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Abstract—This paper presents a novel dimensionality reduc-
tion method, called uncorrelated transferable feature extraction
(UTFE), for signal classification in brain-computer interfaces
(BCIs). Considering the difference between the source and target
distributions of signals from different subjects, we construct
an optimization objective that finds a projection matrix to
transform the original data in a high-dimensional space into
a low-dimensional latent space and that guarantees both the
discrimination of different classes and transferability between
the source and target domains. In the low-dimensional latent
space, the model constructed in the source domain can generalize
well to the target domain. Additionally, the extracted features are
statistically uncorrelated, which ensure the minimum informative
redundancy in the latent space. In the experiments, we evaluate
the method with data from nine BCI subjects, and compare
with the state-of-the-art methods. The results demonstrate that
our method has better performance and is suitable for signal
classification in BCIs.

I. INTRODUCTION

Brain-computer interfaces (BCIs) are direct communication
and control pathways between the brain and external devices,
which are often used at assisting, augmenting, or repairing
human cognitive or sensory-motor functions [21]. For example,
they can predict the movement intentions of subjects (or
users), e.g., left or right hand movement, by analyzing electro-
physiological signals of the brain and translating the signals
into certain physical commands [26]. In this way, BCIs can
help the patients who suffer from motor disabilities to interact
with the environment. During the last decade, the research of
BCIs has quickened greatly, to which many machine learning
methods have been successfully applied [2], [25], [27]. Due
to the diversity among persons, the patterns of the recorded
signals may differ considerably among subjects, especially at
the early training stage. However, the latent characteristics of
data may not change drastically according to the assumption in
[17]. Therefore, some common knowledge can be learned from
some subjects of BCIs to accelerate the training procedures
for other subjects. An appealing approach in BCI systems is
to use the inter-subject transformation in which one subject
helps another to train a classifier for later tasks [1], [8], [23],
[24]. In this paper, we focus on the knowledge transfer in
the feature extraction stage and propose a novel transferable
feature extraction method for signal classification in BCIs to
quicken the training session in the systems.

Feature extraction is important for many applications in
machine learning and data mining. In the single domain
scenario where the training and test data are from the same

distribution, there have been many methods proposed, such as
principal component analysis (PCA) [16], linear discriminant
analysis (LDA) [11], locality preserving projection (LPP) [13]
and Fisher discriminant analysis (FDA) [9]. LDA seeks an
optimal linear transformation by maximizing the ratio of the
between-class distance to the within-class distance of a given
data set. A major disadvantage of LDA is that the scatter
matrices must be nonsingular. But in many applications, such
as pattern recognition [3], [11], face recognition [14], [22],
and microarray analysis [7], the between-class and within-class
scatter matrices are usually singular for undersampled data,
which is known as the singularity problem.

Many extensions are proposed to address the singularity
problem, such as regularized linear discriminant analysis [6],
[10], orthogonal LDA (OLDA) [30], subspace LDA [22], etc.
Another important extension of LDA is uncorrelated LDA
(ULDA) [5], [14], [15], [29]–[31], which is motivated by
extracting features with uncorrelated attributes. The feature
vectors extracted via ULDA are shown to be statistically
uncorrelated, which is greatly desirable for many applications,
because they contain minimum redundancy. The proposed
algorithm in [14] involves d generalized eigenvalue problems,
if there exist d optimal discriminant vectors. It is computa-
tionally expensive for high-dimensional and large dataset. And
it does not address the singularity problem either. In [29],
they addressed the singularity problem in classical ULDA by
introducing an optimization criterion that combines the key in-
gredients of ULDA (which is based on QR-decomposition) and
regularized LDA. Then they employed generalized singular
value decomposition (GSVD) tool [12] to solve the singularity
problem directly, thus avoiding the information loss in the
subspace. The effectiveness of ULDA has been demonstrated
by many numerical experiments [5], [14], [29], [31].

In BCIs, the signals recorded for one subject may be
largely different from the signals for another subject. As a
result, former feature extraction methods may not be suitable
in these applications. Thanks to the development of transfer
learning methods [20], one can learn classification models on
one subject (the source domain) and apply them to another
subject (the target domain). The work in this paper aims to
design a new inter-subject transferable dimensionality reduc-
tion method for BCIs by improving the previous framework of
uncorrelated discriminative dimensionality reduction methods,
which is called uncorrelated transferable feature extraction,
UTFE for short. The purpose of the UTFE approach is to
learn a low-dimensional space in which the source and target



distributions can be close to each other and the discrimination
can be preserved. In this way, both the discrimination and the
transferability of the transformed space are considered. Fur-
thermore, the extracted features are statistically uncorrelated,
indicating the minimum informative redundancy. We firstly
design mathematical terms that evaluate the discrimination in
domain-merged training data and the transferability of a latent
space to bridge the source and target domains. Then we merge
these terms into the previous framework of uncorrelated dis-
criminative dimensionality reduction to minimize the distance
between distributions of the data in different domains and
maximize the discrimination in merged data simultaneously.
The proposed feature extraction method not only preserves the
discrimination but also bridges the source and target domains.

The organization of this paper is as follows. Section II
reviews some related work on transfer learning, the BCI
application and ULDA. Section III introduces the proposed
method in detail, which is called uncorrelated transferable
feature extraction. The experiment results on data from nine
BCI subjects are presented in Section IV. The conclusion is
given in Section V.

II. RELATED WORK

In [8], Fazli et al. introduced an ensemble method for the
BCI application which was built upon common spatial pattern
filters (CSP) for spatial filtering. They utilized a large database
of pairs of spatial filters and classifiers from 45 subjects to
learn a sparse subset of these pairs which were predictive
across subjects. The quadratic regression with l1 norm penalty
was used to guarantee the sparsity. Using a leave-one-subject-
out cross-validation procedure, the authors then demonstrated
that the sparse subset of spatial filters and classifiers could be
applied to new subjects with only a moderate performance loss
compared to subject-specific calibration.

In [1], a multitask learning framework to construct a BCI
was proposed, which could be used without any subject-
specific calibration process. Each subject in their framework
was treated as one task. They designed a parametric proba-
bilistic approach that uses shared priors. By inferring K linear
functions ft(x; wt) = 〈wt, x〉 associated to each task such that
yti = ft(xti; wt)+εt , they firstly trained off-line tasks to learn
the model parameters and the shared prior parameters. Then
an out-of-the-box BCI with these shared prior parameters was
defined and used to adapt to new subjects in an online fashion.

In [23], Tu and Sun introduced a novel dimensionality
reduction method for transfer learning in BCI applications.
By minimizing the distance between domains and maximizing
the distance between classes, they found a low-dimensional
latent space that ensure the discrimination of merged training
data and the transferability between the source domain and the
target domain, improving the original discriminative dimen-
sionality reduction method. The experimental results on a real
BCI dataset with two subjects demonstrate the effectiveness
of their work. However in their work the extracted features
may contain some redundancy information, degrading the
classification performance.

A recent work by [24] introduced a subject transfer frame-
work for EEG classification, which could achieve positive
subject transfer with improvement on both feature extraction

and classification stages. At the feature extraction stage, two
kinds of spatial filter banks, i.e., robust filter bank and adap-
tive filter bank, were constructed for each subject. Then for
each training set projected by each bank one classifier was
trained with some strategies. At the classification stage, an
ensemble strategy was employed to combine the outcomes
of the classifiers trained above into a single one. Despite the
encouraging results achieved by the proposed framework, the
extracted features in their framework may not be uncorrelated,
which may damage the classification performance.

To address the singularity problem in LDA, Ye et al. [29]
proposed a feature extraction method called ULDA/GSVD.
The optimization problem in their work was G =
arg maxG trace((S

L
T + µIl)

−1SLB), subject to G>STG = Il.
Here SLT + µIl is always nonsingular for µ > 0. The key of
ULDA/GSVD is that the optimal solution is independent of
the perturbation µ, i.e., Gµ1

= Gµ2
, for any µ1, µ2 > 0. So

ULDA/GSVD is easier to use without adjusting the parameter
µ.

III. THE PROPOSED METHOD

In this section, we describe the proposed dimensionality re-
duction approach, uncorrelated transferable feature extraction
(UTFE) in detail. As an extension of the work of [23], this
approach extracts uncorrelated features that contain minimum
redundancy.

Suppose we have three kinds of data available, i.e., a large
number of source training data XS

tr ∈ RM×NS with their
labels LSi ∈ {1, 2, . . . , c} from a source domain S, a very
small number of target training data XT

tr ∈ RM×NT with
their labels LTi ∈ {1, 2, . . . , c} from a target domain T , and a
large number of unlabeled target test data XT

te. Each column
represents one data point in these matrices. The unlabeled
target test data XT

te are used for later tasks (e.g., classification
or regression). For transfer learning problems, the difficulties
are that the target domain distribution relates to but differs
from the source domain distribution. The methods learning on
the single distribution may perform poorly. Thus the classifiers
trained on the source domain may generalize badly to the
target domain. Therefore, the quality of a low-dimensional
space should be considered both by its discriminability in the
merged data and transferability from the source domain to the
target domain simultaneously. In this section, we consider both
the transferability and discriminability to construct an objective
function for effective feature extraction. We’ll see in subsection
III-B that the difference between the objective function we
propose and the one in [23] is that the constraint induced
here makes the extracted features uncorrelated, indicating the
minimum informative redundancy.

A. Domain-merged and between-domain scatter matrices

When given source domain training dataset and target
domain training dataset as mentioned above, we can compute
the within-class and between-class scatter measurements on the
dataset merged by them which is called merged training dataset
XM
tr . In transfer learning we should consider the different

importance of the target domain and the source domain to
take more advantages of the target because training and test
data points in the target are drawn from the same distribution.



Hence a weight WT
tr can be added into the target to control

the influence of its training samples. Since the reliability of the
distribution estimation of the target training set is constrained
by its sample size intuitively, the weight should relate to the
number of the target training samples. We define the weight
as WT

tr = 1 + NT /NS , where NT and NS are the numbers
of training data points from the target domain and the source
domain, respectively. This weight attaches more importance
to the target training data. Thus the merged training dataset
is defined as XM

tr = {XS
tr;X

T
wtr}, where XT

wtr represents the
weighted target training data using the weight defined above.

On merged dataset, the between-class scatter matrix SMB ,
the within-class scatter matrix SMW and the total scatter matrix
SMT are defined as follows:

SMB =
1

n

c∑
i=1

ni(µi − µ)(µi − µ)
>
, (1)

SMW =
1

n

c∑
i=1

∑
xj∈Ai

(xj − µi)(xj − µi)>, (2)

SMT = SMW + SMB , (3)

where c is the class number, n is the sample number of the
merged dataset, ni is the number of samples belonging to the
ith class, Ai is the set of ith class dataset, µi is the class mean
of ith class in the merged dataset, and µ is the class mean of
the merged dataset.

To measure the transferability between the source and the
target domains, a between-domain scatter matrix related to the
distance between the source and target distributions is defined.
Here three different forms of the between-domain scatter ma-
trix , i.e., supervised, semi-supervised and unsupervised
between-domain scatter matrices, are considered.

1) Supervised between-domain scatter matrix. In the
supervised case, the between-domain scatter matrix SSTL is
defined as follows:

SSTL =

c∑
i=1

(
µSi − µTi

)(
µSi − µTi

)>
, (4)

where µSi and µTi are the ith class means of the source training
and target training datasets, respectively. The term µSi − µTi
reflects the scatter of class i between the source and target
domains. To improve the transferability of the low-dimensional
space, the distance between distributions of the source and
target domains should be minimized.

2) Unsupervised between-domain scatter matrix. In many
transfer learning problems, however, the cases are that no
labeled target data are available. So we can not measure
the class mean per class. One alternative way to obtain the
between-domain scatter matrix is using the means of the whole
data, i.e.,

SSTU = (µS − µT )(µS − µT )>, (5)

where µS and µT are means of the source training and target
training datasets, respectively. Similarly, the distance between
the distributions of the source and target domains in the low-
dimensional space should be minimized.

3) Semi-supervised between-domain scatter matrix. If
there are both a few labeled target samples and a large num-
ber of unlabeled target samples available, a semi-supervised
between-domain scatter matrix can be obtained by combining
the supervised and unsupervised ones. Similar to the weight
definition in the merged training set XM

tr , we give the su-
pervised and unsupervised between-domain scatter matrices
different importances using the sample numbers of training
(labeled) and test (unlabeled) samples from target domain as
follows:

SST = SSTU + (1 + nTtr/n
T
te)S

ST
L , (6)

where nTtr and nTte are the sample numbers of labeled and
unlabeled target datasets. We attach more importance to the
target data with label information.

B. UTFE for transfer learning

As in classical LDA, in order to formulate the criterion
for class separability and domain transferability, we need to
convert these scatter matrices defined above to an objective
function. Its value should be larger when the between-class
scatter is larger or the within-class and between-domain scat-
ters are smaller. The trace of the scatter matrices can be viewed
as a measurement of the quality of the class structure and
the domain characteristic. In particular, trace(SMB ) measures
the distance between classes and trace(SMW ) measures the
closeness of the data within the classes over all c classes.
According to [11], there are some typical criteria, one of which
is J = trace(S−12 S1), where S1 and S2 are combinations of
SW , SB , and ST .

In transfer learning problem, trace(SST ) measures the
closeness of the two domains, i.e., the source domain and
the target domain. So we can define a generalized S̃W as
S̃W = SMW +αSST to obtain both class closeness and domain
closeness.

The goal in our method is to find a projection matrix G
to transform the original space in the high-dimensional space
(RM ) into a low-dimensional latent space (RL). The desired
projection matrix G = [g1, g2, . . . , gL] should be with the
following characteristics:

• G> ∈ RL×M , where L�M ;

• Z = G>X,X ∈ XM
tr , so that zi and zj are uncor-

related, where zi and zj are the ith and jth feature
components of Z.

The second condition makes sure the features extracted
uncorrelated, which means that the low-dimensional space
obtained contains the minimum informative redundancy.

In the low-dimensional space, the scatter matrices can be
written in the form:

SML
B = G>SMB G, SML

W = G>SMWG,



SML
T = G>SMT G, SSTL = G>SSTG.

As mentioned above, one of the reasonable criteria to
characterize the class separability and domain transferability
is to minimize trace(S̃LW ) where S̃LW = SML

W + αSSTL,
and maximize trace(SML

B ) simultaneously, resulting in the
optimization problem of UTFE method as follows:

G∗ = arg max
G>SM

T G=I
trace((SML

W + αSSTL)−1SML
B ). (7)

The constraint ensures that the extracted features are mu-
tually uncorrelated. Since the rank of the between-class scatter
matrix is bounded by c−1, there are at most c−1 discriminant
vectors in the solution.

Let X be an original feature vector, Z be the transformed
feature vector of X with Z = G>X . Let zi and zj be the
ith and jth feature components of Z and zi = giX . The
covariance between zi and zj can be easily computed as

Cov(zi, zj) = E(zi − Ezi)(zj − Ezj)
= g>i {E(X − EX)(X − EX)>}gj
= g>i STgj .

The correlation coefficient is

Cor(zi, zj) =
g>i STgj√

g>i STgi

√
g>j STgj

, (8)

for i 6= j, Cor(zi, zj) = 0 iff g>i STgj = 0. Therefore,
the condition G>SMT G = I guarantees the extracted features
are mutually uncorrelated, and the optimization problem also
makes sure both the transferability between domains and the
separability between classes at the same time.

C. Solution of the UTFE problem

Let S̃W = SML
W + αSSTL, S̃B = SML

B . From linear
algebra, there exists a nonsingular matrix Y such that

Y >S̃WY = IM , Y >S̃BY = Λ = diag{λ1, . . . , λM}, (9)

where λ1 ≥ · · · ≥ λM ≥ 0.

It can be shown that the matrix consisting of the first q
columns of Y solves the optimization problem in (7), where
q = rank(ŜB) (for proof, refer to [28]).

Considering that the scatter matrices are usually singular
in real applications, we employ the method based on the
generalized singular value decomposition (GSVD) [29] to
solve the optimization objective. The GSVD is a common way
to diagonalize two matrices together, which is in our situation
that S̃W and S̃B should be simultaneously diagonalized.

We decompose the two matrices S̃W and S̃B as

S̃W = H̃W H̃
>
W ,

S̃B = H̃BH̃
>
B .

Let

Γ =

[
H̃>B
H̃>W

]
, (10)

which is an (n+ c)×M matrix with n being the number of
merged data points and M the number of dimensions.

According to the generalized singular value decomposition
[19], there exist orthogonal matrices U ∈ Rc×c, V ∈ Rn×n,
and a nonsingular matrix E ∈ RM×M , such that

[
U 0
0 V

]>
ΓE =

[
Σ1 0
Σ2 0

]
, (11)

where

Σ1 =

[
IB 0 0
0 DB 0
0 0 0B

]
,Σ2 =

[
0W 0 0
0 DW 0
0 0 IW

]
, (12)

Σ>1 Σ1 = diag (α2
1, . . . , α

2
t ), Σ>2 Σ2 = diag (β2

1 , . . . , β
2
t ),

1 ≥ α1 ≥ · · · ≥ αq > 0 = αq+1 = · · · = αt, 0 ≤ β1 ≤
· · · ≤ βt ≤ 1, α2

i + β2
i = 1, for i = 1, 2, . . . , t, DB = diag

(α2
1, . . . , α

2
t , 0, . . . , 0), DW = diag (β2

1 , . . . , β
2
t , 0, . . . , 0), t =

rank(ST ).

From (11), we have

H̃>BE = U [Σ1 0] ,

H̃>WE = V [Σ2 0],

and

E>H̃BH̃
>
BE =

[
Σ>1 Σ1 0

0 0

]
≡ DB ,

E>H̃W H̃
>
WE =

[
Σ>2 Σ2 0

0 0

]
≡ DW .

Hence, after computing GSVD on the matrix pair
(H̃>B , H̃

>
W ) and obtaining the matrix E as Eq.(11), we can

choose the first q columns to form the desired projection matrix
G∗, that is G∗ ← [E1, . . . , Eq]. The optimization problem in
(7) is solved.

IV. EXPERIMENTS

The EEG data used in this study were provided by Dr.
Allen Osman of University of Pennsylvania [18]. There were
a total of nine subjects denoted as S1, S2, S3, . . . , S9, respec-
tively. Each subject was required to imagine moving either the
left or right index finger in response to a highly predictable
visual cur. EEG data were recorded from 59 channels mounted
according to the international 10/20 system. The sampling rate
was 100 HZ. Each movement lasted for six seconds with two
cues. The first cue turned up at 3.75 s imagining which hand
to move, then the second one appeared at 5.0s indicating that it
was time to carry out the assigned response. For each subject, a



TABLE 1. The classification accuracies without adaptation when k = 5 in kNN and
there are ten labeled target data available.

HH
HHSource

Target S1(%) S2(%) S3(%) S4(%) S5(%) S6(%) S7(%) S8(%) S9(%)

S1 60.0 53.7 60.0 67.5 47.5 53.7 68.7 50.0 56.2
S2 56.3 67.5 58.7 57.5 48.5 47.5 58.7 50.0 56.2
S3 60.0 58.7 65.0 71.2 47.5 50.0 66.2 50.0 56.2
S4 66.3 50.0 60.0 77.5 56.2 47.5 72.5 52.5 56.2
S5 63.8 53.7 62.5 61.2 67.5 47.5 63.7 50.0 56.2
S6 61.2 47.5 58.7 72.5 55.0 58.7 70.0 50.0 56.2
S7 66.2 46.2 67.5 77.5 53.7 47.5 68.7 50.0 56.2
S8 60.0 51.2 60.0 63.7 51.2 47.5 61.2 66.2 55.0
S9 55.0 48.7 58.7 60.0 50.0 47.5 63.7 51.2 58.7

TABLE 2. The classification accuracies when k = 5 in kNN and there are ten labeled
target data available. Each column reports three accuracies, using UTFE, TDDR, SDA

for classification, respectively.

PPPPPSource
Target S1(%) S2(%) S3(%)

UTFE TDDR SDA UTFE TDDR SDA UTFE TDDR SDA
S1 - 60.0 63.8 65.0 75.3 65.9 53.75
S2 67.1 67.0 61.2 - 75.3 65.0 61.2
S3 83.5 67.5 51.3 73.6 80.0 58.8 -
S4 71.3 64.7 61.3 53.8 76.7 65.0 76.5 64.4 62.5
S5 76.3 70.0 57.5 77.6 63.8 55.0 75.3 66.7 65.0
S6 71.3 66.7 60.0 63.5 63.4 67.5 75.6 62.5 58.7
S7 75.3 62.5 65.0 70.0 80.0 65.0 77.6 65.6 65.0
S8 86.3 63.8 51.3 78.8 64.7 53.8 77.5 71.1 68.8
S9 75.3 64.4 65.0 77.6 68.2 68.8 78.8 67.5 58.8

total of 180 movements were recorded, with 90 trials labeled as
left and the rest as right. Ninety movements with half labeled
as right and half as left were used to training, while the other
90 for test in the experiments. The original dimension number
M of each data point is eight. After solving the UTFE problem,
we follow the approach in [28] and reduce the dimension to
two.

In our experiments, we design a one-source-vs-one-target
transfer task for all the nine subjects, i.e., (Si, Sj) with
i, j = {1, 2, . . . , 9}, and i 6= j. The pair (Si, Sj) presents
that subject Si acts as the source domain and Sj acts as the
target domain. When no labeled target data points are available
in the training session, we have SST = SSTU in the UTFE
approach. Additionally, to simulate the real conditions that the
target domain only has a few labeled data points for training,
which is common in transfer learning, we also select some
target training samples to help the classification. The number
of labeled target samples nTtr is set to five or ten. In these
settings, SST = SSTU + (1 + nTtr/n

T
te)S

ST
L . The parameter

α in our objective function Eq. (7) is selected from [0.1,
0.15, 0.2, 0.25, . . . , 1] using 10-fold cross-validation tech-
nology. We employ the k-nearest-neighbor (kNN) classifier
with k = {1, 3, 5} to perform classifications. Therefore, there
are nine experiment settings totally with a combination of
k and nTtr, where nTtr = {0, 5, 10} . In order to verify the
effectiveness of the proposed method, we perform a naive
classification approach without adaptation and two previous
methods, i.e., semi-supervised discriminant analysis (SDA)
[4] and transferable discriminative dimensionality reduction
(TDDR) [23], in the same settings as comparisons. The naive
classification approach used in the experiment simply trained
a classifier using the source labeled data and applied it to the
target unlabeled data without adaptation.

Firstly, we need to determine whether Si can help Sj
without adaptation. The classification task is done on the orig-
inal datasets. We use the k-nearest-neighbor (kNN) classifier

TABLE 2 (continue). The classification accuracies when k = 5 in kNN and there are
ten labeled target data available. Each column reports three accuracies, using UTFE,

TDDR, SDA for classification, respectively.

PPPPPSource
Target S4(%) S5(%) S6(%)

UTFE TDDR SDA UTFE TDDR SDA UTFE TDDR SDA
S1 68.8 68.2 50.0 68.8 70.0 62.5 70.0 66.3 51.3
S2 54.1 61.2 57.5 62.5 67.8 53.8 55.0 61.1 48.8
S3 68.8 71.3 52.5 70.0 68.2 53.8 75.0 68.8 52.5
S4 - 71.8 73.8 52.5 73.0 68.8 50.0
S5 77.5 63.5 55.0 - 76.5 66.3 63.8
S6 76.3 63.3 58.7 80.0 70.6 57.5 -
S7 82.5 65.0 47.5 82.4 66.3 53.8 81.3 65.0 56.3
S8 71.8 63.7 68.8 72.9 65.9 67.5 74.4 67.1 58.8
S9 71.3 65.5 53.8 76.5 67.8 55.0 83.8 62.4 56.3

TABLE 2 (continue). The classification accuracies when k = 5 in kNN and there are
ten labeled target data available. Each column reports three accuracies, using UTFE,

TDDR, SDA for classification, respectively.

PPPPPSource
Target S7(%) S8(%) S9(%)

UTFE TDDR SDA UTFE TDDR SDA UTFE TDDR SDA
S1 78.9 66.3 56.3 65.9 71.3 45.0 72.9 67.1 50.0
S2 68.8 67.1 72.5 60.0 70.6 76.3 66.3 68.9 57.5
S3 84.4 71.7 61.3 69.4 70.6 36.2 73.7 71.3 66.2
S4 84.4 65.9 57.5 70.6 66.3 41.3 70.0 66.7 53.8
S5 91.3 63.8 57.5 70.0 71.8 75.0 82.5 68.8 47.5
S6 86.3 73.8 66.3 72.5 66.7 68.7 77.5 69.4 46.2
S7 - 73.8 63.5 43.7 77.5 65.0 66.3
S8 80.0 62.4 63.7 - 75.3 66.3 50.0
S9 76.3 72.5 66, 2 70.6 70.0 67.5 -

with k = 5 and offer ten labeled target samples for training.
Table 1 reports the classification accuracies. Compared with
Table 2, we can see in Table 1 that Si can not help Sj
for classification without adaptation methods due to the data
differences between them. Therefore, a more effective method
is needed which takes the differences between the source
domain and the target domain into consideration. Domain
adaptation method can learn information from the source and
then use it for the target carefully. The method we proposed
can deal with such problem effectively. In Table 2, we can
observe the significant accuracy improvements when applying
adaptation method under the same condition, especially for
subjects S5, S7, S8 and S9. Significantly, the accuracy of our
method is 91.3% when S5 helps S7.

Secondly, we compare the proposed UTFE with previous
methods, TDDR and SDA, to demonstrate the advantages of
uncorrelated feature extraction approach. We have in all nine
settings due to the different combinations of k in kNN and nTtr,
where k = {1, 3, 5} and nTtr = {0, 5, 10}. Due to the limitation
of space, taking k = 5 and nTtr = 10 for example, we report
the classification accuracies in Table 2. We can see from the
results that in general the UTFE method outperforms the other
two methods, TDDR and SDA. All of the three methods seek a
low-dimensional latent space that preserves the discriminative
characteristic. Considering the differences between the source
domain and the target domain in transfer learning, our method
and TDDR take the transferability into account. What’s more,
in our method, uncorrelated features are extracted, resulting in
the minimum redundancy compared with TDDR.

Beside Table 2, for all the experimental settings, we list the
average classification accuracies that source Si (as the source)
helps all the left eight subjects Sj (as the target) in Fig. 1.
Each subfigure in Fig. 1 reports the average classification
accuracies that the nine sources help the targets under each



Fig. 1. The average classification results under nine experimental settings {(k, nT
tr)}. The (k, nT

tr) for each subfigure form top to down and left to right are
(1,0), (1,5), (1,10), (3,0), (3,5), (3,10), (5,0), (5,5), (5,10). In each subfigure, the average classification accuracies of the case where each subject Si (as the
source) helps all the left eight subjects (as the targets) are reported, i = {1, 2, . . . , 9}. The horizontal and vertical axes stand for the indexes of the source
subjects, and the classification accuracy, respectively.

experimental setting, respectively. When there are no labeled
target data available, our method is comparable with the other
two. When there are some available labeled target data, the
UTFE outperforms in a large scale. Due to the noise of the
dataset, our method benefits more from the labeled target data,
even there are only five, to obtain a more informative low-
dimensional space for the classification.

In the end, a two-dimensional visualization of the data of
subject S7 helps by subject S4 is shown in Fig. 2, where the
samples are projected using the UTFE method and TDDR
method. We can see from Fig. 2 that the data projected
by UTFE has better class discrimination quality compared
with TDDR. This is because, as mentioned above, the UTFE
method seeks an uncorrelated feature space which contains the
minimum informative redundancy and keeps the discrimination
between classes, while the TDDR method contains informative
redundancy.

V. CONCLUSIONS

In this paper, we present a new dimensionality reduction
method for transfer learning in brain-computer interface sys-
tems. By maximizing the trace of the between-class scatter
matrix and minimizing the trace of the within-class scatter
matrix and the trace of the between-domain scatter matrix,
the new method seeks a low-dimensional space which obtains
the maximum discrimination and transferability between the
source and target domains. Meanwhile, the extracted features
are statistically uncorrelated. By introducing the uncorrelated
constraint the low-dimensional latent space reduces the infor-
mative redundancy, which improves the classification perfor-
mance. The evaluations on real BCI data demonstrate that our
method outperforms the previous methods.

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China under Project 61370175, and Shanghai
Knowledge Service Platform Project (No. ZF1213).

REFERENCES

[1] M. Alamgir, M. Grosse-Wentrup, and Y. Altun. Multitask learning for
brain-computer interfaces. In Proceedings of the 13th International
Conference on Artificial Intelligence and Statistics, pp. 17-24, 2010.

[2] B. Blankertz, G. Dornhege, M. Krauledat, K. R. Müller, and G. Curio.
The non-invasive berlin brain-computer interface: fast acquisition of
effective performance in untrained subjects. NeuroImage, vol. 37,
pp. 539-550, 2007.

[3] C. M. Bishop, and N. M. Nasrabadi. Pattern Recognition and Machine
Learning. Springer, 2006.

[4] D. Cai, X. He, and J. Han. Semi-supervised discriminant analysis. In
Proceedings of the IEEE 11th International Conference on Computer
Vision, pp. 1-7, 2007.

[5] D. Chu, S. Goh, and Y. S. Hung. Characterization of all solutions
for undersampled uncorrelated linear discriminant analysis problems.
SIAM Journal on Matrix Analysis and Applications, vol. 32, pp. 820-
844, 2011.

[6] D. Dai, and P. Yuen. Regularized discriminant analysis and its applica-
tion to face recognition. Pattern Recognition, vol. 36, pp. 845-847,
2003.

[7] S. Dudoit, J. Fridlyand, and T. P. Speed. Comparison of discrimination
methods for the classification of tumors using gene expression data.
Journal of the American Statistical Association, vol. 87, pp. 77-87, 2002.

[8] S. Fazli, F. Popescu, M. Danóczy, B. Blankertz, K. R. Müller, and C.
Grozea. Subject-independent mental state classification in single trials.
Neural Networks, vol. 22, pp. 1305-1312, 2009.

[9] R. A. Fisher. The use of multiple measurements in taxonomic problems.
Annals of Eugenics, vol. 7, pp. 179-188, 1936.

[10] J. Friedman. Regularized discriminant analysis. Journal of the
American Statistical Association, vol. 84, pp. 165-175, 1989.



−0.1 0 0.1 0.2 0.3
−0.2

−0.1

0

0.1

0.2

0.3

−0.1 0 0.1 0.2 0.3
0

0.05

0.1

0.15

0.2

0.25

Fig. 2. 2D visualization of data of subject S7 by the help of subject S4. In the left subfigure, the samples are projected using the UTFE method, and in the
right subfigure, the samples are projected onto the first two vectors by TDDR method.

[11] K. Fukunaga. Introduction to Statistical Pattern Recognition. Aca-
demic Press, 1990.

[12] G. H. Golub, and C. F. Van Loan. Matrix Computations. The Johns
Hopkins University Press, 1996.

[13] X. He, and P. Niyogi. Locality preserving projections. Advances in
Neural Information Processing Systems, pp. 153-160, 2003.

[14] Z. Jin, J. Yang, Z. Hu, and Z. Lou. Face recognition based on the
uncorrelated discriminant transformation. Pattern Recognition, vol.
34, pp. 1405-1416, 2001.

[15] Z. Jin, J. Yang, Z. Hu, and Z. Lou. A theorem on the uncorrelated
optimal discriminant vectors. Pattern Recognition, vol. 34, pp. 2041-
2047, 2001.

[16] I. Jolliffe. Principal Component Analysis. Springer Verlag, 1986.

[17] S. G. Mason, A. Bashashati, M. Fatourechi, K. F. Navarro, and G. E.
Birch. A comprehensive survey of brain interface technology designs.
Annals of Biomedical Engineering, vol. 35, pp. 137-169, 2007.

[18] A. Osman, and A. Robert. Time-course of cortical activation during
overt and imagined movements. In Proceedings of the Cognitive
Neuroscientists Annual Meetings, pp. 1842-1852, 2001.

[19] C. Paige, and M. Saunders. Towards a generalized singular value
decomposition. SIAM Journal on Numerical Analysis, vol. 18, pp.
398-405, 1981.

[20] S. Sun, H. Shi, and Y. Wu. A survey of multi-source domain adaptation.
Information Fusion, vol. 24, pp. 84-92, 2015.

[21] S. Sun, and J. Zhou. A review of adaptive feature extraction and
classification methods for eeg-based brain-computer interfaces. In
Proceedings of the International Joint Conference on Neural Networks,
pp. 1746-1753, 2014.

[22] D. L. Swets, and J. Weng. Using discriminant eigenfeatures for image
retrieval. IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 18, pp. 831-836, 1996.

[23] W. Tu, and S. Sun. Transferable discriminative dimensionality reduc-
tion. In Proceedings of the 23rd IEEE International Conference on
Tools with Artificial Intelligence, pp. 865-868, 2011.

[24] W. Tu, and S. Sun. A subject transfer framework for eeg classification.
Neurocomputing, vol. 82, pp. 109-116, 2012.
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