
Text Detection in Nature Scene Images Using

 Two-stage Nontext Filtering

Qingqing Wang, Yue Lu, Shiliang Sun

Shanghai Key Laboratory of Multidimensional Information Processing
Department of Computer Science and Technology

 East China Normal University, Shanghai 200241, China

Abstract— We present a text detection method in natural
scene images based on two-stage nontext filtering. Firstly, we
detect multi-channel maximally stable extremal regions (MSERs)
as character candidates. To reduce the amount of repeating
components, we merge the MSERs by choosing the most
character-like ones when overlap happens. Then nontext
components are filtered out by a two-stage labeling procedure,
wherein we combine random forests with CRF. Finally,
components labeled as text are grouped into words by an edge-
cut strategy, and false positives are eliminated by a HOG-based
classifier. The experimental results on the ICDAR2013 database
show the effectiveness of the proposed method.

Keywords—text detection; MSERs; CRF; nontext filtering;
random forests; edge-cut

I. INTRODUCTION

Text in images conveys important information, which helps
to make images more understandable. Applications based on
text reading in natural scene images, such as content-based
image retrieval, automatic navigation, signboard/plate
recognition, and computerized aid for visually impaired, are
receiving intensive attention in recent years. Generally
speaking, text reading involves two steps: text detection and
text recognition. Text detection is to extract text regions from a
given image, and text recognition is to translate pixel-based
text into readable code. The performance of text detection is
crucial to the whole text reading system. But due to the
cluttered background and a great variety of text patterns, scales,
and fonts, text detection in natural scene images is a
challenging task. Additionally, camera captured images often
suffer from distorted view, uneven illumination, curved, and
shadow effects.

Numerous methods have been proposed to address this
issue. Most existing methods can be categorized into two
groups: region-based methods [1, 2] and connected component-
based (CC-based) methods [3, 4, 5, 6, 7, 8]. Region-based
methods often utilize sliding window to localize regions with
high confidence to be text. Text’s distinct features make it
possible to differentiate text regions from nontext ones. This
kind of methods is robust to noise. However, to adapt to
different sizes of scene text, they often leverage multi-scale
operators, which possibly leads to long time consuming. On the
other hand, CC-based methods are more efficient. They assume
that pixels in the same CC have similar local properties, such

as gray level, stroke width, and intensity. Additionally,
characters can be cropped from images by generating
connected components (CCs). The amount of CCs is less than
regions, so CC-based methods take shorter time than region-
based ones. However, it is a tough task to find a robust CC
generator that can deal with blur, skew, low resolution, and
uneven illumination.

Gao et al. [1] proposed a region-based method that
employed a cascade Adaboost with weak learners of
classification and regression tree to decide whether a window
contained text or not. A drawback of region-based methods is
computation complexity. To alleviate the computation burden,
Neumann et al. [2] considered only the regions with text-like
strokes. They claimed that their strategy reduced the number of
rectangles by three orders of magnitude when compared with
the standard sliding window methods. CC generating is a key
step of CC-based methods. Bai et al. [3] and Epshtein et al. [4]
utilized the appearance of stroke edge pixels and the
consistence of stroke width to generate CCs. These CCs were
classified as text and nontext in the downstream steps. Recently,
ER detector and MSER detector are widely used as CC
generator [5, 6, 7, 8] thanks to their high character detection
recall. As reported in [5], the character detection recall of ER
detector in multi-channels was 94.8%. Yin et al. [6] claimed
that their MSER detector achieved a recall of 95.2% in multi-
channels. However, the character detection precision was only
7.1% in [5], which implied that many nontext components
were detected as character candidates. In MSER-based
methods, the elimination of nontext components is the most
challenging task. In [5], a sequential classifier combining with
incrementally computable descriptors was used to eliminate
nontext components. Characters often appear in images
coherently, so their adjacency relationship is an available
characteristic for character detection. Yin et al. [6] used
distance metric learning to compute the distance between
MSER pairs, and clustered MSERs into groups according to
the distance. Then posterior probabilities of text candidates
were estimated to eliminate false positives. Kim et al. [7]
employed an Adaboost classifier to learn the relationship
between MSER pairs. Then MSER pairs were clustered into
groups. Finally, multilayer perceptron learning was exploited
to eliminate false positives. Yin’s [6] and Kim’s [7] methods
won the first place in ICDAR2013 and ICDAR2011
competition, respectively.

In this paper, we continue to explore MSER-based text
detection in natural scene images. Firstly, multi-channel
MSERs are extracted as character candidates, and are merged
together to reduce the repeating components. Then a two-stage
labeling procedure combining random forests with CRF is used
to filter out nontext components. Finally, text components are
grouped into words and false positives are eliminated.

II. THE PROPOSED METHOD

Our text detection method consists of three steps: 1)
Character candidate detection. 2) Two-stage nontext filtering. 3)
Word grouping and false positives elimination. Fig. 1 shows
the flowchart of the proposed method.

Fig. 1. Flowchart of the proposed method.

A. Character Candidate Detection

Inspired by the effectiveness of MSER detector, we extract
MSERs from images as our character candidates. Repeating
components is the major pitfall of MSER detector. Yin et al. [6]
proposed an efficient MSER pruning algorithm to solve this
problem. Detecting MSERs in multi-channels can improve the
character recall at the cost of a significant increase in the
number of nontext MSERs. But it is time consuming to
perform the downstream steps on all of the multi-channel
MSERs. To deal with this issue, we merge multi-channel
MSERs together after pruning algorithm has been performed.
This strategy leads to non-overlap of the MSERs.

We use Algorithm 1 to merge MSERs of two images.
Considering component sets 1 1 2{ , ,..., }nR r r r of image 1I and

2 1' 2 ' '{ , ,..., }nR r r r of image 2I , we pick components from 1R

and 2R to form the resulting component set R .

Algorithm 1: Merging components of image
1I and

2I

Input: component sets
1R and

2R

Output: component set R
Procedure:
While there exists component

1ir R

 If there exists no component
2jr R satisfied

i jr r  

 Then set
1 1{ }, -{ }i iR R r R R r  

 Else

 Set
1 1 -{ }iR R r

 Initialize
1 2{ }iE r E ，

 Repeat

 Step1: Find component
2kr R where

1p k pr E r r     
 Set

2 2 -{ }kR R r ,
2 2 { }kE E r 

 Step2: Find component
' 1kr R where

' 2 ' 'p k pr E r r     

Set
1 1 '-{ }kR R r ,

1 1 '{ }kE E r 

Until
1| |E and

2| |E are stable.

If max{ ()} max{ ()}i jp r p r where
1ir E and

2jr E

Then set
1R R E 

Else set
2R R E 

End if

End if
End while
If

2R  

Then set
2R R R 

End if.

 Where ()ip r denotes the probability of component ir to be
text, and is estimated by a character classifier. Fig. 2 shows a
two-channel merging sample and Fig. 3(b) shows the four-
channel merging result of Fig. 3(a). Pixels belonging to the
same component are drawn with the same color. Note that, in
Fig. 2, letters “S” and “N” in the first row of the board in R
channel are interfered by background pixels. The “K” in the
first row and “VE” in the second row in G channel are the
same cases. And the merging result shown in Fig. 2(d) picks
more regular letters “S” and “N” from G channel and “K”, “V”,
and “E” from R channel.

Fig. 2. Example of MSER merging result

Fig. 3. Details of the proposed text detection method.

B. Nontext Filtering Using Random Forests Classifier

According to our statistics, only 6.1% of the resulting
MSERs corresponds to character. Picking up text components
from such an unbalanced database is a challenging task. So we
use a two-stage nontext filtering strategy to address this issue.
In the first stage, a random forests classifier [10] is employed
to filter out most of the nontext components. Random forests
classifier is widely used in text detection due to its fast speed
and relatively better generalization performance. We detect the
following component features which are then fed into the
classifier:

 Regularity. Regularity is defined as the ratio of the
pixel numbers between skeleton and contour. Since the
relative regular structure of characters should not be too
complex or too random, the regularity can distinguish
characters from non-characters who have too many
burrs, twists and turns.

 Aspect ratio. This feature is defined as the ratio of
component’s width and height. Characters tend to have
aspect ratio within a certain range.

 Occupation ratio. This feature, defined as the ratio
between component pixel number and its bounding box
area, is expected to exclude components occupying too
many or too few pixels in the bounding box.

 Compactness. Compactness is defined as the ratio
between the square of component’s perimeter and its
bounding box area. The purpose is to remove
components with too complex contour shapes.

 Stroke width variance. Generally, pixels in the same
text component have uniform stroke widths.

 Euler number. Euler number represents the difference
between the number of connected components and the
number of holes. It is a topological feature of a binary
image and can be calculated by a very efficient yet
simple algorithm introduced in [11].

With the above processing by the random forests classifier,
our experiments found that 85.47% of the nontext components
are eliminated. The labeling result can be seen from Fig. 3(c),
where components drawn with black color are nontext while
others are text.

C. Component Relabeling with CRF Model

The wrongly labeled nontext components by the random
forests usually have higher similarity with characters. To
exclude them, we model the binary contextual component
relationship into a CRF framework. The efficient probabilistic
graphical model is proposed by Schmidt et al. [12].

1) Graph Model Construction
To incorporate different MSERs into a framework, we

construct them into an undirected graph model { , }G V E ,
which is composed of nodes V and undirected edges E . Each
component corresponds to a node of the graph and undirected
edges are built to link neighboring nodes. Firstly, we initialize
edge set E   and 'E  . Edges satisfying the following
criterions are added into 'E :

2 2

1

2

3

4

() ()
2

min(max(,), max(,))

min(,)
0.4

max(,)

min(,)
0.4

max(,)

50

i j i j

i i j j

i j

i j

i j

i j

i j

x x y y
s

h w h w

w w
s

w w

h h
s

h h

s g g

  
 

  

  

   
 

where (,)i ix y is the center position of node i , iw and ih are

the height and width, respectively, and ig is the average gray
level of component pixels. The weight of edges is defined as:

1 4
2 3|1 | |1 |

2 50

s s
w s s      (2)

We sort edges in 'E according to their priorities (the smaller
the weight, the higher the priority), and process them orderly
(from high priority to low priority) according to the following
rules: 1) If the nodes linked by the current edge belong to the
same tree, we ignore the current edge; 2) If the nodes linked by
the current edge belong to two different trees, we merge the
two trees by adding the current edge into E . Different from
other undirected graph models with loops ([8], [9]), our graph
model is a set of minimum spanning trees.

2) The CRF Model
The component labeling problem can be described as

follows: given a set of observation variables { }i= xx , we need
to find the best label set i={y }y , where iy {1,2} . We consider
our CRF with pair-wise potentials:

,

1
(|) (, ,) (,)

() ij i j i i
i j i

p y y y
z

 
 

  y x x x
x

 (3)

where ,i j  is a product over all edge. i and
ij are node

potential and edge potential with the following form:

 
11 12

1 2

21 22

(,) , , (, ,)=

T T
ij ij

T T
i i

T T
ij ij

w x w x

v x v x
i ij

w x w x

e e
e e

e e
 

 
    
 
 

，

，
x x  

where [1,]i ix f is a set of node features and [1,]ij ijx f is a set

of edge features. The element “1” in ix and
ijx is a single “bias”

feature for node potential and edge potential. The bias feature
is used to reflect any effects on the states that are independent
of the features. Besides that, when the states are not balanced in
the training data, a bias feature also makes sense. We set

12 21w w to ensure the identifiability, otherwise the model
would be over-parameterized. If we rewrite [,]v w  for all the
parameters and (,)F x y for all features, we can write the model

more succinctly as exp((,))
(|)

(,)

T F
p

z





x y

y x
x

where

'
(,) exp((,))Tz F   y

x x y' . The negative log-likelihood and

gradient considering
2L regularization are now given by:

2
k

2
1 1 1

() (,) log (,)
2

N N K
T

n n n
n n k

nll F x y z x


  
  

      (5)

' 2
() [(,) (, ')]n n n

n

nll F x y E F x



     y y (6)

where
' '

(, ') (' | ,) (, ')n n nE F x p x F x y y
y y y are the expectations for

the features.

We do conditional inference with sum-product belief
propagation algorithm when computing the marginal
probability. Nodes are observed according to the random
forests classification results. A node will be observed as
nontext if it is classified as nontext with a probability greater
than a threshold . And a node will be observed as text if it is
classified as text with a probability greater than a threshold  .
A 36-D HOG based verification classifier, which indicates the
confidence of components to be text, is carried out to prevent
text components from being wrongly classified by the CRF. A
component labeled as nontext by the CRF will be discarded
only when it satisfies ()p text  , where ()p text is the output of
the verification classifier, and  is a threshold. The CRF graph
model is demonstrated in Fig. 3(d), wherein red lines represent
edges, green components are observed nontext nodes, and blue
ones are observed text nodes. The final filtering result is shown
in Fig. 3(e).

3) Features Used in CRF
The node features used in CRF are the same as the ones

utilized in the random forests classifier, and binary features for
the edge linking node i and node j are defined as follows:

 Color difference. Characters belonging to the same
word usually share similar component pixel colors and
background pixel colors. The similarity can be
measured as follows:

2 2

1,2,3 1,2,3

1 2

() ()

,
255 255

ki kj ki kj
k k

CIn CIn COut COut

F F
 

 
 

 
 (7)

where
kiCIn and

kiCOut denote the average component pixel
color and background pixel color in thk channel.

 Spatial distance. This feature, defined by (8), reflects
the spatial distance of two components.

2 2

3

() ()

min(,)

i j i j

i j

x x y y
F

w w

  
 (8)

 Gray level difference. We consider about the gray
level difference both in component pixels and
background pixels as follows:

4

5

max(,) max(,)
,

2 min(,) 2 min(,)

max(,) max(,)

2min(,) 2 min(,)

Ii Ij Oi Oj

Ii Ij Oi Oj

I i I j Oi O j

I i I j Oi O j

F

F

   
   

   
   

 

 
 

where Ii and I i denote the gray level variance and mean of
component pixels while Oi and Oi denote the gray level
variance and mean of background pixels.

 Shape difference. Shape difference is used to measure
the shape similarity of two components.

6 0.4 0.6
min(,) min(,)

i j i j

i j i j

w w h h
F

w w h h

 
    (10)

 Stroke width difference. Characters belonging to the
same word usually share similar stroke width.

7

max(,)

min(,)

i j

i j

SW SW
F

SW SW
 (11)

where
iSW is the average stroke wide of component i .

D. Word Grouping and False Positives Elimination

We have observed that: 1) Characters belonging to the
same word usually share similar height, and width; 2) The
within-word distance between two adjacent characters should
be smaller than between-word distance; 3) If the number of
characters in a word is greater than three, the start and the end
characters have only one closest neighbor while others have
two closest neighbors. Inspired by these observations, we
propose an edge-cut strategy to group text components into
words. Firstly, we find the two closest neighbors who satisfy
(12) for each component. Thus we will get graphs by linking
each component with their closest neighbors. Then we cut off
edges who do not satisfy

ijD D when the number of

components in the graph is greater than three, where
ijD is the

gap distance between two components linked by the edge, D is
the average gap distance of the graph, and  is a threshold. If
there are only two components in a graph, we cut off the edge
linking them when the gap distance satisfies 3max(,)ij i jD w w .

Finally, we get some sub-graphs, each of which corresponds to
a word.

arctan 6 min(,)i j
i j i j

i j

y y
y y h h

x x


 
      

 

The nontext filtering process can remove most of the
nontext components, but there are still some false positives.
Shi’s [8] elimination method is utilized to remove these false
positives. Concretely, we normalize each text block with a
height of 24pixels, and classifier is trained to classify sub-
images of size 24 24 scanned with steps of 12 pixels from the
normalized text block. But different from Shi’s method, we
define the confidence of the whole text block as

1

1
()

l

i
i

conf r F
l 

  , where l is the number of sub-images and
iF is

the output of the classifier. For sub-image classified as text, we
set 1iF  , otherwise, 0iF  . Finally, the text block r is
preserved if ()conf r  . The random forests classifier combing
with 8-D HOG is employed as the sub-image classifier. Fig. 3(f)
shows the final text detecting result of Fig. 3(a).

III. EXPERIMENTS

We evaluate the proposed method on the benchmark
ICDAR2013 Robust Reading Competition dataset and compare
the performance with several state-of-the-art methods reported
in [13]. To evaluate the performance of our proposed method
and fairly compare with others, the DetEval [14] evaluation
software is utilized with the same parameter setting as in the
competition. The result is shown in TABLE I. As we can see,
our method achieves the highest recall and f-measure though
the precision is lower than some other methods. Higher recall
implies more text is detected from the images. The strategy of
merging multi-channel MSERs leads to more text being
detected, which contributes to a higher recall. However, more
nontext components are extracted at the same time, which
makes the nontext filtering more difficult. More examples of
our text detection result can be seen from Fig. 4(a). Our method
fails to detect text in images with low contrast, or be affected
by strong highlight as shown in Fig. 4(b).

Fig. 4. Text detection samples of the proposed method

TABLE I. EXPERIMENTE RESULT ON THE ICDAR2013 DATASET

 Recall(%) Precision(%) F(%)

USTB_TexStar 66.45 88.47 75.89

Text_Spotter 64.84 87.51 74.49

CASIA_NLPR 68.24 78.89 73.18

Text_Detector_CASIA 62.85 84.70 72.16

I2R_NUS_FAR 69.00 75.08 71.91

I2R_NUS 66.17 72.54 69.21

Proposed method 73.86 80.34 76.96

IV. CONCLUSIONS

This paper proposed a two-stage nontext filtering-based
text detection method in scene images. MSER detector was
used to extract character candidates. To detect more characters
and reduce the repeat components, we detected MSERs in
multi-channels and merged them together before further
process. Then a two-stage labeling strategy combining random
forests with CRF was utilized to filter out nontext components.
Text components were grouped into words, and false positives
were eliminated finally. The proposed method achieved the
state-of-art in dataset ICDAR2013 compared with the existing
methods.

ACKNOWLEDGMENTS

This work is jointly supported by the Science and -
Technology Commission of Shanghai Municipality under
research grants 14511105500, 14DZ2260800, and Shanghai
Collaborative Innovation Center of Trustworthy Software for
Internet of Things (ZF1213).

REFERENCE
[1] S. Gao, C. Wang, B. Xiao et al., “Adaptive scene text detection based on

transferring adaboost,” in 12th Intenational Conference on Document
Analysis and Recognition (ICDAR), 2013, pp. 388-392.

[2] L. Neumann, J. Matas, “Scene text localization and recognition with
oriented stroke detection,” in IEEE International Conference on
Computer Vision (ICCV), 2013, pp. 97-104.

[3] B. Bai, F. Yin, C.L. Liu, “Scene text localization using gradient local
correlation,” in 12th Intenational Conference on Document Analysis and
Recognition (ICDAR), 2013, pp. 1412-1416.

[4] B. Epshtein, E. Ofek, Y, Wexler, “Detecting text in natural scenes with
stroke width transform,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2010, pp. 2963-2970.

[5] L. Neumann, J. Matas,”Real-time scene text localization and
recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2012, pp. 3538-3545.

[6] X.C. Yin, X. Yin, K. Huang, H. Hao, “Robust text detection in natural
scene images, ” in IEEE Transaction on Pattern Analysis and Machine
Intelligence, 36(5): 970-983, 2014.

[7] H. Koo, D. Kim, “Scene text detection via connected component
clustering and nontext filtering,” in IEEE Transaction on Image
Processing. 22(6): 2296-2305, 2013.

[8] C. Shi, C. Wang, B. Xiao, Y. Zhang, S. Gao, “Scene text detection using
graph model built upon maximally stable extremal regions,” in Pattern
Recognition Letters. 34(2): 107-116, 2013.

[9] Y. F. Pan, X Hou, C.L. Liu, “A hybrid approach to detect and localize
texts in natural scene images,” in IEEE Transaction on Image Processing,
20(3):800-813, 2011.

[10] L. Breiman, “Random Forests,” Machine Learning, 45(1): 5-32, 2001.

[11] W. K. Pratt. Digital Image Processing: PIKS Inside. John Wiley & Sons,
Inc., New York, NY, USA, 3rd edition, 2001.

[12] M. Schmidt, K. Murphy, G. Fung, R. Rosales, “Structure learning in
random fields for heart motion abnormality detection,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2008, pp. 1-8.

[13] D. Karatzas, F. Shafait, S. Uchida, et al. “ICDAR 2013 robust reading
competition, ” in 12th International Conference on Document Analysis
and Recognition (ICDAR), 2013, pp. 1484-1493.

[14] http://liris.cnrs.fr/christian.wolf/software/deteval/index.html.

