
Variational Dependent Multi-output Gaussian
Process Dynamical Systems

Jing Zhao and Shiliang Sun

Department of Computer Science and Technology, East China Normal University
500 Dongchuan Road, Shanghai 200241, P. R. China

jzhao2011@gmail.com, slsun@cs.ecnu.edu.cn

Abstract. This paper presents a dependent multi-output Gaussian pro-
cess (GP) for modeling complex dynamical systems. The outputs are
dependent in this model, which is largely different from previous GP
dynamical systems. We adopt convolved multi-output GPs to model the
outputs, which are provided with a flexible multi-output covariance func-
tion. We adapt the variational inference method with inducing points
for approximate posterior inference of latent variables. Conjugate gra-
dient based optimization is used to solve parameters involved. Besides
the temporal dependency, the proposed model also captures the depen-
dency among outputs in complex dynamical systems. We evaluate the
model on both synthetic and real-world data, and encouraging results
are observed.

Keywords: Gaussian process, variational inference, dynamical system,
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1 Introduction

Dynamical systems are widespread in machine learning applications. Multi-
output time series such as motion capture data and video sequences are typical
examples of these systems. Modeling complex dynamical systems has a number of
challenges such as only time as inputs, nonlinear mapping from time to observa-
tions, large data sets and possible dependency among multiple outputs. Gaussian
processes (GPs) provide an elegant method for modeling nonlinear mappings in
the Bayesian nonparametric learning framework [15]. Some extensions of GPs
have been developed in recent years, which aim to solve these challenges.

Lawrence [9, 10] proposed the GP latent variable model (GP-LVM) as a
nonlinear extension of the probabilistic principal component analysis [18]. GP-
LVM can provide a visualization of high dimensional data by optimizing the
latent variables with the maximum a posterior (MAP) solution. To overcome the
difficulty of time and storage complexities for large data sets, some approximate
methods, e.g., sparse GP [11] have been proposed for learning GP-LVM. By
adding a Markov dynamical prior on the latent space, GP-LVM is extended to
the GP dynamical model (GPDM) [21, 22] which is able to model nonlinear
dynamical systems. GPDM captures the variability of outputs by constructing
the variance of outputs with different parameters.
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Instead of seeking a MAP solution for the latent variables as in the former
methods, Titsias and Lawrence [20] introduced a variational Bayesian method
for training GP-LVM. This method computes a lower bound of the logarith-
mic marginal likelihood by variationally integrating out the latent variables that
appear nonlinearly in the inverse kernel matrix of the model. It was built on
the method of variational inference with inducing points [19, 16]. This Bayesian
GP-LVM was later adapted to multi-view learning [5] through introducing a
softly shared latent space. Similarly, Damianou et al. [6] extended the Bayesian
GP-LVM by imposing a dynamical prior on the latent space to the variational
GP dynamical system (VGPDS). Park et al. [14] developed an almost direct ap-
plication of VGPDS to phoneme classification. Besides variational approaches,
expectation propagation based methods [7] are also capable of conducting ap-
proximate inference in Gaussian process dynamical systems (GPDS).

However, all the models mentioned above for GPDS ignore the dependency
among multiple outputs, which usually assume that the outputs are conditionally
independent. Actually, modeling the dependency among outputs is necessary in
many applications such as sensor networks, geostatistics and time-series fore-
casting, which helps to make better predictions. Indeed, there are some recent
works that explicitly considered the dependency of multiple outputs in GPs
[3, 2, 23]. Latent force models (LFMs) [3] are a recent state-of-the-art mod-
eling framework, which can model multi-output dependencies. Later, a series
of extensions of LFMs were presented such as linear, nonlinear, cascaded and
switching dynamical LFMs [1]. People also gave sequential inference methods for
LFMs [8]. Álvarez and Lawrence [2] employed convolution processes to account
for the correlations among outputs to construct a convolved multiple outputs
GP (CMOGP) which can be regarded as a specific case of LFMs. Wilson et al.
[23] combined neural networks with GPs to construct a GP regression network
(GPRN). However, CMOGP and GPRN are neither introduced nor directly
suitable for dynamical system modeling. When a dynamical prior is imposed,
marginalizing over the latent variables is needed, which can be very challenging.

This paper proposes a variational dependent multi-output GP dynamical sys-
tem (VDM-GPDS). The convolved process covariance function [2] is employed
to capture the dependency among all the data points across all the outputs.
To learn VDM-GPDS, we first approximate the latent functions in the convo-
lution processes, and then variationally marginalize out the latent variables in
the model. This leads to a convenient lower bound of the logarithmic marginal
likelihood, which is then maximized by the scaled conjugate gradient method
to find out the optimal parameters. Our model is applicable to general depen-
dent multi-output dynamical systems rather than being specially tailored to a
particular application. We adapt the model to different applications and obtain
promising results.
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2 The Proposed Model

Suppose we have multi-output time series data {yn, tn}Nn=1, where yn ∈ RD is an
observation at time tn ∈ R+. We assume that there are low dimensional latent
variables that govern the generation of the observations and a GP prior for the
latent variables conditional on time captures the dynamical driving force of the
observations, as in Damianou et al. [6]. However, a large difference compared
with their work is that we explicitly model the dependency among the outputs
through convolution processes [2].

Our model is a four-layer GP dynamical system. Here t ∈ RN represents
the input variables in the first layer. Matrix X ∈ RN×Q represents the low
dimensional latent variables in the second layer with element xnq = xq(tn).
Similarly, matrix F ∈ RN×D denotes the latent variables in the third layer, with
element fnd = fd(xn) and matrix Y ∈ RN×D denotes the observations in the
fourth layer whose nth row corresponds to yn. The model is composed of an
independent multi-output GP mapping from t to X, a dependent multi-output
GP mapping from X to F , and a linear mapping from F to Y .

Specifically, for the first mapping, x is assumed to be a multi-output GP in-
dexed by time t similarly to Damianou et al. [6], that is xq(t) ∼ GP(0, κx(t, t

′)),
q = 1, ..., Q, where individual components of the latent function x(t) are in-
dependent sample paths drawn from a GP with a certain covariance function
κx(t, t

′) parameterized by θx. There are several commonly used covariance func-
tions such as the squared exponential covariance function (RBF) and Matern
3/2 function [6]. Given the above assumption, we have

p(X|t) =
Q∏
q=1

p(xq|t) =
Q∏
q=1

N (xq|0,Kt,t), (1)

where Kt,t is the covariance matrix. The covariance matrix may be constructed
with any of the above covariance functions according to different applications.

For the second mapping, we assume that f is another multi-output GP in-
dexed by x, whose outputs are dependent, that is fd(x) ∼ GP(0, κfd,fd′ (x,x

′)),
d, d′ = 1, ..., D, where κfd,fd′ (x,x

′) is a convolved process covariance function
which can capture the dependency among all the data points across all the out-
puts with parameters θf = {{Λk}, {Pd}, {Sd,k}} . The detailed formulation of
κfd,fd′ (x,x

′) will be given in Sect. 2.1. From the conditional dependency among

the latent variables {fnd}N,Dn=1,d=1, we have

p(F |X) = p(f |X) = N (f |0,Kf ,f ), (2)

where f is a shorthand for [f⊤1 , ..., f
⊤
D ]⊤ andKf ,f sizedND×ND is the covariance

matrix in which the elements are calculated by κfd,fd′ (x,x
′).

The third mapping, which is from fnd to the observation ynd can be written
as ynd = fnd + ϵnd, where ϵnd ∼ N (0, β−1). Thus, we get

p(Y |F ) =
D∏
d=1

N∏
n=1

N (ynd|fnd, β−1). (3)
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Given the above setting, the graphical model for the proposed VDM-GPDS
on the training data {yn, tn}Nn=1 can be depicted as Fig. 1. From (1), (2) and
(3), the joint probability distribution for the VDM-GPDS model is given by

p(Y, F,X|t) = p(f |X)
D∏
d=1

N∏
n=1

p(ynd|fnd)
Q∏
q=1

p(xq|t). (4)

t

q
x

1q Q

ynd

1n N
x

fnd

1d D

f

Fig. 1. The graphical model for VDM-GPDS.

2.1 Convolved Process Covariance Function

Since the outputs in our model are dependent, we need to capture the corre-
lations among all the data points across all the outputs. Bonilla et al. [4] and
Luttinen and Ilin [12] used a Kronecker product covariance matrix, which is very
limited and actually a special case of some general covariances when covariances
calculated from output dimensions and inputs are independent. In this paper,
we use a more general and flexible model in which these two covariances are not
separated. In particular, the convolution processes [2] are employed to model the
latent function F (X).

Now we introduce how to construct the convolved process covariance func-
tions. Using latent functions {uk(x)}Kk=1 and smoothing kernels {Gd,k(x)}D,Kd=1,k=1,
fd(x) is supposed to be expressed through a convolution integral,

fd(x) =
K∑
k=1

∫
X

Gd,k(x− x̃)uk(x̃)dx̃. (5)

The smoothing kernel is assumed to be Gaussian and formulated as Gd,k(x) =
Sd,kN (x|0, Pd), where Sd,k is a scalar value that depends on the output index
d and the latent function index k, and Pd is assumed to be diagonal. The latent
process uk(x) is assumed to be Gaussian with covariance function

κk (x,x
′) = N (x− x′|0, Λk) . (6)

Thus, the covariance between fd(x) and fd′(x
′) is

κfd,fd′ (x,x
′) =

K∑
k=1

Sd,kSd′,kN (x|x′, Pd + Pd′ + Λk). (7)
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The covariance between fd(x) and uk(x
′) is

κfd,uk
(x,x′) = Sd,kN (x− x′|0, Pd + Λk) . (8)

These covariance functions will be used for approximate inference in Sect. 3.

3 Inference and Optimization

The fully Bayesian learning for our model requires maximizing the logarithm of
the marginal likelihood

p(Y |t) =
∫
p(Y |F )p(F |X)p(X|t)dXdF. (9)

Note that the integration w.r.t X is intractable, because X appears nonlinearly
in the inverse of the matrix Kf ,f . We attempt to make approximations for (9).

To begin with, we approximate p(F |X) which is constructed by convolu-
tion process fd(x) in (5). Similarly to Álvarez and Lawrence [2], a generative
approach is used to approximate fd(x) as follows. We first draw a sample,

uk(Z) = [uk(z1), ..., uk(zM )]
⊤
, where Z = {zm}Mm=1 are introduced as a set

of input vectors for uk(x̃) and will be learned as parameters. We next sample
uk(x̃) from the conditional prior p(uk(x̃)|uk). According to the above generating
process, uk(x̃) in (5) can be approximated by the expectation E(uk(x̃)|uk). Let
U = {uk}Kk=1 and u = [u⊤

1 , ...,u
⊤
K ]⊤. We get the probability distribution of f

conditional on u, X, Z as follows

p(f |u, X, Z) = N (f |Kf ,uK
−1
u,uu,Kf ,f −Kf ,uK

−1
u,uKu,f ), (10)

where Kf ,u is the cross-covariance matrix between fd(x) and uk(z) with element
κfd,uk

(x,x′) in (8), block-diagonal matrix Ku,u is the covariance matrix between
uk(z) and uk(z

′) with element κk (x,x
′) in (6), and Kf ,f is the covariance matrix

between fd(x) and fd′(x
′) with element κfd,fd′ (x,x

′) in (7). Therefore, p(F |X)
is approximated by p(f |X,Z)=

∫
p(f |u, X, Z)p(u|Z)du and p(Y |t) is converted

to

p(Y |t) =
∫
p(y|f)p(f |u, X, Z)p(u|Z)p(X|t)dFdUdX, (11)

where p(u|Z) = N (0,Ku,u) and y = [y⊤
1 , ...,y

⊤
D]

⊤. It is worth noting that (11)
is still intractable as the integration w.r.t X remains difficult.

Then, we introduce a lower bound of the log p(Y |t). We construct a varia-
tional distribution q(F,U,X|Z) to approximate the distribution p(F,U,X|Y, t)
and compute the Jensen’s lower bound on the log p(Y |t) as

L =

∫
q(F,U,X|Z) log p(Y, F, U,X|t, Z)

q(F,U,X|Z)
dXdUdF. (12)

The variational distribution is assumed to be factorized as

q(F,U,X|Z) = p(f |u, X, Z)q(u)q(X). (13)
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p(f |u, X, Z) in (13) is the same as the second term in (11), which will be
eliminated during the variational computation. q(u) is an approximation to
p(u|X,Y ), which is arguably Gaussian by maximizing the variational lower
bound [6, 20]. q(X) is an approximation to p(X|Y ), which is assumed to be

a product of independent Gaussian distributions q(X) =
∏Q
q=1 N (xq|µq, Sq).

After some calculations and simplifications, the optimal lower bound becomes

L = log

[
β

ND
2 |Ku,u|

1
2

(2π)
ND
2 |βψ2+Ku,u|

1
2

exp{−1

2
y⊤Wy}

]

− βψ0

2
+
β

2
Tr(K−1

u,uψ2)−KL[q(X)||p(X|t)],

(14)

whereW = βI−β2ψ1(βψ2 +Ku,u)
−1ψ⊤

1 , ψ0 = Tr(⟨Kf ,f ⟩q(X)), ψ1 = ⟨Kf ,u⟩q(X)

and ψ2 = ⟨Ku,fKf ,u⟩q(X). KL[q(X)||p(X|t)] defined by
∫
q(X) log q(X)

p(X|t)dX is

KL[q(X)||p(X|t)] =Q
2
log |Kt,t| −

1

2

Q∑
q=1

log |Sq|

+
1

2

Q∑
q=1

[Tr(K−1
t,tSq) + Tr(K−1

t,tµqµ
⊤
q )] + const.

(15)

Note that although the lower bound in (14) and the one in VGPDS [6] look
similar, they are essentially distinct and have different meanings. In particular,
the variables U in this paper are the samples of the latent functions {uk(x)}Kk=1

in the convolution process while in VGPDS they are samples F . Moreover, the
covariance functions of F involved in this paper are multi-output covariance
functions while VGPDS adopts single-output covariance functions. As a result,
our model is more flexible and challenging.

3.1 Computation of ψ0, ψ1, ψ2

Recall that the lower bound (14) requires computing the statistics {ψ0, ψ1, ψ2}.
We now detail how to calculate them. ψ0 is a scalar that can be calculated as

ψ0 =

N∑
n=1

D∑
d=1

∫
κfd,fd(xn,xn)N (xn|µn, Sn) dxn =

D∑
d=1

K∑
k=1

NSd,kSd,k

(2π)
Q
2 |2Pd + Λk|

1
2

.

(16)

ψ1 is a V ×W matrix whose elements are calculated as1

(ψ1)v,w =

∫
κfd,uk

(xn, zm)N (xn|µn, Sn)dxn = Sd,kN (zm|µn, Pd + Λk + Sn) ,

(17)

1 We borrow the density formulations to express ψ1 as well as ψ2.
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where V = N×D,W =M×K, d = ⌊ v−1
N ⌋+1, n = v− (d−1)N , k = ⌊w−1

M ⌋+1
and m = w − (k − 1)M . Here the symbol “⌊⌋” means rounding down. ψ2 is a
W ×W matrix whose elements are calculated as

(ψ2)w,w′ =
D∑
d=1

N∑
n=1

∫
κfd,uk

(xn, zm)κfd,uk′ (xn, zm′)N (xn|µn, Sn)dxn

=
D∑
d=1

N∑
n=1

Sd,kSd,k′N (zm|zm′ , 2Pd + Λk + Λk′)N (
zm + zm′

2
|µn, Σψ2),

(18)

where k = ⌊w−1
M ⌋+1, m = w− (k− 1)M , k′ = ⌊w

′−1
M ⌋+1, m′ = w′ − (k′ − 1)M

and Σψ2 = (Pd + Λk)
⊤(2Pd + Λk + Λk′)

−1(Pd + Λk′) + Sn.

3.2 Conjugate Gradient Based Optimization

The parameters involved in (14) include the model parameters {β,θx,θf} and

the variational parameters {{µq, Sq}Qq=1, Z}. In order to reduce the variational
parameters to be optimized and speed up convergence, we reparameterize the
variational parameters µq and Sq as µ̄q and Λ̄q, respectively, as in Opper and
Archambeau [13] and Damianou et al. [6]. The corresponding transformations are
Sq = (K−1

t,t + Λ̄q)
−1 and µq = Kt,tµ̄q. All the parameters are jointly optimized

by the scaled conjugate gradient method to maximize the lower bound in (14).

4 Prediction

4.1 Prediction with Only Time

In the Bayesian framework, we need to compute the posterior distribution of the
predicted outputs Y∗ ∈ RN∗×D on some given time instants t∗ ∈ RN∗ . With the
parameters and time t∗ omitted, the posterior density is given by

p (Y∗|Y ) =

∫
p (Y∗|F∗) p (F∗|X∗, Y ) p (X∗|Y ) dF∗dX∗, (19)

where F∗ ∈ RN∗×D denotes the set of latent variables (the noise-free version of
Y∗) and X∗ ∈ RN∗×Q denotes the latent variables in the low dimensional space.

The distribution p (F∗|X∗, Y ) is approximated by the variational distribution

q(f∗|X∗) =

∫
p(f∗|u, X∗)q(u)du, (20)

where f⊤∗ = [f⊤∗1, ..., f
⊤
∗D], and p(f∗|u, X∗) is Gaussian expressed as N (f∗|Kf∗,u

K−1
u,uu,Kf∗,f∗ −Kf∗,uK

−1
u,uKu,f∗). Since the optimal setting for q(u) is Gaussian,

q(f∗|X∗) is Gaussian that can be computed analytically.
The distribution p (X∗|Y ) is approximated by the variational distribution

q (X∗) formulated as q (X∗) = N (µX∗ ,ΣX∗), where µX∗ is composed of col-
umn vector µx∗q with µx∗q = Kt∗,tK

−1
t,tµq and block-diagonal matrix ΣX∗ has

diagonal element Σx∗q with Σx∗q = Kt∗,t∗ −Kt∗,tK
−1
t,t (Kt,t∗ − SqK

−1
t,tKt,t∗).
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However, the integration of q(f∗|X∗) w.r.t q(X∗) is not analytically feasible.
Following Damianou et al. [6], we give the expectation of f∗ as E(f∗) and its
element-wise autocovariance as vector C(f∗) whose (ñ×d)th entry is C(fñd) with
ñ = 1, ..., N∗ and d = 1, ..., D.

E(f∗) = ψ1∗b, (21)

C(fñd) = b⊤(ψd2ñ − (ψd1ñ)
⊤ψd1ñ)b+ ψd0∗ − Tr

[
(K−1

u,u − (Ku,u + βψ2)
−1)ψd2∗

]
,

where ψ1∗ = ⟨Kf∗,u⟩q(X∗), b = β(Ku,u + βψ2)
−1ψ⊤

1 y, ψ
d
1ñ = ⟨Kfñd,u⟩q(xñ),

ψd2ñ = ⟨Ku,fñd
Kfñd,u⟩q(xñ), ψ

d
0∗ = Tr(⟨Kf∗d,f∗d⟩q(X∗)), ψ

d
2∗ = ⟨Ku,f∗dKf∗d,u⟩q(X∗).

Since Y∗ is the noisy version of F∗, the expectation and element-wise auto-
covariance of Y∗ are E(y∗) = E(f∗) and C(y∗) = C(f∗) + β−11N∗D, where
y⊤
∗ = [y⊤

∗1, ...,y
⊤
∗D].

4.2 Prediction with Time and Partial Observations

In this case which is referred as reconstruction, we need to predict Y m∗ which
represents the outputs on missing dimensions, given Y pt∗ which represents the
outputs observed on partial dimensions. The posterior density of Y m∗ is given by

p(Y m∗ |Y pt∗ , Y ) =

∫
p(Y m∗ |Fm∗ )p(Fm∗ |X∗, Y

pt
∗ , Y )p(X∗|Y pt∗ , Y )dFm∗ dX∗. (22)

p(X∗|Y pt∗ , Y ) is approximated by q(X∗) whose parameters need to be optimized
for the sake of considering the partial observations Y pt∗ . This requires maximizing
a new lower bound of log p(Y pt∗ , Y ) which can be computed analogously to (14).
Moreover, parameters of the new variational distribution q(X,X∗) are jointly
optimized because of the coupling of X and X∗. Then the marginal distribution
q(X∗) is obtained from q(X,X∗). Note that multiple sequences where X∗ and X
are independent, only the separated variational distribution q(X∗) is optimized.

5 Experiment

5.1 Synthetic Data

In this section, we evaluate our method on synthetic data generated from a
complex dynamical system. The latent variables X are independently generated
by the Ornstein-Uhlenbeck (OU) process

dxq = −γxqdt+
√
σ2dW, q = 1, ..., Q. (23)

The outputs Y are generated through a multi-output GP

yd(x) ∼ GP(0, κfd,fd′ (x,x
′)), d, d′ = 1, ..., D, (24)

where κfd,fd′ (x,x
′) employs the convolution process with one latent function. In

this paper, the number of the latent functions in (5) is set to one, i.e., K = 1,
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which is also the common setting used in Álvarez and Lawrence [2]. We sample
the synthetic data by two steps. First we use the differential equation with
parameters γ = 0.5, σ = 0.01 to sample N = 200, Q = 2 latent variables at
time interval [−1, 1]. Then we sample D = 4 dimensional outputs, each of which
has 200 observations through the multi-output GP with parameters S1,1 = 1,
S2,1 = 2, S3,1 = 3, S4,1 = 4, P1 = [5, 1]⊤, P2 = [5, 1]⊤, P3 = [3, 1]⊤, P4 = [2, 1]⊤

and Λ = [4, 5]⊤. In addition, white Gaussian noise is added to each output.

Prediction Here we evaluate the performance of our method for predicting
the outputs given only time compared with CMOGP, GPDM and VGPDS. We
randomly select 50 points from each output for training with the remaining 150
points for testing. This is repeated for ten times. The latent variables X in
VGPDS and VDM-GPDS with two dimensions are initialized by using principal
component analysis on the observations. Moreover, the Matern 3/2 covariance
function and 30 inducing points are used in VGPDS and VDM-GPDS.

Table 1 presents the averaged root mean square error (RMSE) with the stan-
dard deviation (std) for predictions. The best results are shown in bold. Since
the data in this experiment are generated from a complex dynamical system that
combines two GP mappings, CMOGP which consists of only one GP mapping
can not capture the complexity well. Moreover, VDM-GPDS models the explicit
dependency among the multiple outputs while GPDM and VGPDS does not.
Therefore, our model gives the best performance among the four models as ex-
pected. Besides highest accuracies, VDM-GPDS also has the smallest variances.
In addition, to verify the flexibility of VDM-GPDS, we do experiments on the
independent output data which are generated analogously to Sect. 5.1. GPDM
and VGPDS which do not make the assumption of output dependency is in-
cluded as comparisons. The results are given in Table 2 where we can see that
our model performs as well as VGPDS and significantly better than GPDM.

Table 1. Averaged RMSE (%) with std (%) for predictions on the dependent output
data.

CMOGP GPDM VGPDS VDM-GPDS

y1 1.75±0.38 1.70±0.18 1.51±0.31 1.43± 0.23
y2 3.46±0.67 3.32±0.27 2.99±0.53 2.82± 0.35
y3 5.19±0.99 4.83±0.28 4.24±0.85 4.09± 0.59
y4 7.50±0.94 5.98±0.55 5.16±0.92 5.00± 0.60

Reconstruction In this part, we compare VDM-GPDS with the k-nearest
neighbor best (k-NNbest) method which chooses the best k from {1, . . . , 5},
CMOGP and VGPDS for recovering missing points given time and partially
observed outputs. Here, we do not include the results of GPDM because that
GPDM is not directly suitable for reconstructing some dimensions given data
of other. We set S4,1 = −4 to generate data in this part, which makes that the
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Table 2. Averaged RMSE (%) with std (%) for predictions on the independent output
data.

GPDM VGPDS VDM-GPDS

y1 3.82±1.55 2.18± 0.06 2.21±0.06
y2 3.45±1.70 2.06±0.19 2.05± 0.13
y3 3.57±1.71 1.68± 0.09 1.72±0.12
y4 7.10±1.28 4.48±0.23 4.45± 0.20

output y4 be negatively correlated with the others. We remove all outputs y1
or y4 at time interval [0.5, 1] from the 50 training points, resulting in 35 points
as training data. Note that CMOGP considers all the present outputs as the
training set while VGPDS and VDM-GPDS only consider the outputs at time
interval [−1, 0.5) as the training set. Table 3 shows the results with four methods
for reconstructions on the missing points for y1 and y4. It indicates the superior
performance of our model for the reconstruction task.

Table 3. Averaged RMSE (%) with std (%) for reconstructions on y1 and y4.

k-NNbest CMOGP VGPDS VDM-GPDS

y1 1.87±0.62 1.90±0.31 1.49±0.94 0.98± 0.34
y4 13.51±2.54 9.31±0.87 6.79±6.07 5.56± 1.88

5.2 Human Motion Capture Data

Here the sequences of runs/jogs from subject 35 in the CMU motion capture
database are employed for the reconstruction task. We preprocess the data as
in Lawrence [11], which leads to nine independent training sequences and one
testing sequence. The average length of each sequence is 40 frames and the output
dimension is 59.

The RBF kernel is adopted in this set of experiments to construct Kt,t which
is a block-diagonal matrix because the sequences are independent. We compare
our model with the nearest neighbor in the angle space (NN) and the scaled
space (NN sc.) [17] and VGPDS. For parameter optimization of VDM-GPDS
and VGPDS, the maximum numbers of iteration steps are set to be identical.

Table 4 gives results of four methods. LS and LA correspond to the recon-
structions on the right leg in the scaled space and angle space. Similarly, BS
and BA correspond to the upper body in the same two spaces. Clearly, our
model outperforms the other approaches. We conjecture that this is because
VDM-GPDS effectively considers both the dynamical characteristics and the
dependency among the outputs in the complex dynamical system. Since GPDM
cannot reconstruct the missing outputs on some dimensions given the others as
explained in Sect. 5.1. We do experiments according to Wang et al. [22] to recon-
struct the missing frames 21− 43 on all dimensions of the test data. We get the
RMSE for reconstruction: 0.7323 with VDM-GPDS versus 0.9448 with GPDM
and 5.1099 with VDM-GPDS versus 7.8984 with GPDM in the scaled space and
angle space, respectively. It turns out that our model also defeats GPDM.
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Table 4. The RMSE for reconstructions on the motion capture data.

NN sc. NN CMOGP VGPDS VDM-GPDS

LS 0.8170 0.8493 1.1468 0.6502 0.6379
LA 6.7495 7.9441 13.5338 5.5356 5.3026
BS 1.0027 1.4018 3.5564 0.6569 0.5961
BA 5.6332 9.5748 5.0171 2.8108 2.6033

6 Conclusion

In this paper we have proposed a dependent multi-output GP for modeling com-
plex dynamical systems. The convolved process covariance function is employed
to model the dependency among all the data points across all the outputs. We
adapt the variational inference method involving inducing points to our model
so that the latent variables are variationally integrated out.

Modeling the possible dependency among multiple outputs can help to make
better predictions. The effectiveness of the proposed model is empirically demon-
strated. However, when the dimensionality of the output is very high, our model
may take a long time to converge. This opens the possibility for future work to
accelerate training for high dimensional dynamical systems.
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