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ABSTRACT wheref, € R™ corresponds t&; andm << d. Classical lin-
L .. .eardimensionality reduction methods include principaheo
A new regularization method called tangent space intrinsigyonent analysis (PCA) and metric multidimensional scaling
man!fold regulanzatpn IS presented, which is mt_nnm:jata (MDS) [4]. Recent nonlinear dimensionality reduction meth
manifold and favqrs linear _fupchons on the manifold. Funda j4< achieved a great success especially for representiag da
mental elements involved in its formulation are local targe - obey the manifold assumption, e.g., successfullyldnfo
space representations which we estimate by local principglg the intrinsic degrees of freedom for gradual changes of

component analysis, and the connections which relate adjg;,50es and videos. Representative algorithms in this cate-
cent tangent spaces. We exhibit its application to dateerepr

) : L . , ory include locally linear embedding [2], isomap [3], Lapl
sentation where a nonlinear embedding in a Iow-dmensmn:%ian eigenmaps [1], Hessian eigenmaps [5], maximum vari-

space is found by solving an eigen-decomposition problemynce ynfolding with semidefinite programming [6], and oth-
Experimental results including comparisons with statéhet o< 7] some of the above linear and nonlinear dimensional-

arttechniques show the effectiveness of the proposed mhethQyy, 1oy ction methods can be characterized as spectrak meth

Index Terms— Regularization, tangent space, manifold 0ds, because computationally they often contain the proce-
learning, dimensionality reduction, data representation dure of eigen-decomposition of an appropriately consgaict
matrix and then exploit the top or bottom eigenvectors [6].
The principle of regularization has its root in mathemat-
1. INTRODUCTION ics to solve ill-posed problems, and is widely used in patter

) _recognition and machine learning. Many well-known algo-
In this paper, we present a new data-dependent I’egU|arIZﬁfth, e.g., SVMs [8, 9], ridge regression and lasso [1(, 11

tion method named tangent space intrinsic manifold regulaicap pe interpreted as instantiations of the idea of regaalari
ization for function learning, which is motivated largely b tjon. The regularization method presented in this paper-is i
the geometry of the data-generating distribution. In pafti  yinsic to data manifold which prefers linear functions b t
lar, data lying in a high-dimensional space are assumed to hanifold. Namely, functions with constant manifold deriva
mtrmsmal!y of low dimensionality. That is, data can belwe {jes are more appealing. Fundamental elements involved in
characterized by far fewer parameters or degrees of freedofRe regularization formulation are local tangent spaceerep
than the actual ambient representation. This setting iallysu - sentations and the connections which relate adjacentange
referred to as manifold learning, an_d the Q|str|but|0|j agads spaces. When applying this regularization principle to imenl
regarded to live on or near a low-dimensional manifold. Thear dimensionality reduction with data modeled as adjacenc
validity of manifold learning, especially for high-dimeasal  graphs, it turns out that the resultant problem can be readil
image and text data, has already been testified by recent dgs|yed by eigen-decomposition. We illustrate that thisireg

velopment_s [1,2,3]. Althpugh our new regularization r_neltr_lo larization method can obtain good and reasonable data em-
has potentials to be applied to a variety of pattern recagmit peqding results.

and machine learning problems, here we only consider unsu-
pervised data representation or dimensionality reduction

The problem of representing data in a low-dimensional
space for the sake of data visualization and organizaties-is \yie gre interested in estimating a functigx
sentially a dimensionality reduction problem. Given a detia M C R?
{x;}k_, with x; € R?, its task is to deliver a data sét; }*_,

2. THE PROPOSED REGULARIZATION

) defined on
, where M is a smooth manifold ofR?. We as-
sume thaff (x) can be well approximated by a linear function
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cally aroundz, whereu,(x) = Ty(x — z) is anm-dimensional 3. GENERALIZATION AND REFORMULATION
vector representing in the tangent space arouadand T,
is anm x d matrix that projectx aroundz to a representa- Relating data with a discrete weighted graph is popular es-
tion in the tangent space ¥ at z. Note that in this paper pecially in graph-based machine learning methods. It also
the basis fofT} is computed using local PCA for its simplic- makes sense for us to generalize the regularizer in (2) @sing
ity and wide applicability. In particular, the poigtand its ~Symmetric weight matri¥}’ constructed from the above data
neighbors are sent over to the regular PCA procedure and ti§@llectionZ.
top m eigenvectors are returned back as rows of mafkix Entries inlW characterize the closeness of different points
The weight vectow, € R™ is anm-dimensional vector, and Where the points are often called nodes in the terminology of
it is also the manifold-derivative of (x) atz with respect to ~ graphs. Usually there are two steps involved in constrgctin
the u,(-) representation on the manifold, which we write asa weighted graph. The first step builds an adjacency graph
Vrf(X)|xez = W, by putting an edge between two “close” points. People can

Mathematically, a linear function with respect to the man-choose to use parameterc R or parameter € N to de-
ifold M, which is not necessarily a globally linear function in termine close points, which means that two nodes would be
R¢, is a function that has constant manifold derivative. How-connected if their Euclidean distance is withior either node
ever, this does not meam, is a constant function af due IS among the: nearest neighbors of the other as indicated by
to the different coordinate systems when the “anchor pant” the Euclidean distance. The second step calculates weights
changes from one point to another. This needs to be compefn the edges of the graph with a certain similarity measure.
sated using “connections” that map a coordinate representgor example, the heat-kernel method computes weligt
tion u, to u, for anyz’ nearz. for two connected nodesandj by W;; = exp~IIx—xll*/t

To see how our approach works, we assume for simplicitwvith parametet > 0, while for nodes not directly connected
that 7y is an orthogonal matrix for at: T,7," = I(,,xm).  the weights would be zero [1].
This means that ik € M is close toz € M, thenx — z =~ Therefore, the generalization of the tangent space imtrins
T,' Ty (x — 2) + O(||x — Z||?). Now considex that is close to  manifold regularizer turns out to be
bothz andZ'. We can expresg(x) both in the tangent space

k k
. A 4
representation aandz’, which gives R({bsWy}sez) = Z Z Wi [(bzi — by, —
bz + W] Uz(X) % by + W)Uz (X) + O(|x — 2|2 + [x — 2|®). =1 j=1
2
That is,b, + W, U,(X) = by + W), U, (x). This means that W, Ty, (2i = 27)) "+ 7lIWe, — T, Ty W, |I3]. (4)
by + W, Ty(X — 2) = by +W,, Ty (X — Z)). Now we reformulate the regularizer (4) into a canonical

matrix quadratic form to facilitate subsequent formulatio
on data representation. In particular, we would like to rewr
by + Wy Ty (2 —2Z) + W, Ty(Xx — 2) = by +W, T (x —Z).  the regularizer as a quadratic form in terms of a symmetric
matrix S as follows,

Settingx = z, we obtainb, ~ b, +w,, Ty (z— '), and

This implies that

W, Ty(X — 2) =~ W, Ty (X — 2) b\ | bz,
z 1z ~ Wz L7/
AWy Ty T, To(x = 2) + O(|x = 2| + [[x — 2]%). (1) 3 :
Since (1) holds for arbitrary € M close toz € M, it fol- R({bz,Wyz}z¢2) = bz, (S% SQ) bz, . (5)
lows thatw, ~ w,, Ty T, +O(||z—2||) orw; =~ T,T,) Wy + Wz, Sz 83) | W,
O(l|lz— 2. _ | : :
This means that if we expand at poids ...,z, € Z, Wy, Wy,
and denote neighbors af as\/(z;), then the correct regu-
larizer will be where 5% % is a block matrix representation ¢f and
k 2 93
_ the size ofS; is k x k. In this paper, we suppose that
R({bz, w. = by, — by — 1S ! )
({b2, Wa}zez) ;je%;z) [(be = by (i = 1,...,k) is anm-dimensional vector. Thus, the size

- ) - ) of S'is (k + mk) x (k + mk). Due to space limit, we omit
Wy Ty, (zi = 25))” +7Wae = T T, Wz, [5]. (2)  the detailed derivation fo$;, S» and S5, which will be made

With z(x) = argminye ||x — |2, the functionf(x) is ap-  available on the internet.
proximated as
F(X) = by + W;r(x)Tz(x) (x —z(x)), )

which is a very natural formulation for out-of-example exte Data representation or dimensionality reduction is iigirin
sions. cally an ill-posed problem since this is an unsupervisell tas

4. APPLICATION TO DATA REPRESENTATION



. TSIMR | isomap| LLE | MVU | Laplacian
ﬁ 0.6950 | 0.9281| 0.9247| 0.9308| 0.7991
e Table 1. Residual variances on the Swiss roll with a hole.
(a) Swiss-roll data (b) Result f A .
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F
/" Fig. 3. Embedding results for the face images.
(d) LLE (e) MVU (f) Laplacian Hence, the embeddirfgcan be found as the firétentries of

the eigenvector corresponding to the least eigenvaluenMea
Fig. 2. Embedding results on the Swiss roll with a hole.  while we also obtain thes that matches the embeddifhg
In order to find an embedding iR™ wherem is the

dimensionality of manifoldM, we definite a matrixt’ =
and there can be multiple different solutions depending ong, ) wheref,,...,f,, are the firstk entries of the
the preferences or specific objectives defined by users. Whefigenvectors in accordance with theleast eigenvalues, re-
the tangent space intrinsic manifold regularization métiso  gpectively. Then, the embeddingnf(i = 1,...,k) in R™
used, we actually prefer embedding functions with constan,guid be thei-th row of matrix F.
manifold derivatives.

; _ T T TN\T

Definew = (Wz_lr,\-IVZQ,...7WZk) : Suppose vectgr 5 EXPERIMENTS
f = (by,bsy,...,bz,)" Is an embedding or representation
of pointsz;,z,,...,2; in a line. Suppose the whole graph

We evaluated the tangent space intrinsic manifold regadari

is connected (otherwise we can do embedding for each cofy,, (TSIMR) for data representation with synthetic and-ea
nected component). A reasonable criterion for finding a,yq data sets. The parameteis set tol.

good embedding under the principle of the tangent space in-
trinsic manifold regularization is to minimize the objeeti

-
f f . .
(w> S <W) under appropriate constraints. The “Swiss roll” is a2-dimensional manifold embedded in

To remove an arbitrary scaling factor in bdtandw, we  a 3-dimensional ambient space. For the first experiment we
uniformly sampled000 points from the manifold, which are
depicted in Fig. 1(a). The construction of the adjacencpigra
the optimization problem becomes usesl0 nearest neighbors, and the heat kernel is employed to
assign weights to the edges of the graph. Specifically, the
£\ " f i\ /f kernel parameter is fixed as the average of the squared dis-
(w) S (w)’ s.t. <w) (w) =1 (6)  tances between all points and their most nearest neighbors.
For data embedding in 2dimensional space, the result is
It is easy to show that the solution is given by the eigenshown in Fig. 1(b), which precisely reflects the intrinsic de
vector corresponding to the minimal eigenvalue of the eigengrees of freedom of the manifold.
Moreover, we show that our method still works well even
if there is a hole existing in the Swiss roll. This case resem-
semidefinite, all its eigenvaluds\1, Ao, . .., Ak+mk }, Which  bles the situation in practice that data are not sufficiesain-
we suppose are sorted in ascending order, are hon-negatiyded from a certain region. We shoveled a rectangular hole

5.1. Swiss roll without and with a hole
£\ /f

take into account the constrai Bv (w) = 1. Therefore,

min

f.w

decompositionS (va> = A \fv . Since matrixS is positive
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Fig. 4. Embedding results with the corresponding face images.

through the manifold, and the corresponding sample is givenies of variances of pose and expression, which are indicate
in Fig. 2(a). The data representation iB-dimensional space with curves. The left curse shows a gradual change of pose
by the TSIMR is shown in Fig. 2(b), which faithfully reflects from left to right, and expression from calm to grimace. The
the existence and shape of the rectangular hole. The embetght curve corresponds to the change of expression which is
ding results using isomap, LLE (locally linear embedding),first from happy to happy and grimace, and then to calm and
MVU (maximum variance unfolding), and Laplacian regular-grimace. The bottom straight line shows an interleaving be-
ization are also included in Fig. 2. tween pose and expression: first, under the sad expression,

Now we use the metric of residual variance, naniely  pose changes from left to right; then under the happy expres-
R?(Dy, Ds) [3], to measure the embedding performance ofsion, pose repeats the same “from left to right” pattern. The
different methods. A low residual variance reflects a goodutcome from the TSIMR illustrates a well interpretableggro
data representation. From the results reported in Tableel, werty on the intrinsic degrees of freedom of the face images.
see that the TSIMR method gives the best data representation To further understand the behavior of the TSIMR, we ex-

amine the locally linear representation given in (3). Vecto

5.2. Face images WZ(,:) and matrixTy,) jointly determine a projection vector
Ty, whose effect is to perform an inner product with
This data set contains 1965 face images taken from seqUentm the original coordinate system. Consequently, simdahe

frames of a small video [2]. The size of each image(is<  jgenface representation of major eigenvectors deriva fr
28. However, since the face images mainly include varquDCA we can visualizev] Ty, as a tangent space intrin-

pose and expression, they are believed to reside on a loW;e manifold face whose visualization is omitted here due to

dimensional manifold. _ space limit. Note thatv, Ty actually represents a linear
The construction of the adjacency graph usesiearest .o pination of the elgenvectors given by local PCA.
neighbors, which is identical to the setup in [2]. The heat

kernel is adopted to assign weights to the edges of the graph,

where the parameters set to5d,,, with d,, being the aver- 6. CONCLUSION

age of the squared distances between all points and their mos

nearest neighbors. For data embedding #+dimensional In this paper, we have proposed a new regularization method

space, the TSIMR method provides a very tidy and compaatalled tangent space intrinsic manifold regularizatiohjol

representation as shown in Fig. 3(a). Embedding resultgusi favors linear functions on the manifold and can perform di-

the other methods with the same setting of 12 nearest neighect out-of-sample extensions. We derived the correspgndi

bors are given in Fig. 3(b)3(e). The outcome of our TSIMR matrix quadratic form representation and further propased

is more concise and orderly than the other results. new method for data representation whose solution tends out
For interpretation of the embedding results, in Fig. 4 weto be an eigen-decomposition problem. Experimental result

randomly select and render a half of the original face picincluding comparisons with other methods have shown the

tures in the low-dimensional space. We identify three tende effectiveness of the proposed method.
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