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Abstract— We present a text detection method in natural 
scene images based on two-stage nontext filtering. Firstly, we 
detect multi-channel maximally stable extremal regions (MSERs) 
as character candidates. To reduce the amount of repeating 
components, we merge the MSERs by choosing the most 
character-like ones when overlap happens. Then nontext 
components are filtered out by a two-stage labeling procedure, 
wherein we combine random forests with CRF. Finally, 
components labeled as text are grouped into words by an edge-
cut strategy, and false positives are eliminated by a HOG-based 
classifier. The experimental results on the ICDAR2013 database 
show the effectiveness of the proposed method. 
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I.  INTRODUCTION  

Text in images conveys important information, which helps 
to make images more understandable. Applications based on 
text reading in natural scene images, such as content-based 
image retrieval, automatic navigation, signboard/plate 
recognition, and computerized aid for visually impaired, are 
receiving intensive attention in recent years. Generally 
speaking, text reading involves two steps: text detection and 
text recognition. Text detection is to extract text regions from a 
given image, and text recognition is to translate pixel-based 
text into readable code. The performance of text detection is 
crucial to the whole text reading system. But due to the 
cluttered background and a great variety of text patterns, scales, 
and fonts, text detection in natural scene images is a 
challenging task. Additionally, camera captured images often 
suffer from distorted view, uneven illumination, curved, and 
shadow effects.  

Numerous methods have been proposed to address this 
issue. Most existing methods can be categorized into two 
groups: region-based methods [1, 2] and connected component-
based (CC-based) methods [3, 4, 5, 6, 7, 8]. Region-based 
methods often utilize sliding window to localize regions with 
high confidence to be text. Text’s distinct features make it 
possible to differentiate text regions from nontext ones. This 
kind of methods is robust to noise. However, to adapt to 
different sizes of scene text, they often leverage multi-scale 
operators, which possibly leads to long time consuming. On the 
other hand, CC-based methods are more efficient. They assume 
that pixels in the same CC have similar local properties, such 

as gray level, stroke width, and intensity. Additionally, 
characters can be cropped from images by generating 
connected components (CCs). The amount of CCs is less than 
regions, so CC-based methods take shorter time than region-
based ones. However, it is a tough task to find a robust CC 
generator that can deal with blur, skew, low resolution, and 
uneven illumination. 

Gao et al. [1] proposed a region-based method that 
employed a cascade Adaboost with weak learners of 
classification and regression tree to decide whether a window 
contained text or not. A drawback of region-based methods is 
computation complexity. To alleviate the computation burden, 
Neumann et al. [2] considered only the regions with text-like 
strokes. They claimed that their strategy reduced the number of 
rectangles by three orders of magnitude when compared with 
the standard sliding window methods. CC generating is a key 
step of CC-based methods. Bai et al. [3] and Epshtein et al. [4] 
utilized the appearance of stroke edge pixels and the 
consistence of stroke width to generate CCs. These CCs were 
classified as text and nontext in the downstream steps. Recently, 
ER detector and MSER detector are widely used as CC 
generator [5, 6, 7, 8] thanks to their high character detection 
recall. As reported in [5], the character detection recall of ER 
detector in multi-channels was 94.8%. Yin et al. [6] claimed 
that their MSER detector achieved a recall of 95.2% in multi-
channels. However, the character detection precision was only 
7.1% in [5], which implied that many nontext components 
were detected as character candidates. In MSER-based 
methods, the elimination of nontext components is the most 
challenging task. In [5], a sequential classifier combining with 
incrementally computable descriptors was used to eliminate 
nontext components.  Characters often appear in images 
coherently, so their adjacency relationship is an available 
characteristic for character detection. Yin et al. [6] used 
distance metric learning to compute the distance between 
MSER pairs, and clustered MSERs into groups according to 
the distance. Then posterior probabilities of text candidates 
were estimated to eliminate false positives. Kim et al. [7] 
employed an Adaboost classifier to learn the relationship 
between MSER pairs. Then MSER pairs were clustered into 
groups. Finally, multilayer perceptron learning was exploited 
to eliminate false positives. Yin’s [6] and Kim’s [7] methods 
won the first place in ICDAR2013 and ICDAR2011 
competition, respectively.  



In this paper, we continue to explore MSER-based text 
detection in natural scene images. Firstly, multi-channel 
MSERs are extracted as character candidates, and are merged 
together to reduce the repeating components. Then a two-stage 
labeling procedure combining random forests with CRF is used 
to filter out nontext components. Finally, text components are 
grouped into words and false positives are eliminated. 

II. THE PROPOSED METHOD 

Our text detection method consists of three steps: 1) 
Character candidate detection. 2) Two-stage nontext filtering. 3) 
Word grouping and false positives elimination. Fig. 1 shows 
the flowchart of the proposed method. 

 
Fig. 1. Flowchart of the proposed method. 

A. Character Candidate Detection 

Inspired by the effectiveness of MSER detector, we extract 
MSERs from images as our character candidates. Repeating 
components is the major pitfall of MSER detector. Yin et al. [6] 
proposed an efficient MSER pruning algorithm to solve this 
problem. Detecting MSERs in multi-channels can improve the 
character recall at the cost of a significant increase in the 
number of nontext MSERs. But it is time consuming to 
perform the downstream steps on all of the multi-channel 
MSERs. To deal with this issue, we merge multi-channel 
MSERs together after pruning algorithm has been performed. 
This strategy leads to non-overlap of the MSERs. 

We use Algorithm 1 to merge MSERs of two images. 
Considering component sets 1 1 2{ , ,..., }nR r r r of image 1I  and 

2 1' 2 ' '{ , ,..., }nR r r r of image 2I , we pick components from 1R

and 2R  to form the resulting component set R . 

Algorithm 1: Merging components of image 
1I and 

2I

Input: component sets 
1R  and 

2R  

Output: component set R  
Procedure: 
While there exists component 

1ir R  

 If there exists no component
2jr R satisfied 

i jr r    

      Then set 
1 1{ }, -{ }i iR R r R R r    

      Else  

         Set
1 1 -{ }iR R r  

         Initialize 
1 2{ }iE r E ，  

           Repeat 

             Step1: Find component 
2kr R  where 

1p k pr E r r     
                        Set  

2 2 -{ }kR R r ,
2 2 { }kE E r   

            Step2: Find component 
' 1kr R where

' 2 ' 'p k pr E r r        

Set 
1 1 '-{ }kR R r ,

1 1 '{ }kE E r    

Until 
1| |E and

2| |E are stable. 

If max{ ( )} max{ ( )}i jp r p r where 
1ir E and

2jr E  

Then set 
1R R E   

Else set 
2R R E   

End if 

End if 
End while 
If 

2R    

Then set  
2R R R   

End if. 

  Where ( )ip r denotes the probability of component ir to be 
text, and is estimated by a character classifier. Fig. 2 shows a 
two-channel merging sample and Fig. 3(b) shows the four-
channel merging result of Fig. 3(a). Pixels belonging to the 
same component are drawn with the same color. Note that, in 
Fig. 2, letters “S” and “N” in the first row of the board in R 
channel are interfered by background pixels. The “K” in the 
first row and “VE” in the second row in G channel are the 
same cases. And the merging result shown in Fig. 2(d) picks 
more regular letters “S” and “N” from G channel and “K”, “V”, 
and “E” from R channel.  

 

Fig. 2. Example of MSER merging result 



 

Fig. 3. Details of the proposed text detection method. 

B. Nontext Filtering Using Random Forests Classifier 

According to our statistics, only 6.1% of the resulting 
MSERs corresponds to character. Picking up text components 
from such an unbalanced database is a challenging task. So we 
use a two-stage nontext filtering strategy to address this issue. 
In the first stage, a random forests classifier [10] is employed 
to filter out most of the nontext components. Random forests 
classifier is widely used in text detection due to its fast speed 
and relatively better generalization performance. We detect the 
following component features which are then fed into the 
classifier: 

  Regularity. Regularity is defined as the ratio of the 
pixel numbers between skeleton and contour. Since the 
relative regular structure of characters should not be too 
complex or too random, the regularity can distinguish 
characters from non-characters who have too many 
burrs, twists and turns. 

 Aspect ratio. This feature is defined as the ratio of 
component’s width and height. Characters tend to have 
aspect ratio within a certain range. 

 Occupation ratio. This feature, defined as the ratio 
between component pixel number and its bounding box 
area, is expected to exclude components occupying too 
many or too few pixels in the bounding box. 

 Compactness. Compactness is defined as the ratio 
between the square of component’s perimeter and its 
bounding box area. The purpose is to remove 
components with too complex contour shapes. 

 Stroke width variance. Generally, pixels in the same 
text component have uniform stroke widths.  

 Euler number. Euler number represents the difference 
between the number of connected components and the 
number of holes. It is a topological feature of a binary 
image and can be calculated by a very efficient yet 
simple algorithm introduced in [11].  

With the above processing by the random forests classifier, 
our experiments found that 85.47% of the nontext components 
are eliminated. The labeling result can be seen from Fig. 3(c), 
where components drawn with black color are nontext while 
others are text.  

C. Component Relabeling with CRF Model 

The wrongly labeled nontext components by the random 
forests usually have higher similarity with characters. To 
exclude them, we model the binary contextual component 
relationship into a CRF framework. The efficient probabilistic 
graphical model is proposed by Schmidt et al. [12]. 

1) Graph Model Construction 
To incorporate different MSERs into a framework, we 

construct them into an undirected graph model { , }G V E , 
which is composed of nodes V and undirected edges E . Each 
component corresponds to a node of the graph and undirected 
edges are built to link neighboring nodes.  Firstly, we initialize 
edge set E   and 'E  . Edges satisfying the following 
criterions are added into 'E : 

2 2

1

2

3

4

( ) ( )
2

min(max( , ), max( , ))

min( , )
0.4

max( , )

min( , )
0.4

max( , )

50

i j i j

i i j j

i j

i j

i j

i j

i j

x x y y
s

h w h w

w w
s

w w

h h
s

h h

s g g

  
 

  

  

   
 

where ( , )i ix y  is the center position of node i , iw  and ih  are 

the height and width, respectively, and ig  is the average gray 
level of component pixels. The weight of edges is defined as: 
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We sort edges in 'E according to their priorities (the smaller 
the weight, the higher the priority), and process them orderly 
(from high priority to low priority) according to the following 
rules: 1) If the nodes linked by the current edge belong to the 
same tree, we ignore the current edge; 2) If the nodes linked by 
the current edge belong to two different trees, we merge the 
two trees by adding the current edge into E . Different from 
other undirected graph models with loops ([8], [9]), our graph 
model is a set of minimum spanning trees.  

2) The CRF Model 
The component labeling problem can be described as 

follows: given a set of observation variables { }i= xx , we need 
to find the best label set i={y }y , where iy {1,2} . We consider 
our CRF with pair-wise potentials: 
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where ,i j  is a product over all edge. i  and 
ij are node 

potential and edge potential with the following form: 
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where [1, ]i ix f is a set of node features and [1, ]ij ijx f  is a set 

of edge features. The element “1” in ix and 
ijx is a single “bias” 



feature for node potential and edge potential. The bias feature 
is used to reflect any effects on the states that are independent 
of the features. Besides that, when the states are not balanced in 
the training data, a bias feature also makes sense. We set 

12 21w w to ensure the identifiability, otherwise the model 
would be over-parameterized. If we rewrite [ , ]v w  for all the 
parameters and ( , )F x y for all features, we can write the model 

more succinctly as exp( ( , ))
( | )
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T F
p

z


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
x y

y x
x

where 

'
( , ) exp( ( , ))Tz F   y

x x y' . The negative log-likelihood and 

gradient considering 
2L regularization are now given by: 
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where 
' '

( , ') ( ' | , ) ( , ')n n nE F x p x F x y y
y y y are the expectations for 

the features.  

We do conditional inference with sum-product belief 
propagation algorithm when computing the marginal 
probability. Nodes are observed according to the random 
forests classification results. A node will be observed as 
nontext if it is classified as nontext with a probability greater 
than a threshold . And a node will be observed as text if it is 
classified as text with a probability greater than a threshold  . 
A 36-D HOG based verification classifier, which indicates the 
confidence of components to be text, is carried out to prevent 
text components from being wrongly classified by the CRF. A 
component labeled as nontext by the CRF will be discarded 
only when it satisfies ( )p text  , where ( )p text is the output of 
the verification classifier, and  is a threshold. The CRF graph 
model is demonstrated in Fig. 3(d), wherein red lines represent 
edges, green components are observed nontext nodes, and blue 
ones are observed text nodes. The final filtering result is shown 
in Fig. 3(e). 

3) Features Used in CRF 
The node features used in CRF are the same as the ones 

utilized in the random forests classifier, and binary features for 
the edge linking node i and node j are defined as follows:  

 Color difference. Characters belonging to the same 
word usually share similar component pixel colors and 
background pixel colors. The similarity can be 
measured as follows:  
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where 
kiCIn and 

kiCOut denote the average component pixel 
color and background pixel color in thk  channel. 

 Spatial distance. This feature, defined by (8), reflects 
the spatial distance of two components. 
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 Gray level difference. We consider about the gray 
level difference both in component pixels and 
background pixels as follows:  
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where Ii and I i denote the gray level variance and mean of 
component pixels while Oi and Oi denote the gray level 
variance and mean of background pixels. 

 Shape difference. Shape difference is used to measure 
the shape similarity of two components. 
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 Stroke width difference. Characters belonging to the 
same word usually share similar stroke width. 
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where
iSW is the average stroke wide of component i . 

D. Word Grouping and False Positives Elimination 

We have observed that: 1) Characters belonging to the 
same word usually share similar height, and width; 2) The 
within-word distance between two adjacent characters should 
be smaller than between-word distance; 3) If the number of 
characters in a word is greater than three, the start and the end 
characters have only one closest neighbor while others have 
two closest neighbors. Inspired by these observations, we 
propose an edge-cut strategy to group text components into 
words. Firstly, we find the two closest neighbors who satisfy 
(12) for each component. Thus we will get graphs by linking 
each component with their closest neighbors. Then we cut off 
edges who do not satisfy

ijD D when the number of 

components in the graph is greater than three, where 
ijD is the 

gap distance between two components linked by the edge, D is 
the average gap distance of the graph, and  is a threshold. If 
there are only two components in a graph, we cut off the edge 
linking them when the gap distance satisfies 3max( , )ij i jD w w . 

Finally, we get some sub-graphs, each of which corresponds to 
a word.  

arctan 6 min( , )i j
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y y h h
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 

The nontext filtering process can remove most of the 
nontext components, but there are still some false positives. 
Shi’s [8] elimination method is utilized to remove these false 
positives.  Concretely, we normalize each text block with a 
height of 24pixels, and classifier is trained to classify sub-
images of size 24 24 scanned with steps of 12 pixels from the 
normalized text block. But different from Shi’s method, we 
define the confidence of the whole text block as



1

1
( )

l

i
i

conf r F
l 

  , where l is the number of sub-images and 
iF is 

the output of the classifier. For sub-image classified as text, we 
set 1iF  , otherwise, 0iF  . Finally, the text block r is 
preserved if ( )conf r  . The random forests classifier combing 
with 8-D HOG is employed as the sub-image classifier. Fig. 3(f) 
shows the final text detecting result of Fig. 3(a). 

III. EXPERIMENTS 

We evaluate the proposed method on the benchmark 
ICDAR2013 Robust Reading Competition dataset and compare 
the performance with several state-of-the-art methods reported 
in [13]. To evaluate the performance of our proposed method 
and fairly compare with others, the DetEval [14] evaluation 
software is utilized with the same parameter setting as in the 
competition. The result is shown in TABLE I. As we can see, 
our method achieves the highest recall and f-measure though 
the precision is lower than some other methods. Higher recall 
implies more text is detected from the images. The strategy of 
merging multi-channel MSERs leads to more text being 
detected, which contributes to a higher recall. However, more 
nontext components are extracted at the same time, which 
makes the nontext filtering more difficult. More examples of 
our text detection result can be seen from Fig. 4(a). Our method 
fails to detect text in images with low contrast, or be affected 
by strong highlight as shown in Fig. 4(b). 

 
Fig. 4. Text detection samples of the proposed method 

TABLE I.  EXPERIMENTE RESULT ON THE ICDAR2013 DATASET 

 Recall(%) Precision(%) F(%) 

USTB_TexStar 66.45 88.47 75.89 

Text_Spotter 64.84 87.51 74.49 

CASIA_NLPR 68.24 78.89 73.18 

Text_Detector_CASIA 62.85 84.70 72.16 

I2R_NUS_FAR 69.00 75.08 71.91 

I2R_NUS 66.17 72.54 69.21 

Proposed method 73.86 80.34 76.96

 

IV. CONCLUSIONS 

This paper proposed a two-stage nontext filtering-based 
text detection method in scene images. MSER detector was 
used to extract character candidates. To detect more characters 
and reduce the repeat components, we detected MSERs in 
multi-channels and merged them together before further 
process. Then a two-stage labeling strategy combining random 
forests with CRF was utilized to filter out nontext components. 
Text components were grouped into words, and false positives 
were eliminated finally. The proposed method achieved the 
state-of-art in dataset ICDAR2013 compared with the existing 
methods. 
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