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ABSTRACT
Recently, cross-domain learning has become one of the most
important research directions in data mining and machine
learning. In multi-domain learning, one problem is that the
classification patterns and data distributions are different
among domains, which leads to that the knowledge (e.g.
classification hyperplane) can not be directly transferred
from one domain to another. This paper proposes a frame-
work to combine class-separate objectives (maximize sepa-
rability among classes) and domain-merge objectives (min-
imize separability among domains) to achieve cross-domain
representation learning. Three special methods called DMCS
CSF, DMCS FDA and DMCS PCDML upon this frame-
work are given and the experimental results valid their ef-
fectiveness.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications –
Data Mining

General Terms
Algorithm

Keywords
cross-domain learning, representation learning, discrimina-
tive model

1. INTRODUCTION
The representation learning aims to learn the meaningful
and useful representations of the data that play important
roles to many machine learning and data mining tasks (e.g.
classification, regression and ranking). A very similar topic
is called as dimensionality reduction. There are almost three
subtopics on representation learning: feature selection, fea-
ture extraction and distance metric learning. The propose of
feature selection methods is to find a subset of the original
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features (also called variables or attributes). Feature ex-
traction tries to transform the data in the high-dimensional
space to a new space. The data transformation may be linear
while many nonlinear dimensionality reduction techniques
also exist. Distance metric learning construct a metric or
distance function which defines a distance between points of
a dataset since the performance of many learning and data
mining algorithms depend critically on their being given a
good metric over the input space.

Most of traditional methods on representation learning per-
form well on the single domain scenario where distributions
of source and target domains are identical. In other words,
they are under the assumption that training and testing
samples are independent and identically distributed. How-
ever, for lots of practical applications, this assumption does
not hold since real-world problems may encounter multi-
ple sources of data belongs to different feature distributions
[5, 11]. The challenge of multiple domains is particularly
relevant to hot real-world topics such as natural language
processing, social networking, information retrieval. There-
fore, it is meaningful to study cross-domain representation
learning which can transfer common knowledge structures
from source domains to the target domain to help the tasks
on the target test datasets. For tasks on the cross-domain
scenario, a good data representation should not only be help-
ful for later tasks but also can help task-related models be
transferred among domains. Most of the traditional repre-
sentation learning models only pursue the formal one, and
the classification models constructed on this kind of data
representation can not be transferred among domains.

The work in this paper focus on the cross-domain representation-
learning framework which aims to learn a data representa-
tion model that can catch data characters which are not
only helpful for later tasks , but also robust to the domain
differences. The base idea of our work is to integrate task-
related objectives and domain-merge objectives into a single
one. For classification tasks, the task-related objectives al-
ways can be described as “maximize the differences between
classes”. For domain-merge objectives, a natural definition
is “minimize the difference between domains”. This paper
proposes a framework to achieve both optimization of class-
separate and domain-merge objectives. The advantages of
our framework can be summarized as follows: First, our
framework is easily understood and implemented since the
domain-merge objectives are formulated by modifying the



definitions of traditional class-separate objectives. As a re-
sult, the companies or other non-research institutions can
try our cross-domain representation model with engineering
programming languages such as C, C++ or Java since there
exists many toolkits that have implemented traditional clas-
sification models with those programming languages. More-
over, this paper proposes a framework rather than a special
algorithm. Similar as many other frameworks that integrate
a collection of methods that share same ideas in a united
form [22, 10], our framework can motivate readers to de-
sign a greatly broad range of methods in cross-domain fea-
ture selection, cross-domain feature-construction, and cross-
domain distance-metric-learning methods, which are flexible
and interesting. I believe readers can easily develop their
new methods upon our framework though only three special
methods are proposed here.

Here we briefly introduce the concrete cross-domain repre-
sentation learning methods that this paper proposes. In
this paper, three concrete methods are proposed to provide
concrete cross-domain representation learning methods and
valid the extensibility of our framework. These methods are
called as DMCS CSF, DMCS FDA and DMCS PCDML.
DMCS CSF is proposed by changing the concept of class
label to the domain label to revise the class-separate objec-
tive to the domain-merge objective. After that, the tradi-
tional correlation theory is modified to select the feature set
that can reduce domain differences to merge domains. By
combining class-separate and domain-merge evaluations, the
final feature subset can pursue class-separate and domain-
merge objectives. DMCS FDA changes the mathematical
items in traditional between-class and within-class scatter
matrixes to obtain a new optimization objective that com-
bines class-separate and domain-merge objectives. DMCS CSF
also integers two objectives into one objective function, and
the optimization toolkits that used to solve traditional meth-
ods can be used here without modifies. To sum up, these
methods aim to find a new data representation to pursue
class-separate and domain-merge objectives simultaneity. More-
over, since there are one parameter to control the desired
level of class-separate and domain-merge objective in these
algorithms,“target-priority”cross-validation for cross-domain
parameter selection is also presented.

In the next section we will describe our work: cross-domain
representation learning framework. Firstly, the base ideas of
our framework and domain-merge objectives are introduced.
Subsequently, DMCS CSF, DMCS FDA (including its ker-
nel version), DMCS PCDML and“target-priority” cross val-
idation are given in details. Section 3 will outline the exper-
iments and analysis we performed. Finally, we will show our
conclusion and recommendations for future work in Section
4.

2. CROSS-DOMAIN REPRESENTATION
LEARNING FRAMEWORK

In this section, a cross-domain representation-learning frame-
work that has a strong extended-ability and easy to imple-
ment is proposed. This is motivated by the fact that ma-
jorities of current domain-adaptation methods are not easily
understood and implemented by engineering programming
languages such as C, C++ [17] or Java [8]. We wish to en-
courage more companies try to employ cross-domain learn-

ing to real-world data. As a result, we propose methods
that can be realized with small modifies with the traditional
machine-learning toolkit.

Algorithm1 Cross-Domain Representation-Learning
Framework (CDRLF)

Input:
Datasets 𝑋1, 𝑋2, ⋅ ⋅ ⋅𝑋𝑛𝑠 from different domains, where
𝑋𝑖 ∈ ℝ𝑑 (𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛) is on the raw data
representation. Label information of labeled subsets.
Domain information of 𝑋1, 𝑋2, ⋅ ⋅ ⋅𝑋𝑛𝑑 .

Output: The transformation operator 𝐹𝑇 (𝑋𝑖) = 𝑋𝑖,
where 𝑋𝑖 is the new representation of 𝑋𝑖 (𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛)
.
Objective function: J(𝐹𝑇 ) = combination of 𝑄𝑐(𝐹𝑇 )
and 𝑄𝑑(𝐹𝑇 ), where 𝑄𝑐(𝐹𝑇 ) and 𝑄𝑑(𝐹𝑇 ) indicate the
class-separate related quality and domain-merge related
quality, respectively.

Keys:
𝐾1: How to define the 𝑄𝑑(𝐹𝑇 ) by modifying 𝑄𝑐(𝐹𝑇 ).

𝐾2: How to define the combination of two terms 𝑄𝑐(𝐹𝑇 )
and 𝑄𝑑(𝐹𝑇 ).

As the Algorithm 1 shows, our framework aims to learn
a data representation that achieves combination of class-
separate objectives and domain-merge objectives. The domain-
merge objectives are always achieved by modifying class-
separate objectives, so that their implementations are rela-
tively easy. The keys of developing a concert method with
our framework are defining the formulation of domain-merge
objectives and combination of class-separate and domain-
merge objectives.

2.1 Domain-merge objectives
In this subsection, we discuss about the base idea to con-
struct domain-merge objectives. To be easily understood
and implemented, we wish to modify the class-separate ob-
jectives that can be implemented by current toolkits to form
domain-merge objectives. Therefore, the concepts of class-
separate and domain-merge tasks should be related. The
components of class-separate tasks include training set, test
set and objective functions. Here we list the differences
of these three concepts in class-separate and domain-merge
tasks in the Table 1.

In the following sections, we’ll propose some methods ob-
tained with our framework. This methods are obtained by
changing classical representation-learning methods to the
cross-domain version. As discussed in the Section 1, there
are three categories of representation leaning: feature se-
lection, feature reconstruction and distance metric learning.



Table 1: comparison of concepts in class–separate
and domain–merge objectives

Concept class–separate objective
VS

domain–merge objective
Training set Set{x, class label}

VS
Set{x, domain label}

Test set Set{x, predicted class label}
VS

−−−−
objective maximize separability

among classes
VS

minimize separability
among domains

Special methods in these categories are proposed to provide
concrete methods and show the extensibility of this frame-
work.

2.2 Cross-domain Feature Selection
Feature selection [4] is a kind of explainable and visible
statistics models to learn data representation. In this sec-
tion, we wish to take use of the theory of one classical feature
selection approach to gain a cross-domain feature selection
method.

2.2.1 Correlation Feature Selection Theory
Here, we employ the theory of the Correlation Feature Selec-
tion (CFS) [7] to cross-domain feature selection. Note that
there are many other feature-subset evaluations for tradi-
tional feature selection which evaluate the importance of a
feature to the classification task can also be used.

CFS measure evaluates subsets of features on the basis of the
following hypothesis: “Good feature subsets contain features
highly correlated with the classification, yet uncorrelated to
each other”. The following equation gives the merit of a
feature subset 𝑆 consisting of 𝑘 features:

𝑀𝑒𝑟𝑖𝑡𝑆𝑘 =
𝑘𝑟𝑐𝑓√

𝑘 + 𝑘(𝑘 − 1)𝑟𝑓𝑓
(1)

Here, 𝑟𝑐𝑓 is the average value of all feature-classification cor-
relations, and 𝑟𝑓𝑓 is the average value of all feature-feature
correlations. The CFS criterion is defined as follows:

𝐶𝐹𝑆 = max
𝑆𝑘

⎡⎣ 𝑟𝑐𝑓1 + 𝑟𝑐𝑓2 + ⋅ ⋅ ⋅+ 𝑟𝑐𝑓𝑘√
𝑘 + 2(𝑟𝑓1𝑓2 + ⋅ ⋅ ⋅+ 𝑟𝑓𝑖𝑓𝑗 + ⋅ ⋅ ⋅ 𝑟𝑓𝑘𝑓1)

⎤⎦ .

(2)
The 𝑟𝑐𝑓𝑖 and 𝑟𝑓𝑖𝑓𝑗 variables are referred to as correlations
such as Pearson’s correlation:

𝑟 =

∑𝑛
𝑖=1(𝑋𝑖 −𝑋)(𝑌𝑖 − 𝑌 )√∑𝑛

𝑖=1(𝑋𝑖 −𝑋)2
√∑𝑛

𝑖=1(𝑌𝑖 − 𝑌 )2
. (3)
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Figure 1: A general framework of cross-domain fea-
ture selection. Upon different evaluation criterions,
different feature subsets will be obtained: (1) Fea-
ture subset that maximizes distances among classes,
(2) Feature subset that maximizes distances among
domains, (3) Feature subset that maximizes class-
separate and domain-merge objective.

The concrete solution about (2) can be seen in [14].

2.2.2 Domain-Merge and Class-Separate CFS
Traditional feature selection models are mainly constituted
by an evaluation and search components. The evaluation
functions give scores to feature subsets while the search func-
tions aim to search better subsets upon their scores. It is ob-
vious that when different definitions of the evaluation func-
tions are used, the final learned feature subsets will have dif-
ferent characters (as the Fig.1 shows) . As a result, we define
a domain-merge related evaluation to estimate how much a
feature subset reduces the domain differences by reversing
the traditional feature-subset evaluation definition. Here,
for the combination of two evaluations have two base ways.
First (as the full line shows), we can obtain two subsets cor-
responding to the class-separate and domain-separate eval-
uations. Finally, the intersection of them can be regarded as
the final feature subset. Second (as the dotted line shows),
we can used a combination of two evaluations to be a new
evaluation that integrates the class-separate and domain-
separate objectives together.

Here, we modify the evaluation of CFS to obtain Domain-
Merge and Class-Separate CFS (DMCS CSF). Upon the
CFS definition, the first term 𝑟𝑐𝑓 is used to estimate the fea-
ture importance to classification task. Therefore, if different
definitions of labels to the classification task is used, the new
evaluation can result different feature subset. Therefore,
motivated by the discussion of Section 2.1, a domain-merged
evaluation function is defined upon the domain labels. By
changing the concept of the class label to the domain label,



the feature subset that has less correlation with domain dif-
ferences (domain classification) will be selected out. Denote
𝑟𝑑𝑓 is calculated by changing class labels to domain labels,
two term 𝑟𝑐𝑓 and 𝑟𝑑𝑓 that correspond to the class-separate
and domain-merge objectives are usedčž

𝑟𝑐𝑓/𝑑𝑓 =

∑𝑛
𝑖=1(𝑋𝑖 −𝑋)(𝑌

𝑐/𝑑
𝑖 − 𝑌 𝑐/𝑑)√∑𝑛

𝑖=1(𝑋𝑖 −𝑋)2
√∑𝑛

𝑖=1(𝑌
𝑐/𝑑
𝑖 − 𝑌 𝑐/𝑑)2

. (4)

where 𝑌 𝑐 and 𝑌 𝑑 are class labels and domain labels. “/”
means “or”.

Therefore, similar as the fact that feature subset with high
𝑟𝑐𝑓 is assumed to be related to class differences, the feature
subset corresponding to the low 𝑟𝑑𝑓 is assumed to be less
related to domain differences. Therefore, we wish to gain
the feature subset that have high 𝑟𝑐𝑓 and low 𝑟𝑑𝑓 , as well as
low feature-feature correlation 𝑟𝑓𝑓 . The new evaluation is
formulated as follows:

𝑀𝑒𝑟𝑖𝑡𝑆𝑘 =
𝑘𝑟𝑐𝑓 − 𝛼 ∗ 𝑘𝑟𝑑𝑓√
𝑘 + 𝑘(𝑘 − 1)𝑟𝑓𝑓

(5)

Combining the class-separate related term 𝑟𝑐𝑓 and the domain-
merge related term −𝑟𝑐𝑓 with a parameter 𝛼 the final feature
subset is expected to be can maximize the class-separate and
domain-merge objectives. As a result, we obtain𝐷𝑀𝐶𝑆 𝐶𝑆𝐹 .

2.3 Cross-domain Feature Reconstruction
Compared with feature selection methods, feature recon-
struction [20] methods are more flexible even the final recon-
structed features are less explainable. Firstly, let’s review a
common framework of feature reconstruction methods that
aims to learn a low-dimensional representation by learning a
transformation. Here, we firstly focus on linear transforma-
tion framework, then the non-linear version is also proposed
here.

Suppose raw data are 𝑑-dimensional samples vectors 𝑥𝑖 ∈
ℝ𝑑 (𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛) and we wish to learn a low-dimensional
representation of them. Assume 𝑟 is the dimensionality we
wish to reduce to. We need to learn a transformation matrix
Φ = [𝜙1, 𝜙2, ⋅ ⋅ ⋅ , 𝜙𝑟] ∈ ℝ𝑑×𝑟 to get the representation 𝑧𝑖 ∈
ℝ𝑟 for the raw samples 𝑥𝑖:

𝑧𝑖 = Φ⊤𝑥𝑖. (6)

To learn the transformation matrix Φ, many algorithms find
an objective function related to some quality measure of the
low-dimensional space. By optimizing the objective func-
tion, Φ can be learned. Observing that the objective func-
tions of many dimensionality reduction techniques developed
so far are often related, we offer a dimensionality reduction
framework with the object function formulated as:

J(𝜙) = 𝜙⊤𝑄𝑚𝑎𝑥𝜙, (7)

Roughly speaking, 𝑄𝑚𝑎𝑥 encodes the quantity that we want
to increase. Commonly, 𝑄𝑚𝑎𝑥 is related with class-separate
degree. By reversing the definition of 𝑄𝑚𝑎𝑥, we wish to
obtain a item to estimate domain-merge degree and combine
it into the final objective.

2.3.1 Fisher Discriminant Analysis Theory
Upon the above discussion, there are many methods can be
extended to be adaptive to cross-domain learning. Here,
let’s take classical fisher discriminant analysis (FDA) [12] to
be an extend object owing to the fact that though it is used
widely in real-world applications, FDA tends to give unde-
sired results if samples in training and test sets belong to
different distributions. The basis objective of FDA is ”max-
imize the class-separate degree”. Therefore, the 𝑄𝑚𝑎𝑥 is a
combination of two items that estimate the between-class
and within-class scatter degree, respectively. Their concrete
definitions are:

𝑆𝑏 =
∑
𝑖=1,2

𝑛𝑖(𝜇𝑖 − 𝜇)(𝜇𝑖 − 𝜇)⊤,

𝑆𝑤 =
∑
𝑖=1,2

(

𝑛𝑖∑
𝑗=1

(𝑥𝑖
𝑗 − 𝜇𝑖)(𝑥

𝑖
𝑗 − 𝜇𝑖)

⊤),
(8)

where 𝜇 is the total sample mean, 𝑛𝑖 is the sample number
in the 𝑖th class, 𝜇𝑖 is the mean vector of 𝑖th class, and 𝑥𝑖

𝑗 is
the 𝑗th sample in the 𝑖th class.

2.3.2 Domain-Merge and Class-Separate FDA
Upon the description of FDA, we can see the modification
object is 𝑆𝑤. Here, we can define an item to estimate the
domain-separate degree as (some related work can also see
[18]):

𝑆𝑈
𝑑 = (𝜇𝐷1 − 𝜇𝐷2)(𝜇𝐷1 − 𝜇𝐷2)⊤, (9)

where 𝜇𝐷1 and 𝜇𝐷2 are data means of a domain pair {𝐷1, 𝐷2}.
Moreover, considering that there may be some labeled sam-
ple in the domains, here a more precision item:

𝑆𝐿
𝑑 = (𝜇𝐷1

1 −𝜇𝐷2
1 )(𝜇𝐷1

1 −𝜇𝐷2
1 )⊤+(𝜇𝐷1

2 −𝜇𝐷2
2 )(𝜇𝐷1

2 −𝜇𝐷2
2 )⊤,
(10)

where 𝜇𝐷1
𝑖 (𝑖 = 1, 2) and 𝜇𝐷2

𝑖 (𝑖 = 1, 2) are class means of a
domain pair {𝐷1, 𝐷2}.

Finally, here a between-domain scatter matrix can be de-
fined as:

𝑆𝑑 = 𝑆𝑈
𝑑 + (1 +min(𝑛𝐷1

𝑡𝑟 /𝑛𝐷1
𝑡𝑒 + 𝑛𝐷2

𝑡𝑟 /𝑛𝐷2
𝑡𝑒 ))𝑆𝐿

𝑑 , (11)

where 𝑛𝐷𝑖
𝑡𝑟 and 𝑛𝐷𝑖

𝑡𝑒 are sample numbers of labeled and unla-
beled set in Domain𝐷𝑖 (i = 1,2). The weight min(𝑛𝐷1

𝑡𝑟 /𝑛𝐷1
𝑡𝑒 +

𝑛𝐷2
𝑡𝑟 /𝑛𝐷2

𝑡𝑒 ) gives more power to the 𝑆𝐿
𝑑 since it is more pre-

cision while its precision is proportional to the ratio of the
labeled example number. Note that the equation (9) is de-
fined with domain pairs. For multiple domains, we can use
the sum of 𝑆𝑑 of each domain-pair. Finally, the combina-
tion of class-separate and domain-merge objective can be
achieved by the combination of 𝑆𝑑, 𝑆𝑏 and 𝑆𝑤:

J(𝜙) =
𝜙⊤𝑆𝑏𝜙

𝜙⊤(𝑆𝑤 + 𝛼𝑆𝑑)𝜙
, (12)

where 𝛼 is a parameter to control the balance between the
desired levels of class-separate and domain-merge degree ob-
jective. The final model is called as Domain-Merge and
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Figure 2: The roles of the items in (10). Yellow
and blue regions respectively denote data belongs
to class 1 and class 2 in the domain 𝐷1, and the red
and purple ones draw the data belongs to class 1 and
2 in the domain 𝐷2. The two classes in both domains
are overlap to some extent, as the green and black
regions reveal. (1) indicates the traditional class-
separate objectives with 𝑆𝑏 and 𝑆𝑤. (2) shows the
effect of the unsupervised domain-merge objectives
with 𝑆𝑈

𝑑 in 𝑆𝑑. (3) gives the effect of the supervised
domain-merge objectives with 𝑆𝐿

𝑑 in 𝑆𝑑. (4) shows
the final status.

Class-Separate FDA (DMCS FDA). Fig.2 gives some visu-
alization explanation of DMCS FDA.

2.3.3 Kernel Domain-Merge and Class-Separate FDA
The algorithm described above is a linear method. However,
many real datasets are only of approximate linear struc-
tures. Therefore it is important to consider generalizing
the DMCS FDA criterion to cope with the case of nonlin-
ear feature extraction [13]. In this section, we discuss how
to perform DMCS FDA in the reproducing kernel hilbert
space (RKHS) by means of the kernel trick, which gives rise
to kernel DMCS FDA.

Here we consider the problem in a feature space induced by
some nonlinear mapping Ψ and thus an inner product (⋅) can
be defined on the feature space which makes for an RKHS.
Then, we generalize the terms 𝜙⊤𝑆Ψ𝜙 (𝑆 = 𝑆𝑆𝑇

𝐵 , 𝑆𝑆𝑇
𝑊 , 𝑆𝑆𝑇

𝑈

and 𝑆𝑆𝑇
𝐿 ) in DMCS FDA in the RKHS.

From the theory of reproducing kernels, we know that any
solution 𝜙 must lie in the span of samples in ℱ :

𝜙 =

𝑙∑
𝑖=1

𝛽𝑖Ψ(𝑥𝑖), (13)

where 𝛽𝑖 (𝑖 = 1, ⋅ ⋅ ⋅ , 𝑙) are scalars.

First, we summarize 𝜙⊤𝑆Ψ𝜙 (𝑆 = 𝑆𝑆𝑇
𝐵 , 𝑆𝑆𝑇

𝑈 and 𝑆𝑆𝑇
𝐿 ) in a

unified form. Denote a mathematical term called between
datasets scatter matrix as 𝑆12 = (𝑚1 − 𝑚2)(𝑚1 − 𝑚2)

⊤,
where 𝑚1 and 𝑚2 are data means of two datasets 𝑆𝑒𝑡1 =
{𝑥1

1, 𝑥
1
2, ⋅ ⋅ ⋅ , 𝑥1

𝑙1
} and 𝑆𝑒𝑡2 = {𝑥2

1, 𝑥
2
2, ⋅ ⋅ ⋅ , 𝑥2

𝑙2
}. We show

that the term 𝜙⊤𝑆12𝜙 can be generalized into the RKHS:
𝜙⊤𝑆Ψ

12𝜙 = 𝜙⊤(𝑚Ψ
1 − 𝑚Ψ

2 )𝜙. Using the expansion (13) and
the definition of 𝑚Ψ

𝑖 we can see:

𝜙⊤𝑚Ψ
𝑖 =

1

𝑙𝑖

𝑙∑
𝑗=1

𝑙𝑖∑
𝑘=1

𝛽𝑗𝑘(𝑥𝑗 , 𝑥
𝑖
𝑘)

= 𝛽𝑀𝑖,

(14)

where 𝑀𝑖 is a vector with (𝑀𝑖)𝑗 = 1
𝑙𝑖

∑𝑙𝑖
𝑘=1 𝑘(𝑥𝑗 , 𝑥

𝑖
𝑘) and

the dot products is replaced by the kernel function.

Then, we get:

𝜙⊤𝑆Ψ
12𝜙 = 𝛽⊤𝑀𝛽, (15)

where 𝑀 = (𝑀1 −𝑀2)(𝑀1 −𝑀2)
⊤.

Now, we point that 𝜙⊤𝑆Ψ𝜙 (𝑆 = 𝑆𝑏, 𝑆
𝑈
𝑑 and 𝑆𝐿

𝑑 can be com-
puted by expansion (15) with different definitions of 𝑆𝑒𝑡1
and 𝑆𝑒𝑡2: For 𝜙

⊤𝑆Ψ
𝑏 𝜙 , 𝑆𝑒𝑡1 and 𝑆𝑒𝑡2 should be the samples

subsets of training set belong to class 1 and 2, respectively.
For 𝜙⊤𝑆𝑈Ψ

𝑑 𝜙, 𝑆𝑒𝑡1 and 𝑆𝑒𝑡2 should be the unlabeled set
from domain 𝐷1 and 𝐷2. For

𝜙⊤𝑆𝐿Ψ
𝑑 𝜙

, it can be computed as 𝜙⊤(𝑆1Ψ
12 +𝑆2Ψ

12 )𝜙, where 𝑆𝑖Ψ
12 is based

on 𝑆𝑒𝑡1 and 𝑆𝑒𝑡2 as the subsets of labeled set from domain
𝐷1 and 𝐷2 belong to class 𝑖 (𝑖 = 1, 2).

After defining 𝜙⊤𝑆Ψ
𝑏 𝜙, 𝜙⊤𝑆𝑈Ψ

𝑑 𝜙, and 𝜙⊤𝑆𝐿Ψ
𝑑 𝜙, There is still

only one term 𝜙⊤𝑆Ψ
𝑤𝜙 need be formulated. Using the ex-

pansion (13), the definition of 𝑚Ψ
𝑖 and similar analysis men-

tioned above, we find:

𝜙⊤𝑆Ψ
𝑤𝜙 = 𝛽⊤𝑁𝛽, (16)

where 𝑁 =
∑

𝑗=1,2 𝐾𝑗(𝐼 − 1𝑙𝑗 )𝐾
⊤
𝑗 and 𝐾𝑗 is a 𝑙× 𝑙𝑗 matrix

with (𝐾𝑗)𝑛𝑚 = 𝑘(𝑥𝑛, 𝑥
𝑗
𝑚) which is the kernel matrix for class

𝑗, I is t he identity and 1𝑙𝑗 is the matrix with all entries 1/𝑙𝑗 .

Finally, by combining the terms, we can formulate the ob-
jective function of DMCS FDA in RKHS as maximizing:

𝜙⊤𝑆Ψ
𝑏 𝜙

𝜙⊤𝑆Ψ
𝑤𝜙+ 𝛼(𝜙⊤𝑆𝑈Ψ

𝑑 𝜙+ 𝜙⊤𝑆𝐿Ψ
𝑑 𝜙)

. (17)

2.4 Cross-domain Distance Metric Learning
Distance metric learning [23] aims to learn between-point
distance representation. The performance of many machine
learning and data mining algorithms depend critically on
their being given a good metric over the input space. Dis-
tance metric learning aims to learn data-distance represen-
tation which can help later tasks. However, for cross-domain
learning, the distance function fitted to one domain may be
unfitted to another owing to the domain differences. As a
result, the distance function is expected to not only max-
imize the pair distance between points belong to different
classes but also make sure that the pairs of points belong to
different domains are not far away to each other.

2.5 Pairwise constraints based Distance Met-
ric Learning

Here is the introduction of distance metric learning with
pairwise constraints (denoted as PCDML). It is based on
two pairwise constraints on the data: equivalence and in-
equivalence constraints. The equivalence constraints are de-
fined on the samples which should be close together in the



learned metric, while the inequivalence constraints indicate
the points that should not be near in the learned metric.
In [21] and [1], the distance metric is explicitly learned to
minimize the distance between data points within the equiv-
alence constraints and maximize the distance between data
points in the inequivalence constraints.

Let 𝒞 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} be a collection of data points, where
𝑛 is the number of samples in the collection. Each 𝑥𝑖 ∈ ℝ𝑚

is a data vector where 𝑚 is the number of features. Let the
set of equivalence constraints denoted by

𝒮 = {(𝑥𝑖, 𝑥𝑗 ∣𝑥𝑖 𝑎𝑛𝑑 𝑥𝑗 𝑏𝑒𝑙𝑜𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑐𝑙𝑎𝑠𝑠)}
(18)

and the set of inequivalence constraints denoted by

𝒟 = {(𝑥𝑖, 𝑥𝑗 ∣𝑥𝑖 𝑎𝑛𝑑 𝑥𝑗 𝑏𝑒𝑙𝑜𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑐𝑙𝑎𝑠𝑠𝑒𝑠)} (19)

Let the distance metric denoted by matrix A ∈ R𝑚×𝑛, and
the distance between any two data points 𝑥 and 𝑦 expressed
by

𝑑2A = ∣∣𝑥− 𝑦∣∣2A = (𝑥− 𝑦)𝑇A(𝑥− 𝑦) (20)

Given the equivalence constraints in 𝒮 and the inequiva-
lence constraints in 𝒟, [11] formulated the problem of met-
ric learning into the following convex programming problem
[14]:

min
A∈R𝑚×𝑛

∑
(𝑥𝑖,𝑥𝑗)∈𝒮

∣∣𝑥− 𝑦∣∣2A

𝑠.𝑡. A ર 0,
∑

(𝑥𝑖,𝑥𝑗)∈𝒟
∣∣𝑥− 𝑦∣∣2A ≥ 1

(21)

Note that the positive semi-definitive constraint A ર 0 is
needed to ensure the negative distance between any two
data points and the triangle inequality. There are many
optimization tools to solve this problem.

2.6 Domain-Merge and Class-Separate PCDML
In traditional PCDML method, equivalence and inequiva-
lence constraints only aim to maximize the class-separate
degree by reducing the distance between point pairs that
belongs to the same class and enlarging the distance be-
tween ones that have different class labels. For multi-domain
learning, the objective function should consider not only the
distance between classes but also the differences between
domains. Upon the above discussion, the set 𝒮 is used to
control the pair distance between points belong to the same
class. Here, we modify its definition to control the pair dis-
tance between points belong to different domains to obtain
Domain-Merge and Class-Separate PCDML (DMCS PCDML).
After the term to control the data presentation between
points belong to different domains, there are three items
in DMCS PCDML:

𝒮𝑐𝑠 = {(𝑥𝑖, 𝑥𝑗 ∣𝑥𝑖 𝑎𝑛𝑑 𝑥𝑗 𝑏𝑒𝑙𝑜𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑑𝑜𝑚𝑎𝑖𝑛 𝑎𝑛𝑑

𝑠𝑎𝑚𝑒 𝑐𝑙𝑎𝑠𝑠)}
𝒮𝑑𝑚 = {(𝑥𝑖, 𝑥𝑗 ∣𝑥𝑖 𝑎𝑛𝑑 𝑥𝑗 𝑏𝑒𝑙𝑜𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑑𝑜𝑚𝑎𝑖𝑛𝑠)}
𝒟𝑐𝑠 = {(𝑥𝑖, 𝑥𝑗 ∣𝑥𝑖 𝑎𝑛𝑑 𝑥𝑗 𝑏𝑒𝑙𝑜𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑑𝑜𝑚𝑎𝑖𝑛 𝑎𝑛𝑑

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑐𝑙𝑎𝑠𝑠𝑒𝑠)}
(22)

The 𝒮𝑐𝑠 and 𝒟𝑐𝑠 are items for class-separate objective and
𝒮𝑑𝑚 for domain-merge objective. By combing them, we
could obtain a cross-domain distance metric learning that
can control the balance between the desired levels of two
objectives with a parameter 𝛼:3

min
A∈R𝑚×𝑛

∑
(𝑥𝑖,𝑥𝑗)∈𝒮𝑐𝑠

∣∣𝑥− 𝑦∣∣2A + 𝛼×
∑

(𝑥𝑖,𝑥𝑗)∈𝒮𝑑𝑚

∣∣𝑥− 𝑦∣∣2A

𝑠.𝑡. A ર 0,
∑

(𝑥𝑖,𝑥𝑗)∈𝒟𝑐𝑠

∣∣𝑥− 𝑦∣∣2A ≥ 1

(23)
With the new optimization function, we obtain Domain-
Merge and Class-Separate PCDML (DMCS PCDML).

2.7 Target-Priority Cross-validation for Cross-
domain Parameter Selection

Representation learning models (as well as a majority of
machine learning methods) always have one or more param-
eters to be determined, which is just like the parameter 𝛼
in our methods. 𝐾-fold cross-validation technology [9] is a
very popular method used to determined the parameters.
However, in cross-domain learning, there are often one tar-
get domain and several source domains. The target domain
often only has very few labeled data. Source domains has
relatively more labeled examples but they are underlying dif-
ferent distributions with the target domain. In this setting,
the number of target labeled examples in the traditional val-
idation set in traditional 𝐾-fold cross-validation technology
will be greatly larger than the number of source labeled ex-
amples. Therefore, the score of a candidate parameter will
nearly just rely the performance on source datasets.

Here, we propose a “target-priority” strategy to modify the
parameter selection step in the previous cross-validation tech-
nology when it is used to perform parameter selection in
transfer learning scenarios. Here suppose we wish to de-
termine parameter 𝛼. We firstly choose a set of 𝛼-values
corresponding to the best performance on target samples
(owning to the small number of target samples, there are
always a lot of 𝛼-values corresponding to the best perfor-
mance on target samples). Then, in that set, we choose the
𝛼-value corresponding to the best performance on source
samples as the final 𝛼 to be used in later tasks. This strat-
egy gives a prior consideration to the performance on target
samples because these samples are drawn from the same
distribution as test samples (as Algorithm3 indicates). As
a result, this parameter selection method adapts to transfer
learning problems and is used to determine 𝛼 in our later
experiments with 𝐾 is 10 and the candidate 𝛼-value set is
[0.1, 0.15, 0.2, 0.25, ⋅ ⋅ ⋅ , 1].

3. EXPERIMENTS
We evaluate our algorithms together with corresponding tra-
ditional algorithms on the “Amazon reviews” benchmark
data sets [2]. In the original dataset, each review is as-
sociated with a rating of 1-5 stars. For simplicity, we are
only concerned about whether or not a review is positive
(higher than 3 stars) or negative (3 stars or lower). That
is, 𝑦𝑖 = +1,−1, where 𝑦𝑖 = 1 indicates that it is a posi-
tive review, and -1 otherwise. To simulate the cross-domain



Algorithm3 Target-Priority Cross-validation

Input:
labeled dataset 𝑋𝑆 from source domains
labeled dataset 𝑋𝑇 from the target domain
Parameter candidates 𝛼𝑠𝑒𝑡 = [𝛼1, 𝛼2, ⋅ ⋅ ⋅ , 𝛼𝑛]
Number of folds: K

Output:
a special 𝛼 ∈ 𝛼𝑠𝑒𝑡

Step 1:
Divide 𝑋𝑆 into K folds: 𝑋𝑆

1 , ⋅ ⋅ ⋅ ,𝑋𝑆
𝐾

Divide 𝑋𝑇 into K folds: 𝑋𝑇
1 , ⋅ ⋅ ⋅ , 𝑋𝑇

𝐾

Step 2:
For 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛

For 𝑘 = 1, 2, ⋅ ⋅ ⋅ ,𝐾
Set 𝑋𝑆

𝑘 ,𝑋
𝑇
𝑘 as source and target validation sets,

respectively.
Set 𝑇𝑘 = ..., 𝑋𝑆

𝑗 , 𝑋
𝑇
𝑗 , ..., where 𝑗 = 1, 𝑘 − 1, ⋅ ⋅ ⋅ ,

𝑘 + 1,𝐾 as the training set.
Calculate the performance of 𝛼𝑖 corresponding
to 𝑋𝑇

𝑘 and 𝑇𝑘 as 𝑃𝑒𝑟𝑓𝑇
𝑘 (𝛼𝑖)

Calculate the performance of 𝛼𝑖 corresponding
to 𝑋𝑆

𝑘 and 𝑇𝑘 as 𝑃𝑒𝑟𝑓𝑆
𝑘 (𝛼𝑖)

End
End

Step 3:
For 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛

Set target performance of 𝛼𝑖 as

𝑃𝑒𝑟𝑓𝑇 (𝛼𝑖) =
∑𝐾

𝑘=1

1

𝐾
𝑃𝑒𝑟𝑓𝑇

𝑘 (𝛼𝑖).

Set source performance of 𝛼𝑖 as

𝑃𝑒𝑟𝑓𝑆(𝛼𝑖) =
∑𝐾

𝑘=1

1

𝐾
𝑃𝑒𝑟𝑓𝑆

𝑘 (𝛼𝑖).

End

Step 4:
Step 4.1:
Select the subset 𝛼𝑇

𝑠𝑒𝑡 as the set of 𝛼 values corresponding
to the highest 𝑃𝑒𝑟𝑓𝑇 (𝛼𝑖) (for all 𝛼𝑖 values in 𝛼𝑠𝑒𝑡).
Step 4.2:
Select the 𝛼 value in 𝛼𝑇

𝑠𝑒𝑡 corresponding to the highest
𝑃𝑒𝑟𝑓𝑆(𝛼𝑗) (for all 𝛼𝑗 values in 𝛼𝑇

𝑠𝑒𝑡) as the 𝛼 value we
want.

Table 2: The classification accuracies (%) of our
methods and traditional approaches

Accuracy: Means ± Std
Target DMCS CSF CSF
books 76.11±2.1 72.49±2.5
dvd 74.93±1.8 71.22±1.4

electronics 74.02±2.4 71.14±3.2
kitchen and housewares 82.93±3.4 78.78±3.5

Accuracy: Means ± Std
Target DMCS FDA FDA
books 76.62±2.5 73.23±1.9
dvd 73.22±1.9 74.17±1.3

electronics 72.13±1.4 73.28±2.5
kitchen and housewares 81.34±2.9 78.05±3.0

Accuracy: Means ± Std
Target DMCS PCDML PCDML
books 74.56±2.3 73.21±1.8
dvd 73.12±1.9 73.19±1.6

electronics 73.58±1.9 74.48±2.5
kitchen and housewares 78.12±2.9 75.28±2.3

learning, the data from four results corresponding to differ-
ent target domains (e.g. target: books, sources: ). In each
experiment, the number of labeled examples of the target
domain is 50, and the number of labeled examples of each
source domain is 500, the unlabeled example number of the
target domain is 450 and the test is 500.

The original feature space of unigrams and bigrams is on
average approximately 120, 000 dimensions across different
domains. To reduce the dimensionality, we only use features
that appear at least 10 times in a particular domain adapta-
tion task (with approximately 40; 000 features remaining).
Further, we pre-process the data set with standard tf-idf [15]
feature re-weighting. Moreover, the dimensionality of the
new data-representation is 4,000. Two classifiers (𝑘NN [16]
with 𝑘 = 5, SVM [3] with C = 1 and polynomial kernel) are
employed to perform classification tasks in new data spaces
and the average results are presented. Moreover, since train-
ing and test are both selected randomly, the experiment is
repeated 10 times and uses “means±std” as final results.

Table 2 compares the performances of our methods and cor-
responding traditional methods to valid the effectiveness
of our framework. We can see that, in most cases, our
methods gain better results. Moreover, it is found that the
DMCS CSF and DMCS FDA have larger improvement than
DMCS PCDML.

4. CONCLUSIONS
This paper proposes propose a framework to combine class-
separate and domain-merge objective to achieve cross-domain
representation learning. The final data representation is
expected to maximize the discriminant among classes and
minimize the differences among domains. Moreover, in this
paper, the domain-merge objective is defined upon the mod-
ification with traditional class-separate objective, so that the
generated methods can be implemented with current toolk-
its. Three special methods are proposed with this framework



and they belong to feature selection, feature reconstruction
and distance metric learning categories.

There are still some important issues worth researching. For
example, the theoretical analysis and validation of lower er-
ror rate of combination of class-separate and domain-merge
objectives in cross-domain learning is a big challenge. More-
over, improving exist incremental algorithms with our frame-
work is promising to be contributed to on-line cross-learning
[6]. Last, cross-domain research can help many other real-
world applications such as bioinformatics [19] and computer
vision [24], and employing our framework on improving re-
search on them is interesting.
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[5] Daumé III, H., and Marcu, D. Domain adaptation
for statistical classifiers. Journal of Artificial
Intelligence Research 26, 1 (2006), 101–126.

[6] Dredze, M., and Crammer, K. Online methods for
multi-domain learning and adaptation. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing (2008), Association for
Computational Linguistics, pp. 689–697.

[7] Hall, M. Correlation-based feature selection for
machine learning. PhD thesis, The University of
Waikato, 1999.

[8] Hall, M., Frank, E., Holmes, G., Pfahringer,
B., Reutemann, P., and Witten, I. The weka data
mining software: an update. ACM SIGKDD
Explorations Newsletter 11, 1 (2009), 10–18.

[9] Kohavi, R. A study of cross-validation and bootstrap
for accuracy estimation and model selection. In
International joint Conference on artificial intelligence
(1995), vol. 14, LAWRENCE ERLBAUM
ASSOCIATES LTD, pp. 1137–1145.

[10] Lafon, S., and Lee, A. Diffusion maps and
coarse-graining: A unified framework for
dimensionality reduction, graph partitioning, and data
set parameterization. IEEE Transactions on Pattern
Analysis and Machine Intelligence 28, 9 (2006),
1393–1403.

[11] Mansour, Y., Mohri, M., and Rostamizadeh, A.
Domain adaptation with multiple sources. Advances in
neural information processing systems 21 (2009),
1041–1048.

[12] Mika, S., Ratsch, G., Weston, J., Scholkopf, B.,
and Mullers, K. Fisher discriminant analysis with
kernels. In Neural Networks for Signal Processing IX,
1999. Proceedings of the 1999 IEEE Signal Processing
Society Workshop (1999), IEEE, pp. 41–48.

[13] Muller, K., Mika, S., Ratsch, G., Tsuda, K.,
and Scholkopf, B. An introduction to kernel-based
learning algorithms. Neural Networks, IEEE
Transactions on 12, 2 (2001), 181–201.

[14] Nguyen, H., Franke, K., and Petrovic, S.
Optimizing a class of feature selection measures. In
NIPS 2009 Workshop on Discrete Optimization in
Machine Learning: Submodularity, Sparsity &
Polyhedra (DISCML), Vancouver, Canada (2009).

[15] Salton, G., and Buckley, C. Term-weighting
approaches in automatic text retrieval. Information
processing & management 24, 5 (1988), 513–523.

[16] Shakhna-rovich, G., Darrell, T., and Indyk, P.
Nearest-neighbor methods in learning and vision.
IEEE Transactions on Neural Networks 19, 2 (2008),
377.

[17] Sonnenburg, S., Rätsch, G., Henschel, S.,
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