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Abstract—Cross-view data are collected from two different views or
sources about the same subjects. As the information from these views
often consolidate and/or complement each other, cross-view data anal-
ysis can gain more insights for decision making. A main challenge of
cross-view data analysis is how to effectively explore the inherently cor-
related and high-dimensional data. Dimension reduction offers an effec-
tive solution for this problem. However, how to choose right models and
parameters involved for dimension reduction is still an open problem. In
this paper we propose an effective sparse learning algorithm for cross-
view dimensionality reduction. A distinguished character of our model
selection is that it is non-parametric and automatic. Specifically, we
represent the correlation of cross-view data using a covariance matrix.
Then we decompose the matrix into a sequence of low-rank ones by
solving an optimization problem in an alternating least squares manner.
More importantly, a new and non-parametric sparsity-inducing function
is developed to derive a parsimonious model. Extensive experiments
are conducted on real-world data sets to evaluate the effectiveness of
the proposed algorithm. The results show that our method is competitive
with the state-of-the-art sparse learning algorithms.

Keywords—Cross-view data, Matrix decomposition, Dimension reduc-
tion, Sparse learning, Sparsity-inducing function.

1 INTRODUCTION

C ROSS-VIEW data, sampling from the same subjects
with two different views, are ubiquitous in reality.

For example, the data from one view is a collection of
images while the data from another view is a set of
captions of the images. Another example would be a
data set with video (view 1) and audio signals (view 2)
of a multimedia segment. The words “allô?” in French
and “¡hola!” in Spanish have the same meaning, i.e., the
greeting word “Hello”.

Exploring cross-view data may benefit decision mak-
ing, because such correlated or complementary data may
provide more insights. From the learning perspective,
building models from cross-view data jointly can lead
to better generalization performance [1], [2]. Therefore,
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cross-view data analysis has attracted increasing atten-
tions from diverse domains, such as image process-
ing [3], object tracking [4], multimedia retrieval [5],
bioinformatics, social network and recommended sys-
tems [6].

A main challenge for cross-view data analysis is
the high-dimensional nature of the data, which may
cause many problems, such as collinear and over-fitting,
and pose great challenges to traditional learning algo-
rithms [7]. Dimension reduction in this case is indis-
pensable. With this technique, the original data can be
re-organized within low-dimensional spaces where the
content of the data is captured [8]. Typical examples of
dimension reduction methods include principle compo-
nent analysis (PCA) and canonical correlation analysis
(CCA). However, the reduction results are hard to be
interpreted, since the deduced latent variables in the
low-dimensional spaces are weighted combinations of
the original variables.

Sparse learning provides an effective solution to
the problem by deriving parsimonious models, which
are more comprehensible and interpretable [9]. Since
sparse learning has solid mathematical foundations
and good properties, it has been extensively stud-
ied and widely used in many fields like image and
signal processing [10], optimization, machine learning,
computer vision and bioinformatics [11]. Representa-
tive sparse learning methods include sparse PCA [12],
sparse CCA [13]and penalized matrix decomposition
(PMD) [14].

However, two major problems must be taken into
account when sparse learning methods are used. The
first one is which sparsity-inducing norms (or functions)
should be adopted in learning models. Sparsity-inducing
norms, such as Lasso (Least absolute shrinkage and
selection operator) [15] and Elastic net [16], play an
essential role in sparse learning. They aim at making
the models sparse with some constraint conditions [11].
However, how to determine the right sparsity-inducing
norms for a specific application is an open issue.

The second problem with sparse learning is how to
set right parameters for a given model. There is no
widely acceptable solution at the theoretical and practi-
cal aspects, because the parameters are data-driven and
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heavily depend on the specific contexts and applications.
Parameter tuning is very difficult and time-consuming.
Thus they are determined by a priori or empirical knowl-
edge. However, the models with improper parameter
values may lead to poor performance, or even contra-
dictory results under the same situations. This hinders
the applications of sparse learning in practice.

In this paper, we tackle the above problems by devel-
oping a novel, yet effective sparse learning method for
cross-view dimensionality reduction. A distinct character
of our method comparing with the existing solutions is
that it is an automatic and non-parametric one which is
less human-intensive. Specifically, we represent the in-
herent correlations of cross-view data using a covariance
matrix. Then the matrix is decomposed into a sequence
of low-rank ones in an alternating least squares way.
Furthermore, to achieve a parsimonious model, we in-
troduce a new and effective sparsity-inducing function,
without involving any regularization parameters. To the
best of our knowledge, little work has been done on the
topic of non-parametric and automatic model selection
so far.

The main contributions of this paper are highlighted
as follows:

1) We propose a novel and automatic model selec-
tion framework for cross-view dimensionality re-
duction, which can handle the high-dimensional
problems effectively.

2) More importantly, an effective sparsity-inducing
function, which can automatically yield a parsi-
monious model according to the data at hand, is
introduced.

3) The optimization function is non-parametric and
can be solved by using the technique of alternating
least squares regression automatically.

The rest of the paper is organized as follows. Sec-
tion 2 briefly reviews the state-of-the-art sparse learning
methods. Section 3 presents the notation used in the
paper and the problem formulation. In Section 4, we
describe the proposed non-parametric sparse learning
method in detail. Experiments with real-world data sets
are provided in Section 5, followed by the concluding
remarks of the paper in Section 6.

2 RELATED WORK

Many works related to dimension reduction have been
done during the past years. Here we only review the
work for cross-view data. More details can be found
from good survey papers (see, e.g., [6]) and references
therein.

Generally, two strategies are available for investigating
the correlations of high-dimensional cross-view data.
The first kind exploits matrix analysis techniques to
explore the correlations of data. For example, after ob-
taining the correlation (or covariance) matrices of cross-
view data, we can use principle component analysis
(PCA) to identify the inherent relationships. Since each

principal component of PCA is a linear combination
of the original variables, the coefficients are typically
nonzero, making the interpretation impossible. To yield
sparse results, Zou et al. [12] introduced the Elastic net
penalty into PCA and developed the sparse PCA (SPCA)
method. Further, Croux et al. [17] exploited projection
pursuit to get sparse principle components with many
zero loadings. It should be pointed out that SPCA is
good at identifying sparse principle components with
high data variation, not for extracting the correlation.

Matrix factorization aims at decomposing a matrix
into a series of low-rank matrices to find meaningful
patterns. According to the additive property, the original
matrix can be approximately reconstructed from the low-
rank ones with a low loss [18]. Singular value decompo-
sition (SVD) is a typical decomposition technique to ana-
lyze two-way dependencies. Like PCA, the interpretabil-
ity of the derived models by SVD is relatively poor. To
tackle this problem, Lee et al. [19] imposed the adaptive
Lasso penalty on the left and right singular vectors to
achieve sparse models. Recently, Hong and Lian [20]
considered both smoothness and sparse properties of
SVD by using the quadratic and Lasso penalties,while
Yang et al. [21] extracted sparse and orthogonal singular
vectors.

Non-negative matrix factorization (NMF), which takes
the non-negative constraint into account, is a special
decomposition technique. Besides, some additional con-
straints, like Lasso and the geometric penalty, are also
involved in NMF [22].Tang et al. [23] exploited a sparse
NMF to extract localities in videos and then developed
a novel sparse ensemble learning scheme for concept
detection. Liu et al. [24] extended NMF by incorporating
the label information as additional constraints for semi-
supervised image classification. Tan et al. [25] adopted
supervised tensor factorization to explore structured vi-
sual features from mutually correlated multimedia data
collections for classification. Similarly, Eweiwi et al. [26]
took use of NMF to extract action-specific points or
spatial regions of interest in still images from videos to
identify human actions.

The second kind of correlation analysis is multivariate
data analysis. CCA is a representative example, which
mainly seeks a pair of linear transformations each for one
set of variables such that the correlation of the projected
variables is maximized [27]. CCA is a popular tech-
nique of multiview or multimodal feature learning from
multimedia data [28]. For instance, Izadinia et al. [29]
utilized CCA to identify the moving objects which are
most correlated to the audio signal in audio-visual dy-
namics of videos, while Sargin et al. [30] resorted to
CCA to implement multimodal fusion and synchroniza-
tion method of the speech and lip features for open-
set speaker identification. Since the classical CCA may
have poor performance, several variants of CCA have
been developed. As a typical example, Parkhomenko et
al. [13] applied the Lasso penalty to enforce the loadings
to be sparse. Yuan et al. [31] alleviated the deviations
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of eigenvalues and singular values of CCA by virtue
of fractional order and then developed a dimension
reduction method for multi-view data. LapMCC [32]
extends CCA with local structure information of nearest
neighbor graphs to represent nonlinear correlation of
multiview data in face and object image recognition.

Partial Least Squares (PLS), originally developed for
econometrics and chemometrics, is another powerful
and versatile technique to ease the multi-collinear prob-
lem stemmed from the “large p, small n” data [33].
PLS, which explores the correlations of sets of variables
via regression, has also been widely applied in the field
of multimedia. For example, Bakry and Elgammal [34]
utilized kernel PLS to explore intrinsic nonlinear rela-
tions between speech contents and speakers. Wang et
al. [35] constructed a no-reference assessment model for
video quality, where PLS was used to get the relation of
visual contents and network conditions. Zhong et al. [36]
fulfilled the purpose of object tracking and segmentation
in one stage by using PLS with structured labeling infor-
mation. In [37], the correlation of object appearance and
class labels from foreground and background is captured
by PLS for object tracking. However, conventional PLS
may encounter the over-fitting problem, and thus several
sparse versions of PLS have been developed for the
purpose of variable selection and dimension reduction.
Sparse PLS (SPLS) [38] is a typical example, whose
constraint condition is the `1 penalty. Li et al. [39] built a
human detection model on the basis of channel features,
which extracted by using sparse PLS with discriminative
analysis.

The common character of the dimension reduction
methods mentioned above is that they exploit different
sparsity-inducing functions to make the derived models
parsimonious [7]. However, selecting a right sparsity-
inducing function for models becomes a difficult issue in
reality, because it is varied from the specifical problems.
Additionally, the more the regularization parameters
involved, the higher complexity of the models and the
higher probability of encountering the over-fitting prob-
lem. These motivate the work of this paper on an non-
parametric sparse learning method for cross-view di-
mension reduction, where the approximate optimization
values of parameters are determined adaptively.

3 PROBLEM STATEMENT

Notation: Hereafter we assume that bold-faced lower
case letters, e.g., u and v, represent (column) vectors, and
ui indicates the i-th element of u. Assume that u has p
elements. Let Ip ⊆ {1, .., p} be an index set. uIp is a sub-
vector of u, where each element of uIp

is also an element
of u. We take “v” as a sparse structure relationship.
For example, ũ v u denotes that ũ is a parsimonious
vector of u, where each element ũi of ũ equals to zero
or ui. Besides, the transpose and the Frobenius norm
of u are denoted as uT and ‖u‖2 respectively, where
‖u‖22 =

∑
i u2

i . For clarity, we always use the letters x

and y to represent the two random variables (feature
vectors) in the two views.

The problem: Let xi ∈ Rp and yi ∈ Rq be a sam-
ple of x and y, respectively. X=[x1...xn]T ∈Rn×p and
Y=[y1...yn]T∈Rn×q consisting of n samples represent
data collected from two different views characterized
by p and q features (variables) respectively. As the
dimensions p and q become large, the efficiency of
building models from X and Y is very low.Besides,
other problems like over-fitting and collinear also arise,
resulting in the models with poor performance. Di-
mension reduction is an effective solution to alleviate
the high-dimensional problems. It re-organizes original
data within low-dimensional spaces to reveal significant
latent information to build models.

Let X̃ and Ỹ be the projections of X and Y in the
latent variable spaces U={u1, .., uku

} and V={v1, .., vkv
},

respectively. Usually, U and V have the same number
of components when the correlation of X and Y is
considered, that is, ku = kv . The purpose of dimension
reduction is to obtain U and V such that the information
loss through the projection is minimal, i.e.,

arg min
∑
ui,vi

`(X, Y‖X̃, Ỹ), (1)

where ` is a loss function. Since X̃=XU and Ỹ=YV are
the weighted combinations of X and Y respectively, they
are hard to be interpreted or understood.

Making X̃ and Ỹ sparse seems to be an appealing so-
lution, because parsimonious results are more preferable
and acceptable than complex ones. Sparse learning offers
such solutions of sparsity by imposing constraints on ui

and vi in Eq.(1) as follows:

arg min
∑

θ,ui,vi

`(X, Y‖X̃, Ỹ) + R(ui, vi, θ), (2)

where R(ui, vi, θ) is a sparsity-inducing function. It aims
at enforcing ui and vi to be sparse by shrinking some
components of ui and vi to be zero, under the constraint
conditions θ, which is a set of regularization parameters.

For Eq.(2), it has different representations, resulting in
generating different models. For example, the objective
optimization function of the sparse CCA (SCCA) devel-
oped by Parkhomenko et al. [13] is

f(u, v) = arg min
u,v

‖Xu− Yv‖22 + λu

∑
|ui|+ λv

∑
|vi|, (3)

where ‖Xu‖22 = 1 and ‖Yv‖22 = 1. The sparse PLS
(SPLS) [38] has the same sparsity-inducing function
R(ui, vi, θ) to SCCA, but with different `(X, Y‖X̃, Ỹ):

f(u, v) = arg min
u,v

‖XT Y− uvT ‖22 + λu

∑
|ui|+ λv

∑
|vi|, (4)

where uT u = 1 and vT v = 1. Contrastively, the sparse
SVD (SSVD) [19] takes use of the following function as
its optimization problem:

f(u, v) = arg min
u,v

‖X− δuv‖22 + λu

∑
|δui|+ λv

∑
|δvi|. (5)
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How to choose the right loss and sparsity-inducing
functions for given data is still an open issue. Moreover,
the regularization parameters involved within the func-
tions make the problem more complicated. With more
parameters, the models have higher complexity. Besides,
the models tend to over-fit data, notwithstanding they
have better performance during the training stage.

Our goal: In this paper we propose an automatic
model selection method for cross-view dimension re-
duction. Specifically, our goal is threefold: fusing X
and Y together so that we can analyze them jointly;
seeking the latent variable spaces of X and Y such
that the information loss is minimal; and obtaining a
parsimonious learning model by using a new sparsity-
inducing function without involving the regularization
parameters.

4 NON-PARAMETRIC SPARSE LEARNING
Our learning method consists of three major stages: cor-
relation representation, dimension reduction and spar-
sity making without regularization parameters. Specif-
ically, we make use of the covariance matrix of X and
Y to represent the correlation between them. Then we
perform dimension reduction on the matrix with the
technique of alternating least squares regression to ob-
tain the latent variable spaces U and V. Finally, an
effective and non-parametric sparsity-inducing function
is introduced to enforce U and V to be sparse.

4.1 Matrix decomposition
The cross-view data X and Y, collected from different
views, are semantically correlated as they describe the
same subjects. This property may bring more insights
and help with building models. We consider the covari-
ance matrix ΣXY of X and Y to express their correlations,
because it can effectively measure the degree to which
two variables vary together.

An entry, σij=E((X.i − µX.i)
T (Y.j − µY.j )), of ΣXY is

the covariance of X.i and Y.j , where X.i (or Y.j) is the
i-th (or j-th) column vector of X (or Y). µX.i

and µY.j

are the expected values of X.i and Y.j respectively. If
X.i and Y.j vary together in the same direction, their
covariance is positive; otherwise the covariance is nega-
tive. Contrastively, their covariance is zero as there is
no linear dependency between them. For the sake of
simplicity, we assume that the columns of X and Y have
been standardized to have zero mean and unit deviation.

Matrix decomposition is an effective technique to ana-
lyze and visualize high-dimensional data matrices. Since
it can reveal the inherent characteristic and underlying
structure of a matrix, helping users to interpret the
meaning readily, it has now become a popular tool in
data analysis.

Generally, the covariance matrix ΣXY ∈ Rp×q of X and
Y can be decomposed to the following form:

ΣXY = UDVT =
r∑

i=1

δiuivT
i (6)

where r is the rank of ΣXY , D=diag(δ1, ..., δr) is a
diagonal matrix such that δ1 ≥ δ2 ≥ ... ≥ δr. ui and
vi are the left and right vectors corresponding to δi

respectively. This definition means that the information
embodied within ΣXY can be summarized into δi, ui

and vi.
In real applications only the top k (k < r) values

and vectors are taken into account. The rest elements
corresponding to small values are often regarded as
noise and have less useful information. As a result, ΣXY

can be approximately expressed as the sum of k rank-one
matrices:

ΣXY ≈ Σk
XY =

k∑

i=1

δiuivT
i . (7)

The top k left and right vectors can be extracted in a
sequencial manner. Since the first pair of vectors u and v
(i.e. u1 and v1 in Eq.(7), but for simplicity, the subscripts
will be omitted in the rest of the paper), as well as the
largest value δ of D (i.e. δ1, and again for simplicity,
the subscript is omitted hereafter), cover predominant
information of ΣXY , δuvT is the best rank-one matrix
approximation of ΣXY . If the loss function ` in Eq.(1) is
the squared Frobenius norm, u and v can be extracted
by solving the following optimization problem:

arg min
u,v

1
2
‖ΣXY − δuvT ‖22

s.t. uT u = 1, vT v = 1
(8)

To solve this optimization problem, our method
adopts the Lemma 1.

Lemma 1: Assume that δ is the largest value of D
extracted from ΣXY by matrix decomposition. The so-
lution of (8) is equivalent to the solution of following
optimization problem:

arg max
u,v

uT ΣXY v

s.t. uT u = 1, vT v = 1
(9)

Note that the left and right singular vectors u and v of
(9) are the first eigenvectors of ΣXY ΣT

XY and ΣT
XY ΣXY

respectively. Thus, an intuitive solution of getting u and
v is to obtain the first eigenvectors of ΣXY ΣT

XY and
ΣT

XY ΣXY through SVD. Although this method sounds
simple and good, its efficiency is questionable, especially
when the size of ΣXY is very large.

A cunning solution of getting u and v is the power
iteration method. Indeed, the objective function of (9) is
bilinear with respect to u and v, that is, if v (or u) is
fixed the function is linear in u (or v). According to this
property, u and v can be obtained via the power iteration
method in an alternating way. Specifically, given an
initial value v(0) of v, we estimate the values u(i) and
v(i) of u and v at the i-th (i ≥ 1) iteration as follows:

u(i) =
ΣXY v(i−1)

‖ΣXY v(i−1)‖2
, v(i) =

ΣT
XY u(i)

‖ΣT
XY u(i)‖2

. (10)

Consequently, the final values u(t) and v(t) can be ob-
tained as the desired results after t iterations.
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The rest singular vectors ui and vi (i = 2, .., k) can be
extracted by applying the same procedure in a sequential
way. For example, once the first singular vectors u
and v and δ are obtained, they will be removed from
ΣXY . Thereafter, the next pair of singular vectors can
be obtained by using the same extraction procedure on
the residual matrix. The process is repeated until there
is no information encoded in the residual matrix or no
enough vectors are derived.

4.2 Non-parametric sparsity-inducing function

Interpreting and visualizing the derived results are very
important in real-world scenarios, because they can
help users to understand the models and make right
decisions. However, as the dimensionality of data is
high, interpretation and visualization become difficult
and even impossible in some cases, because the derived
results are the linear combinations of the original spaces.
They may have good statistical properties, but have no
physical meanings.

Sparse learning offers an effective strategy to improve
the interpretability and help with visualization. It makes
the derived results with parsimonious structures by
enforcing their small-valued coefficients to zero under
some constraints. Sparse learning is a hot topic in ma-
chine learning, and many sparsity-inducing functions
have been witnessed and extensively studied. Typical
examples include Lasso, Elastic net, group Lasso, fused
Lasso and SCAD (smoothly clipped absolute devia-
tion) [11].

Assume that ũ is a parsimonious counterpart of u.
They have element-wise one-to-one relationships. Let ui

be the i-th coefficient of u. For the penalty function of
Lasso, if the absolute value of ui is large, depending
on the sign of ui, ũi equals to ui − λ or ui + λ (λ
is a regularization parameter) for the soft-thresholding
function, or keeps unchanged for the hard-thresholding
function. On the other hand, if the absolute value of
ui is small enough, both penalty functions enforce the
corresponding value ũi to zero.

Note that the degree of sparsity and the performance
of models heavily rely on the function R(u, v, θ) and
the regularization parameters θ. These parameters are
data-driven and should be carefully tuned because dif-
ferent values may lead to different results. Unfortunately,
assigning the parameters with appropriate values is a
difficult task. There is no effective way to determine
the optimal values for the parameters. A frequently
adopted strategy is to take prior knowledge into con-
sideration and empirically determine the optimal values
with methods like cross-validation, sub-sampling, the
mean squared prediction error (MSPE), Akaike infor-
mation criterion (AIC) or Bayesian information criterion
(BIC). This, however, will lead to high complexity and
computational cost, and even over-fitting situation.

To cope with these problems, we introduce a new and
non-parametric sparsity-inducing function. Our sparsity-

inducing solution aims at seeking the parsimonious vec-
tors ũ v u and ṽ v v such that the value of ũT ΣXY ṽ is
maximal. Formally, given u and v, we aim at solving the
following optimization problem:

arg max ũT ΣXY ṽ

s.t. ũ v u, ṽ v v, ũT ũ = 1, ṽT ṽ = 1
(11)

If the parsimonious vectors are the same as the original
ones, i.e., ũ = u and ṽ = v, the problem of Eq.(11) is
equivalent to Eq.(9). This implies that Eq.(11) is con-
sistent with Eq.(9) and can be considered as a sub-
optimization problem of Eq.(9) to some extent.

We resort to a heuristic strategy to approximately solve
the optimization problem of Eq.(11) by exploiting inher-
ent properties of the vectors. Indeed, solving Eq.(11) by
checking each pair of ũ and ṽ with a brute-force search
approach is impractical, because there are 2p+q pairs of
ũ and ṽ, where p and q are the numbers of elements
contained within u and v respectively, .

Generally, there are two kinds of internal relationships
among u, v and their counterparts (i.e., ũ and ṽ). The first
one is the relationship between u and v. As we know,
ΣXY generalizes the variances among X and Y, where
each element σij is the covariance between the column
vectors X.i and Y.j . Thus, the first pair of vectors u and
v represent the direction in which X and Y have the
maximal variances. From the perspective of covariance,
it can be safely interpreted that u is relevant to v with
respect to ΣXY .

When obtaining ũ and ṽ, the type of correlation should
also be considered, otherwise the consistent property
would not hold any more. Since u and v are the opti-
mization solution of Eq.(9), they are positively correlated
with each other with respect to ΣXY . Therefore, ũi and
ṽi should also be positively correlated with respect to
ΣXY .

The second kind of relationships is the one-to-one
mapping between u (or v) and its corresponding par-
simonious vector ũ (or ṽ). As mentioned above, for each
coefficient (i.e., element) ui of u, if its absolute value is
large, it will be preserved or changed slightly in ũ after
the sparsity-inducing operation. On the contrary, if the
absolute value of ui is small enough, ũi will be set to
zero. This fact implies that the coefficients with large
absolute values have strong and powerful effects, while
the small ones are less useful.

These two properties give us the clues to solve the op-
timization problem of Eq.(11). The first clue is to sort the
coefficients of u and v. The purpose of sorting is to keep
the coefficients in the same covariance direction. The
second clue is to place more emphasis on the coefficients
with large absolute values and less emphasis on the rests,
when performing the sparsity-inducing operation.

Keeping these two ideas in mind, we propose a new
sparsity-inducing function as formalized in the following
lemma:

Lemma 2: Assume that x∈ Rn and y∈ Rn are two
sorted vectors with an increasing order, and Ii ⊆
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{1, ..., i}(i ≤ n) is an index set such that xT
Ii

yIi
is

maximal. There exists a parsimonious vector x̃ of x, such
that x̃T y= xT

In
yIn

, where

x̃i =

{
0, xT

{1..i}y{1..i} ≤ xT
Ii−1

yIi−1
;

xi, Otherwise.
(12)

proof. Let Si be the maximal sub-sum of product of
x and y from the first to the i-th element, i.e., Si =
maxS⊆{1,...,i}(xT

S yS). Let Ii ⊆ {1, ..., i} be the index set
of x (or y) leading to Si. Thus, we have Si = xT

Ii
yIi

.
For the sparse vector x̃ v x, we set the first element of

x̃ as the first one of x, i.e., x̃1 = x1, and the rests zero. In
this case, we have S1 = x̃1y1 and I1 = {1}.

Assume that for the first i − 1 elements, we have
Ii−1⊆{1..i − 1} and Si−1 = x̃T y = xT

Ii−1
yIi−1

≥
xT
{1..i−1}y{1..i−1}. This means that the first i− 1 elements

of the parsimonious vector x̃ is identified. Now let’s turn
our attention to the i-th element of x̃. In terms of the
definition, we know that

Si = max(Si−1, xT
{1..i}y{1..i})

= max(Si−1, xT
{1..i−1}y{1..i−1} + xiyi)

On one hand, if Si−1 < xT
{1..i}y{1..i}, we should keep the

element xi down, i.e., x̃i = xi and Ii = Ii−1∪{i}, because
the i-th element can increase the sum of the previous
ones. On the other hand, Si−1 ≥ xT

{1..i}y{1..i} means that
xi can not bring any change to Si−1, because the maximal
sum of product of x{1..i} and y{1..i} is still equal to Si−1

identified previously. In this case, the fact of x̃i = 0 will
not change the fact that the sum of product of xIi−1 and
yIi−1

is maximal.
When i = n, the parsimonious vector x̃ of x is

generated, and ultimately we have In ⊆ {1, ..., n} and
x̃T y = maxIn

xT
In

yIn
. ¤

Lemma 2 provides a good instruction to make the
vectors sparse. We can approximately solve the opti-
mization problem of Eq.(11) according to Eq.(12) in an
alternating way. Specifically, let g(u, v) = uT ΣXY v, s.t.
uT u = 1, vT v = 1. The parsimonious vector ũ v u can
be obtained as x = u and y = ΣXY v in Eq.(12) when v is
fixed. Similarly, the parsimonious vector ṽ v v of v can
be obtained as x = v and y = ΣT

XY u (or y = ΣT
XY ũ) in

Eq.(12) when u (or ũ) is fixed.

4.3 The non-parametric sparse learning method
The proposed Non-parametric Sparse Matrix Decom-
position (NSMD) method is summarized in Alg. 1. It
mainly consists of four steps, i.e., getting u and v,
making them sparse, normalizing u and v, and updating
the residual matrix.

The first two steps correspond to the optimization
problems discussed previously (see, Eq.(9) and Eq.(11)).
Before making u and v sparse, they should be sorted in
decreasing or ascending order to keep the same direction
of covariance. After the sparsity-inducing stage, u and v

Alg. 1 NSMD: Non-parametric Sparse Matrix Decomposition
Input: The cross-view data X ∈ Rn×p and Y ∈ Rn×q ;
Output: Sparse coefficient matrices U ∈ Rp×k and V ∈ Rq×k ;
1: Obtain the covariance matrix ΣXY of X and Y;
2: For i=1,...,k do
3: Initialize u and v with unit norm;
4: Get initial values of u and v in terms of Eq.(??);
5: Make u and v sparse according to Eq.(12), i.e.,

u← g(u, ΣXY v); v← g(v, ΣT
XY u);

6: Normalize u and v;
7: Combine u and v into U and V respectively ;
8: δ ← tr(ΣXY vuT );
9: Update the residual matrix: ΣXY ← ΣXY − δuvT ;
10: End
11: Return U and V as the final results.

are not of unit norms. Thus, they are normalized in the
third step. The purpose of the last step is to obtain the
residual matrix of ΣXY by subtracting the effects of the
preceding vectors found, so the subsequent vectors can
be extracted sequentially.

In Alg. 1, the number of iterations, k, is the desir-
able number of the singular vectors. Its value can be
determined adaptively by using prior knowledge. For
example, it can be set to r, the rank of ΣXY , or a
pre-specified constant for simplicity. Besides, the cross
validation can also be used to set an optimal value
to k for a specific application. For simplicity, in our
subsequent experiments it was simply assigned to the
minimal dimensionality of the training data set.

The proposed learning algorithm has relatively low
computational costs. For our method, the most time-
consuming steps are getting the singular vectors u and v
(i.e., Line 4), and marking them sparse (i.e., Line 5). Let
X ∈ Rn×p, Y ∈ Rn×q and p > q. The time complexity of
the former is O(tnp), where t is the number of conver-
gence iterations. t is normally set as a constant (e.g., 100).
Our experiments show that the convergence iteration
was often terminated within 30. The time complexities
of the latter (i.e., sorting and sparse) stages are O(p log p)
and O(p). Consequently, the total computational cost of
NSMD is O(ktnp + kp log p).

5 EXPERIMENTS AND RESULTS

5.1 Experimental settings

To demonstrate the effectiveness of the proposed
method, we made a comparison between NSMD and
the following four kinds of popular sparse learning
algorithms with the `1 and `1,2-norm penalties. They
are SCCA [13], SSVD [19], SPLS [38] and PMD [14].
As discussed above, they stand for four different kinds
of learning techniques. Since their objective functions
only involve the `1-norm penalty, we also took the
`1,2-norm penalty into consideration to make a more
comprehensive comparison.

Apart from the sparse algorithms, two traditional
learning methods, CCA and ALPCCA [40], were also
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used to compare with NSMD in the experiments.
ALPCCA is a supervised variant of CCA for classifica-
tion problems. It exploits the local structure information
of data within clusters to enhance the discriminative
capability of classifiers.

We applied these learning algorithms to classifica-
tion problems and investigated their classification per-
formance. Since the nearest neighbor (1-NN) classifier
is one of the most widely used learning methods in
practice, we chose it as our base classifier for the sake of
simplicity. All the experiments were conducted in the
R environment (version 3.0.1) running on a PC with
dual core 3.4GHz CPU, 4GB RAM and 64-bit Operation
System.

5.2 Results and discussions

5.2.1 Handwritten numeral recognition
Handwritten digit recognition is a classical and popular
research topic in pattern recognition. The handwritten
digit data used in our experiments were downloaded
from the UCI machine learning repository1. There are
six data sets representing different features of the hand-
written digits from ‘0’ to ‘9’ that were extracted from
a collection of Dutch utility maps. A summary of the
data sets is provided in the top part of Table 1. Each of
them contains 2000 samples (i.e. patterns of ‘0’-‘9’). The
samples are divided evenly into 10 groups, representing
the patterns of the digits from ‘0’ to ‘9’ respectively. That
is, the first 200 samples corresponds to ‘0’, followed by
sets of 200 samples for each of ‘1’-‘9’.

TABLE 1
Summary of the experimental data sets

Name #Samp. #Var. #Lab. Description
Handwritten digit

fac 2000 216 10 Fourier coefficients
fou 2000 76 10 profile correlations
kar 2000 64 10 Karhunen-Love coefficients
mor 2000 6 10 morphological features
pix 2000 240 10 pixel averages
zer 2000 47 10 Zernike moments

Yale face
Ori 165 4096 15 The original data (64×64)
LBP 165 944 15 LBP format
Wav 165 1024 15 Wav format

Course
View1 1051 87 2 Course information
View2 1051 2332 2 Web text

In the experiments, each time we took two data sets
as X and Y to test the performance of the sparse learning
algorithms. Thus, in total there are fifteen different pairs
of data sets obtained from the six data sets. With each
pair of data sets, we performed the sparse learning
algorithms and extracted k pairs of u and v from the
training data. As described in the previous section, k

1. http://archive.ics.uci.edu/ml/datasets/Multiple+Features

was assigned to the minimal value of the sizes of the
training data.

Firstly, NSMD is used to compare with the sparse
learning algorithms with the `1-norm penalty, where
λu (λv) was equal to 0.4, 0.05, 0.05 and 0.1 for SCCA,
SSVD, SPLS and PMD respectively. The reason of setting
such values for λu and λv was that the sparse learning
algorithms achieved their best performance (see Fig. 1)
with these values. The experimental results are given in
Table 2, where the values in bold-face represent the best
results in the same row.

From Table 2, we know that NSMD outperformed
the other parametric sparse learning algorithms in many
cases, notwithstanding it is non-parametric. For instance,
NSMD slightly under-performed SSVD and SPLS on
only five combinations of data. On the rest data sets,
NSMD had the best performance than the others. This
indicates that NSMD has competitive performance in
comparing with the parametric learning methods. It
should be pointed out that NSMD is non-parametric,
while others need to carefully choose right values for the
regularization parameters to achieve better performance.

As discussed above, for the parametric sparse learning
methods, their performance heavily depends on the
values of regularization parameters within the sparsity-
inducing functions. To testify their impacts on the clas-
sification performance, we applied the sparse learning
methods on the digit data sets with different values of λu

(λv) varying from 0.05 to 0.5, with an interval of 0.05. The
results are presented in Fig. 1, where the performance is
the mean accuracy over the fifteen combinations of data.

Fig. 1. Mean accuracy (%) of the parametric sparse
learning algorithms with the `1-norm penalty, where
λu(λv) varied from 0.05 to 0.5.

According to Fig. 1, the performance of the parametric
sparse learning methods greatly varied with the regular-
ization parameters λu (λv), and different algorithms had
better performance at different values of the parameters.
For example, SCCA, SSVD, SPLS and PMD achieved
their better mean performance when λu (λv) was 0.4,
0.05, 0.05 and 0.1 respectively. Moreover, the perfor-
mance of SSVD, SPLS and PMD decreased when λu (λv)
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TABLE 2
Classification accuracy (%) of the sparse learning algorithms with the `1-norm penalty, where λu (λv)= 0.4, 0.05, 0.05

and 0.1 for SCCA, SSVD, SPLS and PMD respectively.

SCCA SSVD SPLS PMD NSMD
fac-fou 95.15±0.16 97.45±0.14 96.45±0.19 96.20±0.23 97.55±0.11
fac-mor 87.45±0.22 90.25±0.21 93.35±0.25 89.20±0.28 94.15±0.18
fac-kar 84.90±0.21 96.75±0.17 96.25±0.21 82.10±0.24 97.15±0.09
fac-pix 92.95±0.11 97.75±0.15 95.85±0.11 91.00±0.18 97.40±0.11
fac-zer 92.10±0.18 96.55±0.23 95.85±0.26 87.60±0.21 96.21±0.15
fou-kar 82.45±0.13 97.24±0.12 94.80±0.19 79.00±0.11 97.25±0.07
fou-mor 64.30±0.09 79.90±0.11 80.95±0.15 73.05±0.18 78.60±0.10
fou-pix 68.95±0.23 97.75±0.21 96.70±0.25 70.95±0.26 98.10±0.19
fou-zer 70.80±0.13 82.80±0.10 82.00±0.16 68.50±0.13 83.95±0.12
kar-mor 85.50±0.08 87.05±0.06 90.25±0.12 86.30±0.15 91.15±0.08
kar-pix 92.80±0.17 97.35±0.16 96.95±0.21 86.80±0.26 97.40±0.13
kar-zer 80.75±0.12 95.35±0.11 93.85±0.17 83.85±0.13 94.70±0.14
mor-pix 86.25±0.10 96.00±0.11 68.60±0.14 62.50±0.13 95.45±0.10
mor-zer 56.25±0.11 73.00±0.11 54.55±0.13 55.75±0.15 75.75±0.11
pix-zer 70.65±0.19 96.50±0.15 96.15±0.23 82.80±0.21 96.90±0.15
Mean 80.75 92.11 88.84 79.71 92.78

increased, especially when the parameters were larger
than 0.4. This indicates that it is impossible to determine
the optimal values of the regularization parameters for
all applications.

Besides the `1-norm penalty, we also adopted the
`1,2-norm penalty as the sparsity-inducing function for
the parametric sparse learning methods. Specifically, for
each parametric learning algorithm, the latent variables
u and v were constrained by the `1,2-norm penalty. As
we know, the `1,2-norm penalty has two regularization
parameters, λ and α, to control the degree of spar-
sity for each latent variable [16]. Thus for each of the
parametric sparse methods, there are four regularization
parameters, λu, λv , αu and αv , to be tuned. How to get
optimal values for them is impossible in practice. For
simplicity, in our experiments we observed the changes
of performance with λu and λv when αu and αv were
fixed.

Table 3 lists the comparison results of the sparse
learning algorithms with the `1,2-norm penalty, where
αu(αv)=0.9 and λu(λv)=0.2, 0.15, 0.05 and 0.1 for SCCA,
SSVD, SPLS and PMD respectively (also refer to Fig. 2
which showing that the parametric algorithms achieved
better performance with these parameter values). Addi-
tionally, in Table 3 the values in bold-face represent the
best results in the same row.

One may observe that the case of the `1,2-norm penalty
was similar to that of the `1-norm penalty, that is, NSMD
also had the best overall performance in comparing
with the parametric sparse methods with the `1,2-norm
penalty. For example, NSMD had the best performance
on all data sets, except fou-mor where NSMD was worse
than SPLS, but still better than others.

Another interesting finding is that SSVD had good
performance with the `1-norm penalty, but poor per-
formance with the `1,2-norm penalty. This implies that
for the parametric sparse learning methods, selecting a
right sparsity-inducing function is very important, and

which sparsity-inducing function should be adopted is
determined by the specific problems and data at hand.

Similar to the situations of the `1-norm penalty, we
also compared the performance changes of the paramet-
ric sparse learning algorithms with the `1,2-norm penalty
under different parameter values. Fig. 2 presents the
mean performance over the fifteen combinations of data
sets, where λu (λv) varied from 0.05 to 0.5. The dotted
lines (i.e., the methods marked with ‘*’) and solid lines
(i.e., the methods without ‘*’) denote αu(αv) was of 0.1
and 0.9 respectively. From Fig. 2, one may observe that
the performance of the parametric sparse algorithms was
affected by the regularization parameters greatly. When
αu(αv) were fixed, the performance was varied along
with λu (λv) greatly as those with the `1-norm penalty
(see Fig. 1).

Fig. 2. Mean accuracy (%) of the parametric sparse
learning algorithms with the `1,2-norm penalty, where λu

(λv) varied from 0.05 to 0.5, and dotted and solid lines
denote αu(αv)=0.1 and 0.9 respectively.

To further demonstrate the advantage of NSMD, we
also compared it with two non-sparse learning methods,
CCA and ALPCCA. The comparison results are illus-
trated in Fig. 3. As shown in Fig. 3, NSMD outperformed



9

TABLE 3
Classification accuracy (%) of the sparse learning algorithms with the `1,2-norm penalty, where αu(αv)=0.9 and λu

(λv)=0.2, 0.15, 0.05 and 0.1 for SCCA, SSVD, SPLS and PMD respectively

SCCA SSVD SPLS PMD NSMD
fac-fou 95.25±0.18 73.25±0.14 96.80±0.12 96.25±0.21 97.55±0.11
fac-mor 91.20±0.13 52.25±0.12 93.35±0.16 89.60±0.19 94.15±0.09
fac-kar 92.45±0.21 86.80±0.18 96.40±0.25 82.20±0.26 97.15±0.17
fac-pix 95.50±0.23 84.15±0.17 96.10±0.21 91.00±0.25 97.40±0.15
fac-zer 89.70±0.15 76.75±0.12 95.85±0.16 86.45±0.13 96.25±0.10
fou-kar 79.65±0.17 89.35±0.13 95.20±0.19 80.45±0.15 97.25±0.13
fou-mor 58.40±0.12 47.10±0.09 81.00±0.10 73.30±0.14 78.60±0.14
fou-pix 69.65±0.22 95.75±0.21 96.60±0.18 70.80±0.19 98.10±0.18
fou-zer 68.95±0.16 58.05±0.13 81.55±0.19 68.45±0.21 83.95±0.12
kar-mor 86.80±0.11 73.70±0.10 90.20±0.13 85.40±0.12 91.15±0.10
kar-pix 91.15±0.18 83.10±0.15 97.00±0.19 85.30±0.17 97.40±0.16
kar-zer 79.20±0.11 54.85±0.11 93.65±0.12 83.15±0.15 94.70±0.11
mor-pix 78.65±0.12 89.65±0.12 68.60±0.15 62.35±0.16 95.45±0.09
mor-zer 55.65±0.10 38.20±0.11 54.55±0.13 56.35±0.12 75.75±0.10
pix-zer 69.85±0.22 70.15±0.17 95.95±0.21 83.10±0.23 96.90±0.14
Mean 80.14 71.54 88.85 79.61 92.78

CCA and ALPCCA across all data sets, although NSMD
was slightly better than CCA and ALPCCA on the fou-
mor, kar-zer and mor-zer data sets.

Fig. 3. Classification accuracy (%) of NSMD, CCA and
ALPCCA.

Generally speaking, additional data often provide
helpful information and potentially improve classifica-
tion performance. To demonstrate this assertion, we
performed NSMD and PMD on the individual (i.e., X)
and the combined (i.e., X and Y) data sets respectively.
Fig. 4 shows the performance of NSMD and PMD, where
the classifiers performed on the individual data X are
marked with ’*’.

It is noticeable that the classification performance of
NSMD and PMD on X and Y was significantly better
than X. This implies that additional information encoded
within Y was helpful in classification. It is also inter-
esting to find out that the performance of NSMD on
X was also comparable to PMD on the combination of
X and Y (see Fig. 4). Similar situations can be found
for other parametric sparse learning methods, such as
SCCA, SPLS and SSVD. Due to the limitation of space,
the results are not shown here.

Fig. 4. Classification accuracy (%) of NSMD and PMD
with the `1-norm penalty (λu=λv=0.1) over the individual
(marked with ’*’) and the combined data sets.

5.2.2 Yale face recognition
The data collection of Yale faces, which was downloaded
online2, has been widely used in computer vision re-
search. It involves 165 grayscale images in GIF format
of 15 persons, and for each person, there are 11 images
with different facial expression or ambient (background)
illumination including center-light, left-light, right-ligh,
w/glasses, w/no glasses, normal, happy, sad, sleepy,
surprised, and wink. The original images are in the size
of 64×64 (see Table 1). Apart from the original face
images, we also considered two other types of images
by using the LBP and wavelet methods on the original
ones [40], called LBP and Wav data respectively in this
paper. Thus, there are three pairs of data sets totally.

Table 4 reports the results of NSMD and the paramet-
ric sparse methods with the `1 and `1,2-norm penalties
on the Yale face data, where Ori stands for the orig-
inal data. As shown in Table 4, NSMD has compet-

2. http://cvc.yale.edu/projects/yalefaces/yalefaces.html
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TABLE 4
Classification accuracy (%) of the sparse learning algorithms with different λu (λv) on the Yale face data.

SCCA SSVD SPLS PMD NSMD
The `1-norm penalty

Data λu (λv)
0.05 0.05 0.4 0.35 -

Ori-Wav 64.12±0.11 69.15±0.12 66.51±0.13 61.14±0.12 65.99±0.11
Ori-LBP 54.60±0.15 70.95±0.13 70.11±0.16 58.09±0.15 68.97±0.14
Wav-LBP 65.40±0.18 71.75±0.16 72.54±0.12 64.74±0.17 69.56±0.13

The `1,2-norm penalty with αu(αv)=0.9

Data λu (λv)
0.05 0.15 0.4 0.4 -

Ori-Wav 67.12±0.10 57.50±0.11 67.17±0.13 62.35±0.12 65.99±0.11
Ori-LBP 36.25±0.12 62.39±0.13 68.90±0.10 56.91±0.12 68.97±0.10
Wav-LBP 64.74±0.15 59.34±0.16 72.20±0.13 64.71±0.14 69.56±0.12

itive performance in comparison with the parametric
methods. Particularly, the performance of NSMD was
better than the corresponding PMD, which is a matrix
decomposition method too. Additionally, NSMD out-
performed SCCA roundly. Although SSVD with the `1-
norm penalty achieved better performance than NSMD,
it had relatively worse performance when the sparsity-
inducing function was the `1,2-norm penalty.

SPLS achieved relatively good performance on the
Yale face data. As we know, the dimensionality of the
Yale face data is high, while the number of samples is
relatively small. This implies that PLS is good at dealing
with the so called problem of “large p, small n”. The
technique of matrix decomposition may not be about to
tackle such highly collinear data very well.

Fig 5 shows the mean performance of the parametric
sparse algorithms with the `1-norm penalty over the
three combinations of data with different parameter val-
ues. From Fig 5, one may observe that unlike the hand-
written digit data, the mean performance of SSVD, SPLS
and PMD on the Yale face data was changed slightly
along with λu (λv). The reason is that the Yale data set
contains less samples, but its dimensionality is relatively
high. On the other hand, for a sparse learning algorithm
the optimal values of the regularization parameters vary
from the data.

Similarly, we also tested the performance of the para-
metric sparse learning algorithms with the `1,2-norm
penalty with different regularization parameters on the
Yale face data. Fig. 6 records the mean performance of
the parametric sparse algorithms over the three combi-
nations of data sets, where λu (λv) varied from 0.05 to
0.5 when αu (αv) was fixed at 0.1 and 0.9 respectively. In
Fig. 6, the dotted lines (i.e., the methods marked with ‘*’)
and the solid lines (i.e., the methods without ‘*’) denote
αu(αv) was of 0.1 and 0.9 respectively. Observing from
Fig. 6, we can make the same conclusions like the case
of the Handwritten digit data, that is, the performance
of the parametric sparse algorithms was affected by the
regularization parameters. For example, the performance
of SCCA was changed greatly if λu(λv) was greater than
0.1.

Fig. 5. Mean accuracy (%) of the parametric sparse
learning algorithms with the `1-norm penalty, where
λu(λv) varied from 0.05 to 0.5.

Fig. 6. Mean accuracy (%) of the parametric sparse
learning algorithms with the `1,2-norm penalty, where λu

(λv) varied from 0.05 to 0.5, and the dotted and solid lines
denote αu(αv)=0.1 and 0.9 respectively.

5.2.3 Course categorization

This data collection was extracted from 1051 web pages
at four U.S. universities’ web sites [41]. Each page was
preprocessed by removing stop words, numbers and
then stemming words. The obtained words in each page
were divided into two groups, representing two different
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views. The first one refers to those words linking to
course web pages, whereas the second group contains
the rest words. In addition, the words that occurred in
five or fewer documents were ignored. As a result, the
first and second views were represented as 87- and 2332-
dimensional data.

Fig. 7. Classification accuracy (%) of the sparse learning
methods on the course data, where the methods marked
without or with ‘*’ represent the `1 or `1,2-norm penalty
respectively.

Fig. 7 shows the classification performance of the
comparing methods on the course data collection, where
the methods marked without or with ‘*’ denote the `1
and `1,2-norm penalty respectively. The value of λ above
each indicator means that the corresponding method
achieved the best performance in this case. According
to the results, one can note that our non-parametric
learning method is superior to the parametric ones on
this data. Among the parametric methods, SPLS with the
`1-norm penalty has relatively good performance with
λu(λv)=0.15. However, getting such optimal value for
λu(λv) is a time-consuming thing. Meanwhile SPLS with
the `1,2-norm penalty is not good enough.

Fig. 8 gives the performance changes of the parametric
sparse learning methods along with the values of λu(λv),
where the dotted and solid lines denote the `1 or `1,2-
norm penalty respectively. As illustrated in Fig. 8, the
performance of the matrix factorization methods, i.e.,
SSVD and PMD, varied greatly when λu(λv) changed,
while the performance of SPLS was relatively stable.
As discussed above, the underlying reason is that the
dimensionality of the course data is larger than the
quantity of samples. An interesting fact is that the sparse
learning algorithms, except SCCA, with different penalty
constraints have similar performance.

Fig. 9 presents the performance changes of the para-
metric sparse learning methods with the `1,2-norm
penalty, where λu (λv) varied from 0.05 to 0.5, and
the dotted and solid lines denote αu(αv)=0.1 and 0.9
respectively. Like Fig. 8, similar conclusions can be made.
For example, SPLS had relatively stable performance,
while PMD and SSVD changed greatly. It is noticeable

Fig. 8. Classification accuracy (%) of the sparse learning
methods along with λu(λv), where the dotted and solid
lines denote the `1 or `1,2-norm penalty respectively.

that the performance of the parametric learning algo-
rithms, except SCCA, varied not much as the parameter
α changed. Fig. 8 and Fig. 9 tell us a fact that the
proposed non-parametric learning method, NSMD, still
had better performance, without such cumbersome issue
of assigning the appropriate values to the regularization
parameters.

Fig. 9. Classification accuracy (%) of the sparse learning
methods with the `1,2-norm penalty, where λu (λv) varied
from 0.05 to 0.5, and the dotted and solid lines denote
αu(αv)=0.1 and 0.9 respectively.

5.2.4 Sparsity degree
To demonstrate the sparse capability of the non-
parametric sparse model, we carried out additional ex-
periments and then obtained the sparsity degree, i.e.,
the ratio of the coefficients with zero values to all co-
efficients, on the experimental data. The experimental
results are listed in Table 5, where the higher the spar-
sity degree, the more the coefficients with zero values.
From the experimental results, we can observe that the
proposed model has good sparsity capabilities on most
of the data. For the mor data, the coefficients with zero
values achieved by NSMD are less. The reason is that
there are only six variables within this data.
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TABLE 5
Mean sparsity degree (%) of NSMD on the data.

Data u v Data u v
fac-fou 51.03 44.29 fac-mor 32.01 15.56
fac-kar 46.30 40.99 fac-pix 56.79 54.83
fac-zer 51.83 34.03 fou-kar 45.60 42.21

fou-mor 54.58 8.61 fou-pix 47.28 46.42
fou-zer 48.19 39.19 kar-mor 47.58 12.78
kar-pix 47.57 46.36 kar-zer 46.97 33.61
mor-pix 6.11 23.65 mor-zer 0.00 7.30
pix-zer 55.88 40.00 Ori-Wav 89.97 89.16

Ori-LBP 54.09 57.36 LBP-Wav 60.00 53.79
Course 73.47 61.60

6 CONCLUSIONS

In this paper, we have proposed a novel dimension
reduction method for cross-view data analysis. Com-
paring with the traditional learning methods which re-
quire careful selection of appropriate sparsity-inducing
functions and tuning of the regularization parameters,
the distinct characteristic of our method is that it is
automatic and non-parametric one, and does not re-
quire human-involvement. The experiments conducted
on synthetic and real-world data have shown that the
performance of the parametric sparse learning algo-
rithms change with the values of the regularization
parameters, while our automatic learning method does
not involve any regularization parameters, but has stable
performance.

Although the proposed method did not achieve good
performance as SPLS did on the Yale face data, it still
outperformed PMD significantly. Both of them belong to
the techniques of matrix decomposition. Indeed, PLS is
good at handling the high-dimensional data with less
samples (i.e., the “large p, small n” problem). In fu-
ture, we will apply the non-parametric sparsity-inducing
function to PLS to cope with the “large p, small n”
problem effectively.

In real-world applications, data are often collected
from multiple domains or views, resulting in a more
complex and common situation. It has been demon-
strated that tensor is an effective technique for the
multiple-view data collections in the literature. In our
future work, we will extend the idea of our model to
the tensor technique, so that it can handle the high-
dimensional and massive multiple-view data.
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