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Regularization

The principle of regularization has its root in
mathematics to solve ill-posed problems, and is
widely used in pattern recognition and machine
learning.

Many well-known algorithms, e.g., SVMs, ridge
regression and lasso, can be interpreted as
instantiations of the idea of regularization.
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mathematics to solve ill-posed problems, and is
widely used in pattern recognition and machine
learning.

Many well-known algorithms, e.g., SVMs, ridge
regression and lasso, can be interpreted as
instantiations of the idea of regularization.

The regularization method presented in this paper is
intrinsic to data manifold which prefers linear
functions on the manifold. We further apply it to
data representation or dimensionality reduction.
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Manifold Learning

Data lying in a high-dimensional space are assumed
to be intrinsically of low dimensionality.
That is, data can be well characterized by far fewer
parameters or degrees of freedom than the actual
ambient representation.

This setting is usually referred to as manifold
learning, and the distribution of data is regarded to
live on or near a low-dimensional manifold.
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Manifold Learning

Data lying in a high-dimensional space are assumed
to be intrinsically of low dimensionality.
That is, data can be well characterized by far fewer
parameters or degrees of freedom than the actual
ambient representation.

This setting is usually referred to as manifold
learning, and the distribution of data is regarded to
live on or near a low-dimensional manifold.

The validity of manifold learning, especially for
high-dimensional image and text data, has already
been testified by recent developments.

S. Sun (ECNU) PRML Research Group July 8, 2013 3 / 22



Data Representation

The problem of representing data in a low-dimensional
space for the sake of data visualization and organization
is essentially a dimensionality reduction problem.

Data Representation or Dimensionality Reduction

Given a data set {xi}k
i=1 with xi ∈ R

d , the task is to
deliver a data set {fi}k

i=1 where fi ∈ R
m corresponds to

xi and m << d .
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The problem of representing data in a low-dimensional
space for the sake of data visualization and organization
is essentially a dimensionality reduction problem.

Data Representation or Dimensionality Reduction

Given a data set {xi}k
i=1 with xi ∈ R

d , the task is to
deliver a data set {fi}k

i=1 where fi ∈ R
m corresponds to

xi and m << d .

Representative methods: PCA, MDS, isomap, LLE,
maximum variance unfolding (MVU), Laplacian
eigenmap.
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Tangent Space Intrinsic Manifold Regularization (TSIMR)

We are interested in estimating a function f (x) defined
on M ⊂ R

d , where M is a smooth manifold on R
d . We

assume that f (x) can be well approximated by a linear
function with respect to the manifold M.
Let m be the dimensionality of M.
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Tangent Space Intrinsic Manifold Regularization (TSIMR)

We are interested in estimating a function f (x) defined
on M ⊂ R

d , where M is a smooth manifold on R
d . We

assume that f (x) can be well approximated by a linear
function with respect to the manifold M.
Let m be the dimensionality of M.

At each point z ∈ M, f (x) can be represented as a
linear function f (x) ≈ bz + w

⊤
z uz(x) locally around z,

where uz(x) = Tz(x − z) is an m-dimensional vector
representing x in the tangent space around z, and Tz is
an m × d matrix that projects x around z to a
representation in the tangent space of M at z.
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Tangent Space Intrinsic Manifold Regularization (TSIMR)

f (x) ≈ bz + w
⊤
z
uz(x), uz(x) = Tz(x − z) (1)

Note that the basis for Tz is computed using local
PCA for its simplicity and wide applicability.

The weight vector wz ∈ R
m is an m-dimensional

vector, and it is also the manifold-gradient of f (x)
at z with respect to the uz(·) representation on the
manifold, which we write as ∇T f (x)|x=z = wz.
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TSIMR: Derivation

To see how our approach works, we assume for simplicity
that Tz is an orthogonal matrix for all z: TzT

⊤
z

= I(m×m).
This means that if x ∈ M is close to z ∈ M, then
x − z ≈ T

⊤
z Tz(x − z).

Now consider x that is close to both z and z
′. We can

express f (x) both in the tangent space representation at
z and z

′, which gives bz + w
⊤
z
uz(x) ≈ bz′ + w

⊤
z′
uz′(x).
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express f (x) both in the tangent space representation at
z and z

′, which gives bz + w
⊤
z
uz(x) ≈ bz′ + w
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uz′(x).
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⊤
z
Tz(x − z) ≈ bz′ + w
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z′
Tz′(x − z

′). (2)
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TSIMR: Derivation

⇓

bz ≈ bz′ + w
⊤
z′
Tz′(z − z

′) , (3)

wz ≈ TzT
⊤
z′
wz′ . (4)
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TSIMR

Therefore, if we expand at points {z1, . . . , zk} , Z , and
denote neighbors of zj as N (zj), the regularizer will be

R({bz,wz}z∈Z ) =
k

∑

i=1

∑

j∈N (zi)

[(

bzi
− bzj

−

w
⊤
zj
Tzj

(zi − zj)
)2

+ γ‖wzi
− Tzi

T
⊤
zj
wzj

‖2
2

]

. (5)
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zj
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(zi − zj)
)2

+ γ‖wzi
− Tzi

T
⊤
zj
wzj

‖2
2

]

. (5)

With z(x) = arg minz∈Z ‖x − z‖2, the function f (x) is
approximated as f (x) = bz(x) + w

⊤
z(x)Tz(x)

(

x − z(x)
)

,

which is a very natural formulation for out-of-example
extensions.
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Generalization and Reformulation

Idea: Weighting the regularizer with point adjacency.
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Generalization and Reformulation

Idea: Weighting the regularizer with point adjacency.

R({bz,wz}z∈Z ) =

k
∑

i=1

k
∑

j=1

Wij

[(

bzi
− bzj

−

w
⊤
zj
Tzj

(zi − zj)
)2

+ γ‖wzi
− Tzi

T
⊤
zj
wzj

‖2
2

]

. (6)
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Generalization and Reformulation

Reformulated as a standard quadratic form:

R({bz,wz}z∈Z ) =


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








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
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(7)

Denote

(

S1 S2

S⊤
2 S3

)

by S .
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Application to Data Representation

Define w = (w⊤
z1
,w⊤

z2
, . . . ,w⊤

zk
)⊤.

Suppose vector f = (bz1
, bz2

, . . . , bzk
)⊤ is an embedding

or representation of points z1, z2, . . . , zk in a line.

A reasonable criterion for finding a good embedding
under the principle of the tangent space intrinsic
manifold regularization is to minimize the objective
(

f

w

)⊤

S

(

f

w

)

under appropriate constraints.
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Application to Data Representation

To remove an arbitrary scaling factor in both f and w,

we take into account the constraint

(

f

w

)⊤(

f

w

)

= 1.

Therefore, the optimization problem becomes

min
f,w

(

f

w

)⊤

S

(

f

w

)

, s.t.

(

f

w

)⊤(

f

w

)

= 1. (8)
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(

f
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, s.t.

(

f

w

)⊤(

f

w

)

= 1. (8)

The solution is given by the eigenvector corresponding to
the minimal eigenvalue of the eigen-decomposition

S

(

f

w

)

= λ

(

f

w

)

.

Easily extendable to find multidimensional embeddings.
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Results (1)

Embedding results of the TSIMR on the Swiss roll.
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Results (2)

Embedding results on the Swiss roll with a hole.
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Results (3)

Embedding results on the Swiss roll with a LONG hole.
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Results (4.1)

Embedding results on the face images with varying pose
and expression.
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Results (4.2)

Embedding results on the face images with varying pose
and expression.
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The End
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