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ABSTRACT

A new regularization method called tangent space intrinsic
manifold regularization is presented, which is intrinsic to data
manifold and favors linear functions on the manifold. Funda-
mental elements involved in its formulation are local tangent
space representations which we estimate by local principal
component analysis, and the connections which relate adja-
cent tangent spaces. We exhibit its application to data repre-
sentation where a nonlinear embedding in a low-dimensional
space is found by solving an eigen-decomposition problem.
Experimental results including comparisons with state-of-the-
art techniques show the effectiveness of the proposed method.

Index Terms— Regularization, tangent space, manifold
learning, dimensionality reduction, data representation

1. INTRODUCTION

In this paper, we present a new data-dependent regulariza-
tion method named tangent space intrinsic manifold regular-
ization for function learning, which is motivated largely by
the geometry of the data-generating distribution. In particu-
lar, data lying in a high-dimensional space are assumed to be
intrinsically of low dimensionality. That is, data can be well
characterized by far fewer parameters or degrees of freedom
than the actual ambient representation. This setting is usually
referred to as manifold learning, and the distribution of data is
regarded to live on or near a low-dimensional manifold. The
validity of manifold learning, especially for high-dimensional
image and text data, has already been testified by recent de-
velopments [1, 2, 3]. Although our new regularization method
has potentials to be applied to a variety of pattern recognition
and machine learning problems, here we only consider unsu-
pervised data representation or dimensionality reduction.

The problem of representing data in a low-dimensional
space for the sake of data visualization and organization ises-
sentially a dimensionality reduction problem. Given a dataset
{xi}k

i=1 with xi ∈ R
d, its task is to deliver a data set{fi}k

i=1

Thanks to NSFC Project 61075005 and Shanghai Knowledge Service
Platform Project (No. ZF1213) for funding, and to Prof. TongZhang from
Rutgers University for helpful discussions. Email: slsun@cs.ecnu.edu.cn

wherefi ∈ R
m corresponds toxi andm << d. Classical lin-

ear dimensionality reduction methods include principal com-
ponent analysis (PCA) and metric multidimensional scaling
(MDS) [4]. Recent nonlinear dimensionality reduction meth-
ods achieved a great success especially for representing data
that obey the manifold assumption, e.g., successfully unfold-
ing the intrinsic degrees of freedom for gradual changes of
images and videos. Representative algorithms in this cate-
gory include locally linear embedding [2], isomap [3], Lapla-
cian eigenmaps [1], Hessian eigenmaps [5], maximum vari-
ance unfolding with semidefinite programming [6], and oth-
ers [7]. Some of the above linear and nonlinear dimensional-
ity reduction methods can be characterized as spectral meth-
ods, because computationally they often contain the proce-
dure of eigen-decomposition of an appropriately constructed
matrix and then exploit the top or bottom eigenvectors [6].

The principle of regularization has its root in mathemat-
ics to solve ill-posed problems, and is widely used in pattern
recognition and machine learning. Many well-known algo-
rithms, e.g., SVMs [8, 9], ridge regression and lasso [10, 11],
can be interpreted as instantiations of the idea of regulariza-
tion. The regularization method presented in this paper is in-
trinsic to data manifold which prefers linear functions on the
manifold. Namely, functions with constant manifold deriva-
tives are more appealing. Fundamental elements involved in
the regularization formulation are local tangent space repre-
sentations and the connections which relate adjacent tangent
spaces. When applying this regularization principle to nonlin-
ear dimensionality reduction with data modeled as adjacency
graphs, it turns out that the resultant problem can be readily
solved by eigen-decomposition. We illustrate that this regu-
larization method can obtain good and reasonable data em-
bedding results.

2. THE PROPOSED REGULARIZATION

We are interested in estimating a functionf(x) defined on
M ⊂ R

d, whereM is a smooth manifold onRd. We as-
sume thatf(x) can be well approximated by a linear function
with respect to the manifoldM. Let m be the dimensional-
ity of M. At each pointz ∈ M, f(x) can be represented
as a linear functionf(x) ≈ bz + w>

z uz(x) + o(‖x − z‖2) lo-



cally aroundz, whereuz(x) = Tz(x− z) is anm-dimensional
vector representingx in the tangent space aroundz, andTz

is anm × d matrix that projectsx aroundz to a representa-
tion in the tangent space ofM at z. Note that in this paper
the basis forTz is computed using local PCA for its simplic-
ity and wide applicability. In particular, the pointz and its
neighbors are sent over to the regular PCA procedure and the
top m eigenvectors are returned back as rows of matrixTz.
The weight vectorwz ∈ R

m is anm-dimensional vector, and
it is also the manifold-derivative off(x) at z with respect to
the uz(·) representation on the manifold, which we write as
∇T f(x)|x=z = wz.

Mathematically, a linear function with respect to the man-
ifold M, which is not necessarily a globally linear function in
R

d, is a function that has constant manifold derivative. How-
ever, this does not meanwz is a constant function ofu due
to the different coordinate systems when the “anchor point”z
changes from one point to another. This needs to be compen-
sated using “connections” that map a coordinate representa-
tion uz′ to uz for anyz′ nearz.

To see how our approach works, we assume for simplicity
that Tz is an orthogonal matrix for allz: TzT

>
z = I(m×m).

This means that ifx ∈ M is close toz ∈ M, thenx − z ≈
T>

z Tz(x − z) + O(‖x − z‖2). Now considerx that is close to
bothz andz′. We can expressf(x) both in the tangent space
representation atz andz′, which gives

bz + w>
z uz(x) ≈ bz′ + w>

z′ uz′(x) + O(‖x− z′‖2 + ‖x− z‖2).

That is,bz + w>
z uz(x) ≈ bz′ + w>

z′ uz′(x). This means that

bz + w>
z Tz(x − z) ≈ bz′ + w>

z′Tz′(x − z′).

Settingx = z, we obtainbz ≈ bz′ + w>
z′Tz′(z− z′), and

bz′ + w>
z′Tz′(z− z′) + w>

z Tz(x − z) ≈ bz′ + w>
z′Tz′(x − z′).

This implies that

w>
z Tz(x − z) ≈ w>

z′Tz′(x − z)

≈w>
z′Tz′T

>
z Tz(x − z) + O(‖x − z′‖2 + ‖x − z‖2). (1)

Since (1) holds for arbitraryx ∈ M close toz ∈ M, it fol-
lows that,w>

z ≈ w>
z′Tz′T

>
z +O(‖z−z′‖) or wz ≈ TzT

>
z′ wz′ +

O(‖z− z′‖).
This means that if we expand at pointsz1, . . . , zk ∈ Z,

and denote neighbors ofzj asN (zj), then the correct regu-
larizer will be

R({bz, wz}z∈Z) =

k
∑

i=1

∑

j∈N (zi)

[(

bzi
− bzj

−

w>
zj

Tzj
(zi − zj)

)2
+ γ‖wzi

− Tzi
T>

zj
wzj

‖2
2

]

. (2)

With z(x) = arg minz∈Z ‖x − z‖2, the functionf(x) is ap-
proximated as

f(x) = bz(x) + w>
z(x)Tz(x)

(

x − z(x)
)

, (3)

which is a very natural formulation for out-of-example exten-
sions.

3. GENERALIZATION AND REFORMULATION

Relating data with a discrete weighted graph is popular es-
pecially in graph-based machine learning methods. It also
makes sense for us to generalize the regularizer in (2) usinga
symmetric weight matrixW constructed from the above data
collectionZ.

Entries inW characterize the closeness of different points
where the points are often called nodes in the terminology of
graphs. Usually there are two steps involved in constructing
a weighted graph. The first step builds an adjacency graph
by putting an edge between two “close” points. People can
choose to use parameterε ∈ R or parametern ∈ N to de-
termine close points, which means that two nodes would be
connected if their Euclidean distance is withinε or either node
is among then nearest neighbors of the other as indicated by
the Euclidean distance. The second step calculates weights
on the edges of the graph with a certain similarity measure.
For example, the heat-kernel method computes weightWij

for two connected nodesi andj by Wij = exp−‖xi−xj‖
2/t

with parametert > 0, while for nodes not directly connected
the weights would be zero [1].

Therefore, the generalization of the tangent space intrinsic
manifold regularizer turns out to be

R({bz,wz}z∈Z) =

k
∑

i=1

k
∑

j=1

Wij

[(

bzi
− bzj

−

w>
zj

Tzj
(zi − zj)

)2
+ γ‖wzi

− Tzi
T>

zj
wzj

‖2
2

]

. (4)

Now we reformulate the regularizer (4) into a canonical
matrix quadratic form to facilitate subsequent formulations
on data representation. In particular, we would like to rewrite
the regularizer as a quadratic form in terms of a symmetric
matrixS as follows,

R({bz, wz}z∈Z) =
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bzk
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, (5)

where

(

S1 S2

S>
2 S3

)

is a block matrix representation ofS and

the size ofS1 is k × k. In this paper, we suppose thatwzi

(i = 1, . . . , k) is anm-dimensional vector. Thus, the size
of S is (k + mk) × (k + mk). Due to space limit, we omit
the detailed derivation forS1, S2 andS3, which will be made
available on the internet.

4. APPLICATION TO DATA REPRESENTATION

Data representation or dimensionality reduction is intrinsi-
cally an ill-posed problem since this is an unsupervised task



(a) Swiss-roll data (b) Result

Fig. 1. Embedding results of the TSIMR on the Swiss roll.

(a) Data with a hole (b) TSIMR (c) isomap

(d) LLE (e) MVU (f) Laplacian

Fig. 2. Embedding results on the Swiss roll with a hole.

and there can be multiple different solutions depending on
the preferences or specific objectives defined by users. When
the tangent space intrinsic manifold regularization method is
used, we actually prefer embedding functions with constant
manifold derivatives.

Define w = (w>
z1 , w>

z2 , . . . , w>
zk

)>. Suppose vector
f = (bz1 , bz2 , . . . , bzk

)> is an embedding or representation
of pointsz1, z2, . . . , zk in a line. Suppose the whole graph
is connected (otherwise we can do embedding for each con-
nected component). A reasonable criterion for finding a
good embedding under the principle of the tangent space in-
trinsic manifold regularization is to minimize the objective
(

f
w

)>

S

(

f
w

)

under appropriate constraints.

To remove an arbitrary scaling factor in bothf andw, we

take into account the constraint

(

f
w

)>(

f
w

)

= 1. Therefore,

the optimization problem becomes

min
f,w

(

f
w

)>

S

(

f
w

)

, s.t.

(

f
w

)>(

f
w

)

= 1. (6)

It is easy to show that the solution is given by the eigen-
vector corresponding to the minimal eigenvalue of the eigen-

decompositionS

(

f
w

)

= λ

(

f
w

)

. Since matrixS is positive

semidefinite, all its eigenvalues{λ1, λ2, . . . , λk+mk}, which
we suppose are sorted in ascending order, are non-negative.

TSIMR isomap LLE MVU Laplacian
0.6950 0.9281 0.9247 0.9308 0.7991

Table 1. Residual variances on the Swiss roll with a hole.

(a) TSIMR (b) isomap (c) LLE

(d) MVU (e) Laplacian

Fig. 3. Embedding results for the face images.

Hence, the embeddingf can be found as the firstk entries of
the eigenvector corresponding to the least eigenvalue. Mean-
while we also obtain thew that matches the embeddingf.

In order to find an embedding inRm where m is the
dimensionality of manifoldM, we definite a matrixF =
(f1, . . . , fm) where f1, . . . , fm are the firstk entries of the
eigenvectors in accordance with them least eigenvalues, re-
spectively. Then, the embedding ofzi (i = 1, . . . , k) in R

m

would be thei-th row of matrixF .

5. EXPERIMENTS

We evaluated the tangent space intrinsic manifold regulariza-
tion (TSIMR) for data representation with synthetic and real-
world data sets. The parameterγ is set to1.

5.1. Swiss roll without and with a hole

The “Swiss roll” is a2-dimensional manifold embedded in
a 3-dimensional ambient space. For the first experiment we
uniformly sampled2000 points from the manifold, which are
depicted in Fig. 1(a). The construction of the adjacency graph
uses10 nearest neighbors, and the heat kernel is employed to
assign weights to the edges of the graph. Specifically, the
kernel parametert is fixed as the average of the squared dis-
tances between all points and their most nearest neighbors.
For data embedding in a2-dimensional space, the result is
shown in Fig. 1(b), which precisely reflects the intrinsic de-
grees of freedom of the manifold.

Moreover, we show that our method still works well even
if there is a hole existing in the Swiss roll. This case resem-
bles the situation in practice that data are not sufficientlysam-
pled from a certain region. We shoveled a rectangular hole



Fig. 4. Embedding results with the corresponding face images.

through the manifold, and the corresponding sample is given
in Fig. 2(a). The data representation in a2-dimensional space
by the TSIMR is shown in Fig. 2(b), which faithfully reflects
the existence and shape of the rectangular hole. The embed-
ding results using isomap, LLE (locally linear embedding),
MVU (maximum variance unfolding), and Laplacian regular-
ization are also included in Fig. 2.

Now we use the metric of residual variance, namely1 −
R2(D1,D2) [3], to measure the embedding performance of
different methods. A low residual variance reflects a good
data representation. From the results reported in Table 1, we
see that the TSIMR method gives the best data representation.

5.2. Face images

This data set contains 1965 face images taken from sequential
frames of a small video [2]. The size of each image is20 ×
28. However, since the face images mainly include varying
pose and expression, they are believed to reside on a low-
dimensional manifold.

The construction of the adjacency graph uses12 nearest
neighbors, which is identical to the setup in [2]. The heat
kernel is adopted to assign weights to the edges of the graph,
where the parametert is set to5dav with dav being the aver-
age of the squared distances between all points and their most
nearest neighbors. For data embedding in a2-dimensional
space, the TSIMR method provides a very tidy and compact
representation as shown in Fig. 3(a). Embedding results using
the other methods with the same setting of 12 nearest neigh-
bors are given in Fig. 3(b)∼3(e). The outcome of our TSIMR
is more concise and orderly than the other results.

For interpretation of the embedding results, in Fig. 4 we
randomly select and render a half of the original face pic-
tures in the low-dimensional space. We identify three tenden-

cies of variances of pose and expression, which are indicated
with curves. The left curse shows a gradual change of pose
from left to right, and expression from calm to grimace. The
right curve corresponds to the change of expression which is
first from happy to happy and grimace, and then to calm and
grimace. The bottom straight line shows an interleaving be-
tween pose and expression: first, under the sad expression,
pose changes from left to right; then under the happy expres-
sion, pose repeats the same “from left to right” pattern. The
outcome from the TSIMR illustrates a well interpretable prop-
erty on the intrinsic degrees of freedom of the face images.

To further understand the behavior of the TSIMR, we ex-
amine the locally linear representation given in (3). Vector
wz(x) and matrixTz(x) jointly determine a projection vector
w>

z(x)Tz(x), whose effect is to perform an inner product withx
in the original coordinate system. Consequently, similar to the
eigenface representation of major eigenvectors derived from
PCA, we can visualizew>

z(x)Tz(x) as a tangent space intrin-
sic manifold face whose visualization is omitted here due to
space limit. Note thatw>

z(x)Tz(x) actually represents a linear
combination of the eigenvectors given by local PCA.

6. CONCLUSION

In this paper, we have proposed a new regularization method
called tangent space intrinsic manifold regularization, which
favors linear functions on the manifold and can perform di-
rect out-of-sample extensions. We derived the corresponding
matrix quadratic form representation and further proposeda
new method for data representation whose solution tends out
to be an eigen-decomposition problem. Experimental results
including comparisons with other methods have shown the
effectiveness of the proposed method.
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