data [19].
The core idea is to impose consistency between the posterior distributions of the
functions across modalities.

Taking the data having two modalities as an example, the MvGP first models
each modality of data by a GP. Then, it proposes the consistency criterion to
regularize the objective function, and optimizes the hyperparameters collabora-
tively by the two modalities. The objective function of MvGP is

min{−[a log p(Y |X1) + (1− a) log p(Y |X2)]

+
b

2
[KL(p(f1|X1,Y )||p(f2|X2,Y ))

+KL(p(f2|X2,Y )||p(f1|X1,Y ))]}, (10)

where X1 ∈ RN×M1 is the data matrix on the first modality, X2 ∈ RN×M2

is the data matrix on the second modality, Y is corresponding label matrix,
f1 and f2 are the associated latent functions for the two modalities of data,
respectively, and a and b are parameters.

To demonstrate the performances of our proposed sparse multimodal meth-
ods, we apply them to the framework of MvGPs and use the combined models
to solve the classification problem. For convenience, we denote the mIVM based
MvGP as mMvGP, and the aMP based MvGP as aMvGP. The computational
complexity of the mMvGP is

O(t2N + t3) = O(t2N), (11)

while the computational complexity of the aMvGP is

O(dENt+ t3), (12)

where N is the number of original training data points, t is the number of data
points included in the sparse multimodal representation (usually, t << N ), and
dE is the maximum number of edges linked to a vertex in the original graphs
from all modalities. The original MvGP needs O(N3) time, the same as the
GP. From the analysis of computational complexity, it is clear that both the
aMvGP and the mMvGP significantly reduce the training time. Thus, applying
the mIVM and aMP to multimodal GPs would be quite efficient.

5 Experiment

In this section, experiments are conducted to assess the effectiveness of the two
proposed sparse multimodal methods.
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Table 1. Statistical information of the data sets.

Data set size content dimension citation dimension # P class # N class

Cornell 195 1703 195 83 112

Washington 230 1703 230 107 123

Wisconsin 265 1703 265 122 143

Texas 187 1703 187 103 84

cora 2708 1433 2708 818 1890

5.1 Data

Four Web-Page Data Sets The web-page data sets, as widely used data
sets in multimodal learning, consist of two-modalities web pages collected from
computer science department websites of four universities: Cornell university,
university of Washington, university of Wisconsin, and university of Texas. The
two modalities are words occurring in a web page and words appearing in the
links pointing to that page. We list the statistical information about the four
data sets in Table 1. The web pages are classified into five classes: student,
project, course, staff and faculty. In each data set, we set the category with the
greatest size to be the positive class (denoted as ”P class”), and all the other
categories as the negative class (denoted as ”N class”).

Cora Data Set The cora data set consists of 2708 scientific publications be-
longing to seven categories, of which the one with the most publications is set
to be the positive class, and the rest the negative class. Each publication is rep-
resented by words in the content modality, and the numbers of citation links
between other publications and itself in the citation modality. The dimensions
are 1433 and 2708, respectively.

5.2 Setting

In the experiments, we select two-thirds of data in each data set as the training
set, and the rest as the test set. For the four web-page data sets, the sizes of the
sparse set are 40%, 60%, and 80% of the corresponding training sets, and we
also conduct experiments without sparse approximation. For the cora data set,
the sizes of the sparse set are 8%, 10%, and 12% of the size of the training data
set. For comparison, we give a random sparse approximation for MvGP, which
just randomly selects points to form the sparse set, and denote it as rMvGP.
The kernel functions used in mIVM and aMP are the squared exponential kernel
functions. After finding the sparse set, aMvGP, mMvGP, and rMvGP employ
the similar hyperparameters learning and parameters setting as [19]. We repeat
the experiments for all the data sets five times and record the average accuracies
and the corresponding standard deviations. The average training times for each
model on all the data sets are also reported.
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Fig. 1. Classification results for four web-page data sets. The x-axis corre-
sponds to different settings of the size of sparse set, where t represents the percentage
of the training set. The figures from top to bottom are results on the Cornell, Wash-
ington, Wisconsin, and Texas data set. Error bars represent standard deviations of the
accuracies.

5.3 Results on Four Web-Page Data Sets

We first evaluate mMvGP, aMvGP, and rMvGP on four web-page data sets in
consideration of making comprehensive comparisons of the accuracies of such
sparse methods. The results are shown in Figure 1. Compared with the models
without using sparse methods, the models leveraging sparse methods only reduce
the classification accuracies slightly. For a range of t values, the classification re-
sults on the four data sets show that the aMvGP produce superior classification
performance to other sparse models, which verifies the effectiveness of our pro-
posed sparse multimodal method, the aMP. The performances of the mMvGP
are not so well as aMvGP.

When the modalities are not necessarily compatible, a variant of the MvGP
was given in [19]. We also combine the mIVM, the aMP, and random sparse
approximation with this variant and denote the combinations as mMvGP2,
aMvGP2, and rMvGP2, respectively. We evaluate mMvGP2, aMvGP2, and
rMvGP2 on the four data sets. The corresponding classification results reflect
that there is generally no improvement of the performances on accuracy.

The average training times of aMvGP and aMvGP2 on four data sets are
presented in Figure 2, which verify the significant reduction of computational
complexity. It is shown that the training times increase rapidly with the size
of the sparse set, which indicates that the sparse methods effectively reduce the
training times. The average training times of other sparse models are comparable
to aMvGP and aMvGP2.

Taken the computational complexity and the classification accuracy together,
the sparse multimodal models significantly reduce the training times but without
obvious loss of accuracies.
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Fig. 2. Average training times on four web-page data sets. The x-axis corre-
sponds to different settings of the size of sparse set, where t represents the percentage
of the training set. The y-axis corresponds to the average training times on different
settings of the size of sparse set. The upper four lines are average training times of
aMvGP2, while the lower four lines are average training times of aMvGP.

Table 2. The accuracies on the cora data set (%).

Model 6% 8% 10%

rMvGP 72.46±4.22 73.32±10.04 78.51±1.61

mMvGP 74.78±3.09 76.42±3.85 75.56±2.89

aMvGP 76.00±3.00 77.11±2.08 79.90±2.22

5.4 Results on the Cora Data Set

On the same experimental setting, it takes about one week for MvGP to train on
the cora data set with a normal computer (Intel(R) Core(TM) i7-6700 3.40GHz
CPU). The long training time caused by MvGP may come from the cross vali-
dation and the grid search for optimizing the hyperparameters. As the compu-
tation of MvGP involves matrix inversions, it is unaffordable to be applied to
large-scale data sets, such as a dataset with more than ten thousands points.
Considering those factors, we choose the cora data set. Since the performances
of mMvGP, aMvGP, and rMvGP are generally better than mMvGP2, aMvGP2,
and rMvGP2, we only evaluate mMvGP, aMvGP, and rMvGP on the cora data.

The classification results are demonstrated in Table 2. The average training
times of mMvGP, aMvGP, and rMvGP are shown in Figure 3. Taking into
account of the results in the figure and table, we find that the aMP and mIVM
greatly reduce the training times of the multimodal GPs with an acceptable
performance on the accuracy.

The accuracy of the MvGP for the cora data set is around 92%. We can
see the loss of the accuracy is slight though we only use a tiny proportion of
the training set, such as 8%. Specifically, aMvGP can achieve the accuracy of
77.11% with only 8% of the whole training set, which is 83.82% of the accuracy
of MvGP trained on the whole training set. It indicates that our sparse methods
are scalable on large data sets.
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Fig. 3. Average training times on cora data. The x-axis corresponds to different
settings of the size of sparse set, where t represents the percentage of the training set.

Combining the results here and classification results on the four web-page
data sets, we find that aMvGP achieves the best performance. We have also
given the training times of aMvGP, which indicates that when it is unaffordable
to train on the original full data set, we can use the aMvGP to approach a good
approximation.

6 Conclusion

In this paper, we have proposed the mIVM and aMP as two kinds of sparse mul-
timodal methods for the multimodal GPs. The mIVM is inspired by information
theory, seeking the maximum amount of information from all the modalities with
the same number of data points. The aMP is more intuitive, which adopts an al-
ternative selection strategy to utilize data from all the modalities for preserving
the high space connectivity. We apply the two proposed sparse multimodal meth-
ods to multi-view GPs to verify the effectiveness. The classification accuracies on
four web-page data sets and the cora data set have shown that aMvGP outper-
forms other competitive methods. The scalability was also tested on preliminary
experiments with tiny proportions of data for training. More experiments will
be conducted in the future.
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