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Abstract—In transfer learning scenarios, previous discrim-
inative dimensionality reduction methods tend to perform
poorly owing to the difference between source and target
distributions. In such cases, it is unsuitable to only consider
discrimination in the low-dimensional source latent space since
this would generalize badly to target domains. In this paper, we
propose a new dimensionality reduction method for transfer
learning scenarios, which is called transferable discriminative
dimensionality reduction (TDDR). By resolving an objective
function that encourages the separation of the domain-merged
data and penalizes the distance between source and target
distributions, we can find a low-dimensional latent space which
guarantees not only the discrimination of projected samples,
but also the transferability to enable later classification or
regression models constructed in the source domain to gener-
alize well to the target domain. In the experiments, we firstly
analyze the perspective of transfer learning in brain-computer
interface (BCI) research and then test TDDR on two real
datasets from BCI applications. The experimental results show
that the TDDR method can learn a low-dimensional latent
feature space where the source models can perform well in the
target domain.

Keywords-dimensionality reduction; Fisher discriminant
analysis; transfer learning; brain-computer interface

I. INTRODUCTION

During recent years, both of dimensionality reduction
and transfer learning have become hot topics in machine
learning and data mining. In the single domain scenario
where distributions of source and target domains are iden-
tical, many popular dimensionality reduction approaches,
e.g. principal components analysis (PCA) [1] and locality
preserving projection (LPP) [2], and Fisher discriminant
analysis (FDA) [3], that focus on finding a low-dimensional
latent space obtain good results. However, in many real-
world applications, this the assumption does not hold and
traditional classification methods might perform badly. For
example, FDA tends to give undesired results if samples
in training and test sets belong to different distributions.
Transfer learning [4], [5], [6], [7] aims to solve the problem
when the training data from a source domain and the test
data from a target domain follow different distributions or
are represented in different feature spaces.

Our work aims to design a dimensionality reduction
method for transfer learning by improving the previous

framework of discriminative dimensionality reduction. It
learns a low-dimensional latent space that not only preserves
discrimination of data, but also bridges the source to target
domain. There are two main motivations under our work.
First, we wish to improve the effectiveness of statistical
models which are constructed on the source data but used
to the target domain. This can be achieving by encouraging
source and target distributions in the low-dimensional latent
space close to each other, while the discrimination of the
space is preserved. In other words, our method takes both
discrimination and transferability of the feature space into
consideration. The second motivation is to preserve the
low-cost merit of previous discriminative dimensionality
reduction. This encourages us to design mathematical terms
which are simple and can be merged into the previous
framework. Under the motivations mentioned above, we
propose transferable discrimination dimensionality reduction
(TDDR) in this paper. First, we design mathematical terms
that evaluate the discrimination of domain merged training
samples and the transferability of an embedded space to
bridge source to target domain. Then, we merge these terms
into the previous framework of discriminative dimensionality
reduction. As a result, TDDR simultaneously maximizes the
discrimination of data and minimizes the distance between
distributions of the data in different domains. Meanwhile,
it can be solved by the generalized eigen-decomposition,
which is simple, rapid and accurate.

We testify our method using real-world data. It is worth
mentioning that we also analyze the perspective of trans-
fer learning in brain-computer interface (BCI) research,
which is another important work of this paper. Up to now,
as we know, most of the transfer learning methods are
experimented on the real-world application such as text
classification, image classification and clustering, sentiment
classification, wifi digit, and so on. There is very few
literature discuss its perspectives for BCI applications. In this
section, we exploit perspectives of transfer learning methods
in addressing limitations in BCI research and perform TDDR
in real and public BCI datasets to verify it.

The rest of this paper is organized as follows. In Sec.
2, we propose TDDR. Experiments on real-world data sets,
together with the perspective analysis of transfer learning



in the BCI research, are given in Sec. 3. Finally, Sec.
4 concludes this paper and gives possible future research
topics.

II. TDDR

One important assumption of the popular dimensionality
reduction FDA (can see [3] for details) is that training and
test data should be drawn from a same distribution. However,
in transfer learning, the source training and target test data
are always from different distributions, and thus FDA may
generalize badly.

In transfer learning, a common setting is that there are a
lot of labeled samples in the source domain and a few or no
labeled data in the target domain. The final objective is to
predict labels of test samples from the target domain. Since
the target training set is too small, classification tasks often
mostly depend on source training samples. However, due to
the difference of distributions between the source and target
domains, the model trained from the source training set often
performs poorly on target test samples. As a result, the
low-dimensional latent space for dimensionality reduction
in transfer learning should take not only the discrimination
but also the transferability – the ability to bridge source to
target domain, into consideration.

A. Problem Formulation

We formalize the problem of dimensionality reduction
in transfer learning as follows. Suppose we have a large
training set 𝑋𝑆

𝑡𝑟 from the source domain 𝑆, and a very small
training set 𝑋𝑇

𝑡𝑟 from the target domain 𝑇 . Later tasks (e.g.
regression or classification) are evaluated on the target test
set 𝑋𝑇

𝑡𝑒. The difficulties lie in the difference between the
source and target domains that prevents us from utilizing
the rich samples from the source domain. Therefore, the
quality of a low-dimensional space should be considered by
its ability to bridge source domain to target domain, which
we call as transferability. However, only pursuing transfer-
ability may make the low-dimensional space unsuitable for
latter classification task. As a result, we should take both
transferability and discriminability into consideration. In this
section, we design mathematical terms to represent discrim-
ination and transferability of a low-dimensional space in the
transfer learning scenario. By integrating them together , we
construct an objective function for transfer dimensionality
reduction. This method is called as transferable discrim-
inative dimensionality reduction (TDDR) since it pursues
transferability and discrimination together. The behavior of
TDDR will be also analyzed in this section.

B. Domain-Merged Within and Between-Class Scatter Ma-
trices

In transfer learning, we often face two training sets from
source domain and target domain, respectively. Thus, the

within and between class scatter measurement should com-
puted on the dataset merged by them. However, considering
the different importance of the source and target domains,
the training datasets should have different weights. We define
merged training set as 𝑋𝑆𝑇

𝑚𝑡𝑟 = {𝑋𝑆
𝑡𝑟;𝑋

𝑇
𝑤𝑡𝑟}, where 𝑋𝑆

𝑡𝑟 de-
notes the source training set and 𝑋𝑇

𝑤𝑡𝑟 denotes the weighted
target training set. The weights used to weight the target
training samples can control the influence of target training
samples in computing within and between class scatter
measurement. Considering that target training samples are
drawn from the same distribution from the test samples,
we always treat them more important than source training
samples, while their importance is constrained by the sample
number. Therefore, we define weights as 𝑊𝑇

𝑡𝑟 = 1 + 𝑛𝑡/𝑛𝑠

(𝑛𝑠 and 𝑛𝑡 is the training sample numbers of the source
and target sessions). This weight attaches more importance
to the target training samples owing to the distribution
similarity between the target training and test distribution.
It also considers the reliability of the distribution estimation
of target training set since it is constrained by the sample
number of the target training set.

Then, between and within-class scatter measurement are
computed on the merged training set 𝑋𝑆𝑇

𝑚𝑡𝑟 to simultaneously
increase the discrimination of source and target training
samples in a unified low-dimensional latent space:

𝑆𝑆𝑇
𝐵 = (𝜇1 − 𝜇2)(𝜇1 − 𝜇2)

⊤,

𝑆𝑆𝑇
𝑊 =

∑
𝑖=1,2

∑
𝑥∈𝑋𝑆𝑇

𝑡𝑟

(𝑥− 𝜇𝑖)(𝑥− 𝜇𝑖)
⊤, (1)

where 𝜇1 and 𝜇2 are class means of the merged training set
𝑋𝑆𝑇

𝑚𝑡𝑟.

C. Between-Domain Scatter Matrices

Since later classification models are mostly based on the
source samples, the low-dimensional space should take a role
as a bridge between the source and target distributions so
that models trained with source samples can adapted to the
target domain. Here, between-domain scatter matrix related
to the distance between the source and target distributions
in the low-dimensional are introduced. They are designed
with and without label information respectively, to reveal
the separation between domains.

1) Supervised Between-Domain Scatter Matrix: To im-
prove the transferability of the low-dimensional space, we
wish to minimize the distance between projected data from
the source and target domains. We define a between domain
scatter matrix based on the source and target training sam-
ples:

𝑆𝑆𝑇
𝐿 = (𝜇𝑆

1 −𝜇𝑇
1 )(𝜇

𝑆
1 −𝜇𝑇

1 )
⊤+(𝜇𝑆

2 −𝜇𝑇
2 )(𝜇

𝑆
2 −𝜇𝑇

2 )
⊤, (2)

where 𝜇𝑆
𝑖 (𝑖 = 1, 2) and 𝜇𝑇

𝑖 (𝑖 = 1, 2) are class means of
source and target training sets. The term 𝜇𝑆

𝑖 − 𝜇𝑇
𝑖 (𝑖 =

1, 2) reveals the scatter of class 𝑖 between source and target



domain. By putting in to 𝑄𝑚𝑖𝑛 to get penalized, the class
means between source and target domain are close to each
other. By that way, we decrease the divergence of source
and target domain in the embedding space.

2) Unsupervised Between-Domain Scatter Matrix: How-
ever, since the number of target samples are small or even
null. We need define another between domain scatter without
label information, so that it can evaluated based on large
no-labeled source and target samples. It is defined as the
distance between centers of whole data:

𝑆𝑆𝑇
𝑈 = (𝜇𝑆 − 𝜇𝑇 )(𝜇𝑆 − 𝜇𝑇 )⊤, (3)

where 𝜇𝑆 and 𝜇𝑇 are means of source training set and
target test set. Similarly, by adding it into the definition of
𝑄𝑚𝑖𝑛, we can increase the similarity between distributions
of projected source training and target test samples by
penalizing the distance of sample means.

3) Semi-supervised Between-Domain Scatter Matrix: If
small target training samples and large target test samples
are both offered, we can combine the supervised and un-
supervised between domain scatter matrices to generate a
semi-supervised one. Similar with weight definition in the
merged training set 𝑋𝑆𝑇

𝑚𝑡𝑟, we attach more importance to the
target samples with label information. Therefore, the semi-
supervised between domain scatter matrix is formulated as
follows:

𝑆𝑆𝑇 = 𝑆𝑆𝑇
𝑈 + (1 + 𝑛𝑇

𝑡𝑟/𝑛
𝑇
𝑡𝑒)𝑆

𝑆𝑇
𝐿 , (4)

where 𝑛𝑇
𝑡𝑟 and 𝑛𝑇

𝑡𝑒 are sample numbers of target training and
test set.

D. Transferable Discriminative Dimensionality Reduction

By integrating 𝑆𝑆𝑇
𝐵 , 𝑆𝑆𝑇

𝑊 , 𝑆𝑆𝑇 defined above in to the
framework introduced in Sect. 2, we obtain transferable
discriminative dimensionality reduction by maximizing:

J(𝜙) =
𝜙⊤𝑆𝑆𝑇

𝐵 𝜙

𝜙⊤(𝑆𝑆𝑇
𝑊 + 𝛼𝑆𝑆𝑇 )𝜙

, (5)

where 𝛼 is a parameter to control the balance between the
desired levels of discrimination and transferability.

In real applications of TDDR, 𝛼 can be defined by users
or determined by the 𝐾-fold cross-validation technology.
However, since training samples are mostly from the source
domain, the cross-validation technology used to determine
parameters in transfer learning should have some reasonable
modification. Here, we propose a “target-priority” strategy
to modify the parameter selection step in the previous cross-
validation technology when it is used to perform parameter
selection in transfer learning scenarios. Speaking briefly,
we firstly choose a set of 𝛼-values corresponding to the
best performance on target samples (owning to the small
number of target samples, there are always a lot of 𝛼-values
corresponding to the best performance on target samples).
Then, in that set, we choose the 𝛼-value corresponding to
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Figure 1. Comparison of performances of TDDR, FDA, SDA, and CTDA
spaces in the subject transfer experiment (left: 𝑘NN; right: SVM).

the best performance on source samples as the final 𝛼 to be
used in later tasks. This strategy gives a prior consideration
to the performance on target samples because these samples
are drawn from the same distribution as test samples. As
a result, this parameter selection method adapts to transfer
learning problems and is used to determine 𝛼 in our later
experiments with 𝐾 is 10 and the candidate 𝛼-value set is
[0.1, 0.15, 0.2, 0.25, ⋅ ⋅ ⋅ , 1].
III. REAL-WORLD APPLICATION: TRANSFER LEARNING

FOR PRACTICAL BCIS

Long time-consuming training sessions bring huge diffi-
culties to the practical wide use of BCI devices [8]. For
solving this limitation, we can use training sets of other
users whose characteristics are similar (e.g. same age or sex)
with the current user who is unable or unwilling to perform
any training session to train the BCI devices. We term this
strategy as subject transfer. Moreover, for the users who
performed training sessions before, we can use the training
set that collected during the latest training session to help
the current task. This is called session transfer. However, due
to the large inter-subject variabilities among different users
and time-variances during different time sessions, subject
transfer and session transfer face the problem that training
and test sets are drawn from different distributions. As a
result, transfer learning methods are of a lot of potentialities
to achieve subject transfer and session transfer to help bring
BCI system to people’s real lives. Here we employ the
TDDR algorithm on two real datasets in the BCI research
to simulate performing subject transfer and session transfer,
respectively.

We employ the subject transfer and session transfer exper-
iments on real-data [9] and [10]. Except the FDA method,
we compare our method with two other state-of-arts: Semi-
supervised Discriminant Analysis (SDA) and Cluster based
Transferred Discriminant Analysis (CTDA), which are also
extended versions of discriminative dimensionality reduction
(For details, can be see [11] and [12]). In the subject transfer



Table I
THE CLASSIFICATION ACCURACIES (%) OF 𝑘NN (𝑘 = 5) CLASSIFIERS IN TDDR, FDA, SDA, AND CTDA SPACES.

Dimensionality
Method 1 2 3 4 5 Average

TDDR 75.81± 3.3 75.55± 3.2 74.94± 3.1 73.74± 4.0 72.08± 4.6 74.43± 3.6
FDA 71.50± 3.2 68.71± 4.3 66.65± 5.5 64.58± 5.4 63.37± 5.6 66.96± 3.6
SDA 73.68± 3.5 71.43± 4.1 72.57± 4.3 64.80± 4.9 66.90± 5.0 69.87± 4.4
CTDA 72.76± 3.8 71.08± 3.6 67.28± 4.8 71.16± 5.0 68.64± 5.6 70.25± 4.5

experiment, two classifiers (𝑘NN with 𝑘 = 5, SVM with C =
1 and polynomial kernel) are employed to perform classifica-
tion tasks. With the dimensionality of features spaces varies
form 2 to 10, the average result over all situations (subject
𝑥 help 𝑦) is presented. In the subject transfer experiment,
we do not use any training sample of the target subject
since no target training sample is more similar with the
real subject transfer setting. Therefore, in this experiment,
𝑆𝑆𝑇 = 𝑆𝑆𝑇

𝑈 in the TDDR approach. Otherwise, we vary
the number of training samples of target user from 2 to 8
and the average result is presented. Table I and Fig.1 show
the performances in the subject transfer and session transfer
experiments, respectively. According to these results, we find
TDDR space is much better than the spaces obtained with
other approaches in according to the higher accuracy of the
classification models. Compared with SDA and CTDA, our
method has less parameters and lower computational burden.
This may be the reason, we speculate, why our method can
more robust and better performances.

IV. CONCLUSION AND FUTURE WORK

In this paper, we propose a dimensionality reduction
method in transfer leaning that called Transferable Discrim-
inative Dimensionality Reduction (TDDR). Its objective is
to guarantee discrimination and transferability of the low-
dimensional latent space simultaneously. The theory analysis
and experimental results verify its effectiveness to find a
feature space against the difference between training and test
distributions. Moreover, the perspective analysis of transfer
learning methods in BCI research is another contribution
in this paper. We show that two strategies termed subject
transfer and session transfer which are a lot of potential for
practical application of BCI systems can be achieved with
the help of transfer learning methods, such as our TDDR
algorithm.

One remaining important direction worth researching is to
extend TDDR to more versions to deal with different transfer
learning scenarios. This is motivated by the fact that, in real-
world application, the condition of different transfer learning
scenarios may be different. Here, we offer some directions
and suggestions of future TDDR extensions to encourage
people to investigate: kernel TDDR, zero target training (no
target training data), inductive transfer learning (target test
samples are unseen), multiple sources (the number of source
domains are more than one), online transfer learning (for
online and real-time tasks) and so on.
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