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Abstract—Hidden conditional random fields (HCRFs) are an
effective method for sequential classification. It extends the
conditional random fields (CRFs) by introducing latent variables
to represent the hidden states, which helps to learn the hidden
structures in the sequential data. In order to enhance the
flexibility of the HCRF, Dirichlet processes (DPs) are employed
as priors of the state transition probabilities, which allows the
model to have countable infinite hidden states. Besides DPs,
Beta processes (BPs) are another kinds of prior models for
Bayesian nonparametric modeling, which are more suitable for
latent feature models. In this paper, we propose a novel Bayesian
nonparametric version of the HCRF referred as BP-HCRF, which
takes the advantages of the BPs on modeling hidden states. In
the BP-HCRF, BPs are employed as priors for the state indicator
variables for each sequence, and the modeled sequences can have
different state spaces with infinite hidden states. We develop
a variational inference approach for the BP-HCRF using the
stick-breaking construction of BPs. We conduct experiments on
synthetic dataset to demonstrate the effectiveness of our proposed
model.

Keywords—Hidden Conditional Random Fields; Beta Pro-
cesses; Variational Inference; Sequential Classification

I. INTRODUCTION

The conditional random field (CRF) is well known as an
effective discriminative model for structural prediction [1].
It has been adopted for various applications, such as part-
of-speech tagging in the natural language processing area.
In order to capture the hidden structures of data, Quattoni
et al. [2] proposed the hidden conditional random field (HCRF)
which adapts the original CRF to a latent variable model
for dealing with classification problems in structured do-
mains (e.g., sequential data and images). The introducing of
latent variables makes the HCRF be able to capture the hidden
structures of data, which helps to better model data and further
predict categories more accurately.

The original HCRFs often suffer from the limitation that the
number of hidden states has to be predefined or determined
through model selection. Generally, the best number of hidden
states for specific data is selected from large amounts of candi-
date values by trial and error. The procedure of model selection
is often time-consuming and will hinder the application of
such models. As a generative counterpart of the HCRF, the
hidden Markov model (HMM) has analogous limitations. In
the study of the HMM, Dirichlet Processes (DPs) [3], which
are infinite dimensional extensions of Dirichlet distribution,
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were naturally introduced as priors of the transition matrixes
of countable infinite hidden states [4]–[6], and have been
extended to handle large scale problems [7], [8]. Such resulting
models are known as Bayesian nonparametric models where
infinite parameters are involved. Inspired by such Bayesian
nonparametric extensions of the HMM, DPs have also been
introduced into the HCRF. The HCRFs based on DPs were
proposed to have infinite hidden states, which are only appli-
cable to discrete features [9]. In the work of Bousmalis et al.
[9], due to the infinite number of hidden states, the Markov
chain Monte Carlo (MCMC) sampling method was adopted
to infer the model. Further, for overcoming the inefficiency
and difficulties in identifying the convergence of the MCMC
methods, a variational approach for the HCRF with DP mix-
tures (DPM-HCRF) was developed [10], where multiple DPs
were involved to measure the compatibilities among the hidden
states, class labels and observation sequences.

However, all of such DP-based models assume that the
hidden state space is shared by the instances from different
classes, which could be ill-suited for specific data sets. Another
nonparametric prior model is known as Beta processes (BPs).
The BP was first proposed in [11] for survival analysis and
has become a popular prior model in the study of Bayesian
nonparametric models [12]. It has also been introduced into
the HMM [13], [14] and applied to trajectory recognition [15].
In such models, each sequence has an infinite dimensional
random variable vector that indicates the probability of every
hidden state occurring in this sequence. Each dimension of
the vector corresponds to a hidden state, and each element of
the vector is sampled from a Bernoulli distribution which is a
draw of a BP. Inspired by the development of BPs in HMMs,
we introduce the BP into the HCRF to propose a BP-based
HCRF model called BP-HCRF, which can explicitly model the
sequence labels by discrete variables and capture the hidden
states by latent variables and state indicators with BP priors.
In the BP-HCRF, different sequences may have different state
spaces, which is more suitable for realistic situations.

Since there is no tractable solution for the BP based models,
some approximation methods are needed for the inference of
the BP-HCRF. The key procedure of the approximate inference
methods is the construction of BPs. A commonly used repre-
sentation of the BP is the Indian buffet process (IBP) which is
a marginal representation for beta-Bernoulli Process [16]. The
IBP has been widely used in infinite latent feature models [17],



[18]. The previous mentioned BP-based HMM [13], [14] also
adopted the IBP. With the representation of the IBP, sampling
methods for model inference are accessible while the more
efficient deterministic approximate methods are not feasible,
such as variational inference [19]. Recently, the stick-breaking
construction of BPs and the variational inference algorithm
were proposed [20] which is in a manner similar to the stick-
breaking construction of DPs [10], [21]. The stick-breaking
construction of BPs provides the feasibility of variational
approaches for the HCRF with the BP prior. We will adapt
the mean field variational methods to our proposed BP-HCRF
by employing the stick-breaking construction of BPs.

The main contributions of this paper are as follows. First,
the new BP-HCRF model is proposed, which adapts the
original HCRF to a latent feature model with infinite latent
features (i.e., hidden states). Second, a variational approach
is developed for the proposed model. Finally, we demonstrate
the effectiveness of the proposed model on a synthetic data
set, and show its superiority than the original HCRF.

The rest of this paper is organized as follows. First, in
Section II, we give an overview of the HCRFs and BPs. Then,
in Section III, we present the proposed model, BP-HCRF. In
Section IV, we describe the variational inference algorithm
for the proposed BP-HCRF, and give details of the update for
the latent variables. In addition, the optimization algorithm
of model parameters is presented in Section V. Finally, we
show the experimental settings and experimental results in
Section VI, and make conclusions in Section VII.

II. RELATED WORK

In this section, we give a brief overview on the necessary
background, including the HCRF and the stick-breaking con-
struction of BPs.

A. Hidden Conditional Random Fields

The hidden conditional random field (HCRF) is an undi-
rected graphical model with a hidden state layer. Here we
only consider a specific form that has a linear chain structure.
Different from its generative counterpart, HMM, which a
directed graphical model without class labels, the HCRF is
a undirected graph model which explicitly models the class
labels. Suppose that X = {x1,x2, ...,xT } and y are an
observation sequence and its label, respectively. The variable
s = {s1, s2, ..., sT } has the same length as the observation,
with each one representing the corresponding hidden state for
every xt. The HCRF is formulated as

p(y, s|X,θ) =
1

Z(X)
F (y, s,X,θ) , (1)

where the potential function F (y, s,X,θ) is

F (y, s,X,θ) = exp

{
T∑
t=1

d∑
i=1

θx (st, i) ft (i)

+

T∑
t=1

θy (st, y) +

T∑
t=2

θe (st, st−1, y)

} (2)

and the partition function Z(X) is

Z(X) =
∑
y,s

F (y, s,X,θ) . (3)

The model parameters are θ = {θx,θy,θe} which are
involved in the node, label and edge factors, respectively. The
number of model parameters is growing with the dimension
of the observation and the number of the hidden sates.

Attributed to the linear chain structure, Z(X) as well as
the marginal distributions of hidden states can be computed
by the forward-backward algorithm efficiently. The maximum
likelihood estimation is used to optimize the model parameters
θ.

B. Stick-breaking Construction of Beta Processes

The BP specifies an infinite collection of atoms, and their
weights have a degenerate beta distribution [20]. Since the
draws of a Beta distribution are in the range of [0, 1], it is
amenable to represent the probabilities of occurrences of the
hidden states.

Taking BP (α,H0), H0(Ω) = γ as an example, the original
representation of the stick-breaking construction of the BPs is
as follows.

H =

∞∑
k=1

Cj∑
j=1

V̂
(i)
ij

i−1∏
l=1

(1− V̂ (l)
ij )δŵij

,

V̂
(l)
ij

iid∼ Beta (1, α) ,

Ci
iid∼ Poisson (γ) ,

ŵij
iid∼ 1

γ
H0.

(4)

This representation describes the procedure of generating a
draw of BP. First, in round 1, C1 sticks are prepared, where
C1 obeys Poisson distribution. Let j = {1, 2, ..., C1} be the
index of prepared sticks in this round. The jth stick is broken
off at the position of V̂ (1)

1j . Every V̂ (1)
1j for j = {1, 2, ..., C1}

is independent and identically distributed with same beta
distribution. After round 1, C1 atoms with their weights are
generated. Then in round 2, C2 sticks are prepared. Different
from that in round 1, all sticks would be broken off twice.
Thus, C2 sticks of length-V̂ (2)

2j (1 − V̂
(1)
2j ) are generated.

Repeating such operations for infinite times, we can obtain
a draw of BP, which is a collection of broken sticks (i.e.,
atoms) with independent lengths (i.e., weights or measures).

Considering the feasibility of variational inference, there is
another kinds of stick-breaking construction for the BPs which



can be expressed as follows [20].

H =

∞∑
k=1

Vke
−Tkδwk

,

Vk
iid∼ Beta (1, α) ,

Tk ∼ Gamma (dk − 1, α) ,
∞∑
k=1

1dk (r)
iid∼ Poisson (γ) ,

wk
iid∼ 1

γ
H0.

(5)

This construction is actually equivalent to the original con-
struction expressed in Eq. 4 although it has different formu-
lations [20]. The expression in Eq. 5 is much simpler which
will lead to easier variational inference. Thus we employ the
stick-breaking construction in [20] to construct the BP in our
model.

III. HIDDEN CONDITIONAL RANDOM FIELDS WITH BETA
PROCESSES

First, we exhibit the graphical representation of our pro-
posed BP-HCRF in Fig. 1 to show the model assumptions. In
Fig. 1, X and y represent a sequence and its label, respectively.
The random variable z = {z1, z2, ..., z∞} is introduced to
indicate whether a hidden state occurs in the sequence. We
assume that z obeys the Bernoulli process

z ∼ BeP (H), (6)

where H is a draw from a BP. By introducing H as the
parameter of the Bernoulli process, the resulting process is
a beta-Bernoulli process which is a collection of Bernoulli
random variables. The Bernoulli random variables have the
same atoms as the BP, and the weights of the atoms are
the parameters of the Bernoulli distributions, i.e., zk has a
Bernoulli distribution with p(zk = 1) = Vke

−Tk .
Then, according to the assumptions as shown in Fig. 1, we

introduce the joint distribution of BP-HCRF,

p(y, s, π, z|X, θ) = p(y, s|X, π, z, θ)p(π)p(z). (7)

The specific expression of p(z) is omitted for clarity, and

p(y, s|X, π, z, θ) =
1

Z(X)
F (y, s, π, z,X, θ) , (8)

where Z(X) is the normalizing constant that makes p(·)
become a probability distribution. The formulation of Z(X)
is given by

Z(X) =
∑
y,s

F (y, s, π, z,X, θ) . (9)

Particularly in our model, the variables π = {πx,πy,πe}
measure the compatibility among the observation X, label y

and hidden state s which are involved in the node, label and
edge factors, respectively. We have

πx = {πx(hk|i)}∞,dk=1,i=1 ,

πy = {πy(hk|y)}∞,|Y|k=1,y=1 ,

πe = {πe(hk, y|hk′)}∞,∞,|Y|k=1,k′=1,y=1 .

(10)

For each type of latent variables, we assume that they are
mutually independent and have the same prior distribution,

πx(hk|i) ∼ Beta(1, αx),

πy(hk|y) ∼ Beta(1, αy),

πe(y, hk|hk′) ∼ Beta(1, αe).

(11)

Thus, the distribution of π can be factorized as

p(π) = p(πx)p(πy)p(πe), (12)

and further,

p(πx) =

∞,d∏
k=1,i=1

p(πx(hk|i)),

p(πy) =

∞,|Y|∏
k=1,y=1

p(πy(hk|y)),

p(πe) =

∞,∞,|Y|∏
k=1,k′=1,y=1

p(πe(hk, y|hk′)).

(13)

Finally, by introducing the variables π and z into the
potential function, F can be expressed as

F (y, s, π, z,X, θ) =

exp

{
T∑
t=1

d∑
i=1

θx (st, i) ft (i) log πx (st|i) zst

+

T∑
t=1

θy (st, y) log πy (st|y) zst

+

T∑
t=2

θe (st, st−1, y) log πe (st, y|st−1) zstzst−1

}
.

(14)

From Eq. 14, we can see that the BP-HCRF is more powerful
than the HCRF by introducing the probabilities of each hidden
state p(z) and the compatibilities between hidden states, labels
and observations π. The effect of π is similar with model
parameters θ, because they are shared in all sequences. Mean-
while, every observation sequence Xi has a collection of latent
variables zi which repesents the hidden structure. Thus, zi is
a local factor which could provide more detailed information.
The latent variable z affects the potential function as follows.
When q(zk = 1) is smaller, the potential function will be
smaller which reduces the contribution of unrelated hidden
state hk. Because logπ is negative, the model parameters θ
are restricted in R+ and optimized through their logarithm,
which ensures the satisfaction of such restriction.

Compared with the DPM-HCRF [10], the BP-HCRF has
different formulations of the variables {πx, πy, πe} with the
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Fig. 1: The graphical representation of the BP-HCRF.

DPM-HCRF, and the BP-HCRF will be more flexible, because
there are less restrictions on such variables. Specifically, π are
the draws of multiple DPs in the DPM-HCRF [10] where the
summation of the weights of each draw from a DP should be
one.

IV. VARIATIONAL INFERENCE ALGORITHM

We adopt the mean-field variational inference method to
approximate the posterior distribution of the hidden variables.
The joint distribution of an observation sequence and its
related hidden variables in our model is

p(y, s, π, z|X,θ) =p(α)p(γ)p(d|γ)p(π)
∞∏
k=1

p(Vk|α)p(Tk|dk, α)p(zk|Vk, dk, Tk)

p(y, s|X,π, z),
(15)

where z and s are local factors. The other latent variables such
as π, α and γ as well as the model parameters are shared by all
observation sequences. The variational distribution is assumed
as

q(y, s, π, z|X,θ)

=q(α)q(γ)q(π)

K∏
k=1

q(dk)q(Vk)q(Tk)q(zk)q(y, s|X),
(16)

where

q(y, s|X)

=q(y, s1|x1)

T∏
t=2

q(y, st|st−1,xt)

=

d∏
i=1

q(s1|i)q(s1|y)

T∏
t=2

d∏
i=1

q(st|i)q(st|y)q(st, y|st−1).

(17)

In the framework of variational inference, we optimize
the approximate variational distribution by minimizing the
Kullback-Liebler divergence

KL[q(y, s, π, z|X)||p(y, s, π, z|X)], (18)

which is equivalent to optimizing the variational lower bound
given by

L(q(·)) =− Eq(y,s,π,z|X) logF (y, s, π, z,X,θ) p(π)p(z)

+ Eq(y,s,π,z|X) log q(y, s, π, z|X) + const,
(19)

where the term logZ(X) is absorbed into the const, because
its value does not affect the optimization of the variational
distribution q(y, s, π, z|X).

We define the variational distribution of each latent variable
as

q(πx(hk|i)) = Beta(µx,1(k, i), µx,2(k, i)),

q(πy(hk|y)) = Beta(µy,1(k, y), µy,2(k, y)),

q(πe(hk, y|hk′)) = Beta(µe,1(k, k′, y), µe,2(k, k′, y)),

q(zk) = Bernoulli(φk1, φk2),

q(dk) = Multinomial(dk|ψk),

q(Tk) = Gamma(Tk|uk, vk),

q(Vk) = Beta(Vk|a, b),
q(α) = Gamma(α|κ1, κ2),

q(γ) = Gamma(γ|τ1, τ2).

(20)

For sequential classification tasks, each factor of q(y, s|X) is a
discrete distribution, see the factorization in Eq. 17. The index
k in the variational distribution is in the range of {1, 2, ...,K}
where K is the truncation level of the BP. In other words, the
maximum count of hidden states (i.e., sticks) is limited to K.
Another truncation R is the total rounds of the stick-breaking
construction which means that the stick-breaking procedure is



performed at most R rounds. Accordingly, the dimension of
d is set to R.

Given the above assumptions, the update for the related
latent variables can be derived as follows.

A. Update for q(π)

The πx, πy and πe are updated individually through taking
partial derivative of L(q(·)) with respect to q(π) and then
setting such derivatives to zero. The resulting optimal posterior
distributions of π are still beta distributions. The updating
equations of πx,πy and πe are given below, respectively.

For πx, the resulting optimal variational distribution is

q(πx(hk|i))

=Beta
(∑

t

ft(i)θx(hk, i)q(st = hk|i) + 1,∑
t

∑
hj 6=hk

ft(i)θx(hk, i)q(st = hj |i) + αx

)
.

(21)

For πy , we have

q(πy(hk|y)) = Beta
(∑

t

θy(hk, y)q(st = hk|y) + 1,∑
t

∑
hj 6=hk

θy(hk, y)q(st = hj |y) + αy

)
.

(22)

For πe, the approximate posterior distribution is given by

q(πe(y, hk|hk′))

=Beta
( T∑
t=2

θe(hk, hk′ , y)q(st = hk, y|st−1 = hk′) + 1,

T∑
t=2

∑
yl 6=y

θe(hk, hk′ , yl)q(st = hk, y|st−1 = hk′)

+
∑
hj 6=hk

θe(hj , hk′ , yll)q(st = hj , yl|st−1 = hk′) + αe

)
.

(23)

B. Update for q(z)

The variational distribution of zk is defined as a Bernoulli
distribution. Thus, the parameters of such discrete distributions
can be obtained by normalizing the following quantities

q(zk = 1) ∝f1 exp{
∫
q(Vk) log(Vk)dVk

− ψk(r > 1)

∫
q(Tk) log(Tk)dTk},

q(zk = 0) ∝f0 exp{ψk(1)

∫
q(Vk) log (1− Vk)dVk

−
∫
q(Vk)q(Tk)

∑
m

1

m
(Vke

−Tk)mdVkdTk},

(24)
where the approximation procedure∫

q(Vk)q(Tk)(1− Vke−Tk)dVkdTk

'
∫
q(Vk)q(Tk)

m∑
m=1

(Vke
−Tk)mdVkdTk

(25)

is adopted [20], and log f1, log f2 are given by the derivatives
of L(q(·)) with respect to the Bernoulli parameters φk1 and
φk2, respectively. As zk is a Bernoulli variable, the expectation
in the L(q(·)) with respect to q(zk) is computed by two parts
where zk = 1 and zk = 0, and so are the derivatives.

C. Update for q(y, s|X)

The distribution q(y, s|X) involves the quantities q(st =
hk|i), q(st = hk|y) and q(st = hk|st−1 = hk′), which are
all discrete distributions. Following [10], we can derive the
solutions of log q(y, s|X) as

log q(s, y|X) = Eq(z)q(π) logF (y, s, π, z,X,θ) + const.
(26)

By using the potential function defined in Eq. 14, the latent
variables z and π can be decomposed into two parts. Thus
such quantities can be computed by normalizing the following
quantities.

q(st = hk|i)
∝ exp{ft(i)θx(k, i)

{Eq(πx)[log πx(st = hk|i) +
∑
j 6=k

log(1− πx(st = hk|i))]

+ Eq(z)[log zk +
∑
j 6=k

log(1− zk))]}},

(27)
which means the distribution of state variable st being hk
given the ith dimension of xt. Similarly,

q(st = hk|y)

∝ exp{θy(k, y)

{Eq(πy)[log πy(st = hk|y) +
∑
j 6=k

log(1− πy(st = hk|y))]

+ Eq(z)[log zk +
∑
j 6=k

log(1− zk))]}},

(28)
and

q(st = hk, y|st−1 = hk′)

∝ exp{θy(k, y)

{Eq(πy)[log πy(st = hk|y) +
∑
j 6=k

log(1− πy(st = hk|y))]

+ Eq(z)[log zk +
∑
j 6=k

log(1− zk))]}

+ θe(k, k
′, y){Eq(πe)[log πy(st = hk, y|st−1 = hk′)

+
∑
j 6=k

log(1− πy(st = hk, y|st−1 = hk′))]

+ Eq(z)[log zk +
∑
j 6=k

log(1− zk))] + Eq(z)[log zk′ ]}}.

(29)
The above quantities can be normalized to form discrete
distributions which are the necessary quantities in the update
for π and z.



For the rest of the latent variables, {Tk, Vk, dk}Kk=1, α and γ,
the updates of such variables are independent of observations
which are similar to the results in [20].

V. OPTIMIZATION FOR MODEL PARAMETERS

We have obtained the variational distribution of latent
variables π and z. The model parameters θ can be optimized
through the variational EM algorithm where the latent vari-
ables are integrated out by taking expectation with respect to
their approximate posterior distributions. Further, the model
parameters, including θx, θy and θe, can be optimized through
gradient-based algorithms, such as limited-memory Broyden-
Fletcher-Goldfarb-Shanno (LBFGS) algorithm. The optimiza-
tion objective function is the lower bound of the log likelihood,

L(log p(y|X,θ))

= log
∑
s

Eq(z)q(π)F (y, s, π, z,X,θ)

− log
∑
s,y′

Eq(z)q(π)F (y′, s, π, z,X,θ) .

(30)

The gradients of the objective function with respect to the
model parameters are as follows. For node parameters θx, we
have

∂L(log p(y|X,θ))

∂θx(k, i)

=

T∑
t=1

p(st = hk|y,X,θ)ft (i)E log πx (k|i) zk

−
T∑

y′,t=1

p(st = hk, y
′|X,θ)ft (i)E log πx (k|i) zk.

(31)

For the label parameters θy , the gradients are given by

∂L(log p(y|X,θ))

∂θy(k, y)

=

T∑
t=1

p(st = hk|y,X,θ)E log πy (k|y) zk

−
T∑

y′,t=1

p(st = hk, y
′|X,θ)E log πy (k|y′) zk.

(32)

For the edge parameters θe, we have

∂L(log p(y|X,θ))

∂θe(k, k′, y)

=

T∑
t=2

p(st = hk, st−1 = hk′ |y,X,θ)E log πe (k, y|k′) zkzk′

−
T∑

y′,t=2

p(st = hk, st−1 = hk′ , y
′|X,θ)E log πe (k, y′|k′) zkzk′ .

(33)
The marginal distributions p(st = hk|y,X,θ) and p(st =
hk, st−1 = hk′ |y,X,θ) can be obtained by the forward-
backward algorithm along the linear chain. The distributions
p(st = hk, y

′|X,θ) and p(st = hk, st−1 = hk′ , y
′|X,θ)

TABLE I: Emission Distributions for All Hidden States.

Hidden State Mean Variance
h1 21 0.4
h2 23 0.8
h3 36 0.6
h4 26 0.1
h5 11 0.8
h6 8 0.8
h7 46 0.2
h8 1 0.2

TABLE II: Transition Matrix of Class 1.

h1 h2 h3 h4
h1 0.40 0.40 0.10 0.10
h2 0.10 0.40 0.10 0.40
h3 0.40 0.10 0.40 0.10
h4 0.10 0.10 0.40 0.40

TABLE III: Transition Matrix of Class 2.

h1 h2 h5 h6
h1 0.10 0.70 0.10 0.10
h2 0.10 0.10 0.70 0.40
h5 0.10 0.10 0.10 0.70
h6 0.70 0.10 0.10 0.10

TABLE IV: Transition Matrix of Class 3.

h1 h2 h7 h8
h1 0.25 0.60 0.10 0.05
h2 0.25 0.20 0.30 0.25
h7 0.10 0.30 0.30 0.30
h8 0.35 0.05 0.10 0.50

are computed by the above two marginal distributions and
the class distribution p(y|X,θ) which is computed by
Z(y)/

∑
y′ Z(y′) where Z(y′) = E

∑
s F (y′, s, π, z,X,θ).

VI. EXPERIMENT

We evaluate the performance of the BP-HCRF on a syn-
thetic data set and compare it with the HCRF. The data set
is generated by three HMMs with different transition matrixes
and emission distributions, which leads to a classification prob-
lem with three classes. In total, eight hidden states are defined
and two of them are shared in all classes. The corresponding
Gaussian emission distributions are shown in Table I. The
hidden states h1 and h2 are shared in all classes. The transition
matrixes of three classes are given in the Table II, Table III
and Table IV respectively.

For each class, 100 sequences with length T = 100 are
generated as the test set. Additional five sequences with the
same length for every class are generated as the training
set. Since the variational inference may fall into the local
optimal solution, we randomly initialize the parameters of
variational distribution for times to obtain the final results.
The truncation level K is set to 10 and R is set to 4 in our
experiments. The experiments are run on randomly split data
sets for five times. The performances of the BP-HCRF and
the HCRF in terms of average accuracies and corresponding
standard deviations are reported in Table V. It is shown that
both the BP-HCRF and the HCRF achieve high accuracies



TABLE V: Performances of BP-HCRF and HCRF.

Model BP-HCRF HCRF
Accuracy % 99.93± 0.15 99.80± 0.30

and our model outperforms the HCRF which demonstrates the
effectiveness and superiority of our model.

VII. CONCLUSION

In this paper, we have proposed a novel Bayesian non-
parametric model BP-HCRF with its corresponding variational
approach for model inference. The stick-breaking construction
of BPs is employed in the proposed model, which enables
to include countable infinite hidden states, and provides the
feasibility of the variational inference. With the property of
BPs, the number of hidden states can be inferred from data,
which reduces the cost of model selection. We conducted
experiments on synthetic data set, and the experimental results
have shown the effectiveness of the proposed BP-HCRF.
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