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Abstract:

Gaussian processes are a powerful non-parametic tool for
Bayesian inference but are limited by their cubic scaling prob-
lem. This paper aims to develop single-task and multitask
sparse Gaussian processes for both regression and classifica-
tion. First, we apply a manifold-preserving graph reduction al-
gorithm to construct single-task sparse Gaussian processes from
a sparse graph perspective. Then, we propose a multitask
sparsity regularizer to simultaneously sparsify multiple Gaus-
sian processes from related tasks. The regularizer can encour-
age the global structures of retained points from closely re-
lated tasks to be similar, and structures from loosely related
Experimental results show that our
single-task sparse Gaussian processes are comparable to one

tasks to be less similar.

state-of-the-art method, and our multitask sparsity regularizer
can generate multitask sparse Gaussian processes which are
more effective than those obtained from other methods.
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1. Introduction

Gaussian processes are a popular and powerful non-
parametric tool for Bayesian inference. They are a probabilis-
tic method which can provide estimations of the uncertainty
of predictions. For instance, in classification Gaussian pro-
cesses can estimate the posterior probability of labels, and in
regression Gaussian processes can calculate ‘error-bar’ of esti-
mated values. This property leads to their easy explanation and
widespread use. Unfortunately they need O(n?) time for train-
ing where n is the size of the training set. This paper focuses on
overcoming the scaling problem of the cubic time complexity
with respect to the training size.

Various efforts [1], [2], [3] have been made to overcome this

scaling problem, which can be classified into two categories.
The first category of methods select a subset of the training
points of size d with d <n. This can bring the scaling down
to O(nd?) time and O(nd) memory. The second category uses
approximate matrix-vector multiplication methods. Our work
in this paper belongs to the first category. As far as we know,
none of the existing sparse Gaussian processes considers the
manifold assumption of data. However, learning with the man-
ifold assumption has been successful applied to many machine
learning tasks [4], [5], [6], [7], [8]. Manifold-preserving graph
reduction (MPGR) is a recent efficient graph sparsification al-
gorithm [9] which can effectively remove outliers and noisy
examples. The first contribution of this paper is that we suc-
cessfully apply it to the data representation of sparse Gaussian
processes in a single-task setting.

Multitask learning is an active research direction [10], [11],
[12]. Simultaneously learning multiple tasks can be more ef-
fective than learning them separately because the relationship
between tasks can benefit learning. How to learn and reflect
the task relationship in multitask learning is crucial. One com-
mon approach is to set some parameters to be shared by all
the tasks. For example, the multi-task informative vector ma-
chine (MTIVM) [13] shares the kernel matrix among tasks to
build multitask sparse Gaussian processes. Different from this
kind of methods, here we attempt to construct multitask sparse
Gaussian processes by simultaneously considering the global
structures of points from different tasks.

The second and main contribution of this paper is that we
propose a multitask sparsity regularizer for subset selection
among multiple tasks. The regularizer consists of two factors
which utilize the distance between task-descriptor features to
represent the task relevance and the distance of a data point to
its k-nearest neighbors from other tasks to represent its similar-
ity to the structures of other tasks. Here, the task-descriptor
feature is defined by the principal variable algorithm [14].
Combining this regularization formula with existing single-



task sparsification criteria will result in multitask sparsification
methods. We integrate the regularizer with informative vector
machine (IVM) and MPGR to get tMTIVM and tMTMPGR,
respectively. Here, r stands for relevance because our method
explicitly considers task relevance through the task-descriptor
features. Experimental results show that our method signifi-
cantly promotes the prediction performance.

The rest of the paper is organized as follows. First we in-
troduce some background including Gaussian processes, [IVM
and MTIVM. We use MPGR to construct single-task sparse
Gaussian processes in the next section. Then, we present the
multitask sparsity regularizer and apply it to multitask sparse
Gaussian processes, after which experimental results on five
real data sets are reported. Finally, we make our conclusions.

2. Background

In this section we briefly summarize Gaussian processes and
introduce sparse methods IVM and MTIVM that will be used
for comparsion in our experiments.

2.1. Gaussian processes

A Gaussian process can be specified by a mean function and

a covariance function [15]. Given a data set consisting of N

examples X = {xn}ﬁlzl, corresponding observed labels y =

{yn}f:/:1 and a set of latent variables f = { fn}nNzl, the prior

distribution for these latent variables is assumed to be Gaussian

p (f1X,0) = N (f]0, K) (D

with a zero mean and a covariance matrix K which is param-

eterized by the kernel hyperparameter 6. The joint likelihood
can be written as

p(y,f1X,0) = p (f|X,0) p(y|f). (2)

For regression, a Gaussian observation likelihood is often
used

p(ylf) =N (y|f,0’I). 3)

After integrating out the latent variables, the marginal likeli-
hood will be

p(yIX) =N (y0,K + 0°I). 4

The prediction distribution of the label at a new point x, is
. . -1 .
also Gaussian. Its mean is k*T (K + 021) y and covariance

is k (Xuy X)) — k*T(K + JQI)flk*. Here, k is the covariance

function and k, is the vector of covariances between x, and the
training points.

Gaussian processes need O(n?) time complexity because of
the inversion of the corresponding covariance matrix. For large
data sets, therefore we must seek an effective sparse method to
reduce the computation time.

2.2. IVM and MTIVM

IVM tries to resolve the cubic scaling problem of Gaussian
processes by seeking a sparse representation of the training
data [1]. Based on information theory, it seeks to extract the
maximum amount of information with the minimum number
of data points. In particularly, points with the most informa-
tion, namely giving the largest reduction in the posterior pro-
cess entropy, are selected. The entropy reduction associated
with selecting the nth point at the ith selection is given by

1 1
AH;, = —5 log ‘Ez’,n| + 5 IOg ‘E,’_l‘ R 5
where ;1 is the posterior covariance after the (i — 1)th selec-
tion and ¥, ,, is the posterior covariance after selecting the nth
point at the th selection.

The IVM approach is later extended to multitask learning

[13]. Under the constraint that L tasks are conditionally inde-

pendent on the kernel hyperparameter 6, which is shared among
all the tasks, the distribution model of MTIVM is

L
p(YIX.0) = ITp (e, ©

where the columns of Y and X are y¢ and Xy, respectively,
and each p (y¢|Xy, 0) is a Gaussian process. Assuming vector

y is formed by stacking columns of Y, y = [yiF . yH T, the
covariance matrix is then
Ky ... 0
K=| : . |, (7)
0 - K
where Ky is the covariance matrix of X,({ =1, ..., L).
The overall likelihood is thus a Gaussian process
p (y|5'(,9) N (O,R) . (8)

The selected subset of the training data for MTIVM is shared
among all tasks which can reduce the computation and memory



consumption. The entropy reduction with the nth point for task
¢ at the ith selection is given by

IR )

1 1
AHi(f;) =3 log ‘ZEZT)L t3 log

where EEZ_)I is the posterior covariance of task ¢ after the (i —

1)th selection and ZEEBL is the posterior covariance of task ¢ after

selecting the nth point at the :th selection.
3. Single-task sparse Gaussian processes

In this section, we apply MPGR [9] to construct sparse Gaus-
sian processes in the single-task setting.

A sparse graph with manifold-preserving properties means
that a point outside of it should have a high connectivity with a
point retained. A manifold-preserving sparse graph is the graph
that maximizes the quantity

m

1
— 2 (ﬁ%ﬁt%) (10)

i=t+1

where m is the number of all vertices, W is the weight matrix
and ¢ is the number of vertices to be reserved.

Using the McDiarmid’s inequality it has been proved that
maximizing (10) can enlarge the lower bound of the expected
connectivity between the sparse graph and the m — ¢ ver-
tices outside of the sparse graph. This provides a guarantee
of obtaining a good space connectivity. As directly seeking
manifold-preserving sparse graphs is NP-hard, the MPGR al-
gorithm seeks an approximation to maximizing (10).

For subset selection of sparse Gaussian processes, a point
that is closer to surrounding points should be selected because
it is more likely to contain more important information. This
is exactly reflected by the MPGR algorithm where points with
a large degree will be preferred. Another reason for adopting
MPGR to construct sparse Gaussian processes is that the prop-
erty of manifold-preserving requires a high space connectivity,
which tends to select globally representative points.

The high space connectivity among points in the sparse
graph returned by MPGR is of great practical significance. For
regression, it tends to select points with wide spread rather than
points gathered together. This maintains a good global structure
which is less prone to overfitting. For example, if the points re-
tained reside in a small area, the regression function will prob-
ably overfit these points and generalize badly to other areas.
For classification, a classifier learned from the sparse graph ob-
tained by MPGR will generalize well to the unselected points.
The reason is that from the definition of manifold-preserving

sparse graphs, points outside of the sparse graph have high fea-
ture similarities to the vertices in the sparse graph. High sim-
ilarities of features usually leads to high similarities of labels.
This classifier is also likely to generalize well to points not in
the training set, as a result of the high space connectivity of the
sparse graph.

The MPGR algorithm for constructing sparse Gaussian pro-
cesses is shown is composed of three procedures: 1) Construct
a graph with all training points. In this paper, we adopt the k-
nearest-neighbor rule for graph adjacency construction where k
is set to 10. 2) Select a subset by the MPGR algorithm. Slightly
different from the original algorithm we just retain the selected
vertices while ignore the weights which are unnecessary for
subsequent training of Gaussian processes. 3) Train a Gaussian
process with the subset.

4. Multitask sparse Gaussian processes with multi-
task sparsity regularization

It is known that learning multiple tasks simultaneously has
the potential to improve the generalization performance. Ap-
plying this idea to the subset selection of multitask sparse
Gaussian processes, we propose a multitask sparsity regular-
izer which seeks to simultaneously construct multiple sparse
Gaussian processes.

Our starting point is that the global structures of retained
points from closely related tasks should be similar and struc-
tures from loosely related tasks should be less similar. Now we
explain the rationality of this intuition through Figure 1. As-
sume that there are just two closely related tasks, and the top
point and the bottom point from left task get an equal value
based on their original criterion. From the perspective of keep-
ing the similarity of global structures, the top point is more
proper. The multitask sparsity regularizer can be utilized to
measure the similarity of global structures. Combined the orig-
inal criterion with the regularizer, the next point to be selected
from the left task should be the top point rather than the bottom
right point.

We proceed to transform the above multitask sparsity in-
tuition to mathematical formulations. First of all, we use

k/

> T
e L
is a point considered for selection from task ¢,, and a:{ (=
1,..., k') are k' nearest neighbors of x; from already-selected
points of another task 7. A smaller distance means a closer rela-
tionship, and a closer relationship means a high similarity. We
use the reciprocal of distance for the sake of maximizing our
regularization formula. Considering the possibly wide scatter

to measure the similarity of points, where ¢,



Figure 1. The effect of multitask sparsity regular-
izer. The left part is the task which is selecting
the next data point. The right part is a related
task. The lines are the real distribution curves. o
means a selected point. ® means an unselected
point.

of retained points of related tasks, we just employ the distance
of a point to its k&’ nearest neighbors from related tasks. For ex-
ample, suppose that a related task selected four points in group
A and four points in group B, and A and B are far apart. If
we utilize the distance to all the selected points, the regularizer
may help to select a point which is far away from both A and
B. When £’ is set to be four, points closer to either A or B are
encouraged to be selected. &’ is three in this paper.

Then, we propose to use m to modulate the similarity,

which reflects the relevance between different tasks. Here, f;
is the task-descriptor feature of task ¢,,. E. Bonilla et al. [16]
chose eight crucial points and set the mean of their labels to
be the the task-descriptor feature. Here, we define the task-
descriptor feature in the same way, and the crucial points are
selected based on the principal variable algorithm [14]. We
use the distance between task-descriptor features to represent
the task relevance. A smaller distance between task-descriptor
features means tasks are more similar.

We reach the multitask sparsity regularizer by combining
the two terms mentioned above. The regularization formula
is given as

N K’
Regle)= S 30 ! ,

i=1,it, j=1 H ftlﬂ - f7,/ HH L, — Iz ||

(1)

where n; is the total number of tasks. Maximizing the formula
can make the global structures of points of related tasks be simi-
lar. Combining the proposed multitask sparsity regularizer with
existing single-task sparse criteria in an appropriate way will
easily result in our multitask sparse Gaussian processes.

The multitask sparsity regularizer can be applied to IVM al-
most directly to get a multitask sparse Gaussian process. As
mentioned before, IVM maximizes (5). Combined with (11),
the sparse criterion is then to maximize

t

—3log ‘E(t") + 3 log ‘EE—TH) + AReg(xy, ), (12)

LTty

where A controls the proportion between IVM formula and our
regularizer. We call the multitask sparse Gaussian process un-
derlying (12) relevance multitask informative vector machine
(rMTIVM). Here, r stands for relevance since our method ex-
plicitly considers task relevance. To make \ easy to set, we
split it into two parameters, A = « X (3. First, we use a nor-
malization parameter o to make the value of our formula be in
the same range of IVM formula. Then, we set 5 to control the
relative proportion.

We also integrate our multitask sparsity regularizer with
MPGR to induce another multitask sparse Gaussian process
which we call MTMPGR. tMTMPGR maximizes the follow-
ing objectives to select a point

d(x¢,) + AReg(xy,,), (13)

where d (z1,) = >_; w(24,, j). As mentioned before, IVM is
extended to MTIVM by using the same point selection crite-
rion and sharing the kernel parameters and training set among
multiple tasks. For comparison, we develop MPGR algorithm
for constructing sparse Gaussian processes to MTMPGR in
the same way, which selects the point with the largest degree
among points of all the tasks.

5. Experiments

We evaluate the proposed single-task and multitask sparse
Gaussian processes on five data sets. The GPML toobox ' and
MTIVM toolbox 2 are used to construct Gaussian processes for
MPGR, MTMPGR, tMTMPGR, and IVM, MTIVM, tMTIVM,
respectively.

We perform experiments for single-task sparse Gaussian pro-
cesses on three data sets and multitask sparse Gaussian pro-
cesses on two data sets. All the data sets are publicly available
where Haberman’s Survival (HS), IRIS, Auto MPG, Concrete
Slump (CS) are from the UCI Machine Learning Repository,
Landmine data can be found in a website 3.

All the parameters are selected by five-fold cross-validation
on training data. We define the graph weight in MPGR using

Ihttp://gaussianprocess.org/gpml/
Zhttp://www.dcs.shef.ac.uk/~neil
3http://www.ece.duke.edu/lcarin/~Land-mineData.zip



TABLE 1. Experimental Results on HS.

Method Error rate (%) Time (s)
IVM 29.5 +2.2 14.4
MPGR 271+44 13.2

TABLE 2. Experimental Results on IRIS.

Method Error rate (%) Time (s)
IVM 5.0+2.1 4.0
MPGR 4.2+1.8 3.8

the Gaussian RBF (radial basis function) kernel

—llwg =z
tX g

Wi =€ (14)
where ¢ is a parameter varying in {1, 5,10} and m,, is the mean
of all the smallest distances between one point and its neigh-
bors. The normalization parameter « is set to be the ratio of
the maximum values of the formula of IVM or MPGR and our
multitask sparsity regularizer. The proportion parameter S is
selected from {1/2,2/3,1,3/2,2}. For constructing gaussian
processes, the type of mean function, covariance function, like-
lihood function and inference method are selected by the accu-
racy rate of experiments on test data.

All the results are based on ten random splits of training and
test data for each data set. We measure the experimental per-
formance by the accuracy and the average time consumption.
For classification problems, accuracy is measured by the error
rate (%). For regression problems, accuracy is measured by the
mean absolute relative error (MARE), which is defined as

*
T; — Iy

1
MARE = E Z ; (15)

Li

where z; is the real value of the ith point, z is its predicted
value and /, is the total number of points.

5.1. Single-task sparse Gaussian processes

The HS data set is used to predict if a cancer patient could
survive more than five years from the age of patient, the oper-
ation year and the number of positive axillary nodes detected.
We randomly choose 200 points as training data, the rest points
for test and the subset size is 100.

The IRIS data set contains three classes of 50 instances each.
It has four feature attributes and one predicted attribute. It is a

TABLE 3. Experimental Results on Auto MPG.

Method MARE Time (s)
IVM 13.2+1.5 6.0
MPGR 14.8+1.0 2.9

TABLE 4. Experimental Results on LANDMINE.

Method Error rate (%) Time (s)
MTIVM 9.8 +£5.0 8.7
rMTIVM 7.8+27 22.8

MTMPGR 7.4+28 13.2
rMTMPGR 58+1.5 31.6

multi-class classification problem. We randomly choose 100
points as the training data, 50 for test and the subset size is 55.

The Auto MPG data concerns the city-cycle fuel consump-
tion in miles per gallon, which is a regression problem. We
modify the original data set by removing the car name attribute
due to its uniqueness for each instance, and use seven attributes
to predict the continuous attribute MPG. We randomly choose
200 points as the training data, 100 for test and the subset size
is 100.

Our experiments include binary classification, multi-class
classification and regression problems which can show the wide
applicability of our methods. TABLE 1, TABLE 2 and TABLE
3 gives the experimental results. It is straightforward to see that
MPGR for sparse Gaussian processes is comparable to IVM.
For classification problems MPGR obtains a lower error rate
than IVM. For the regression problem MPGR is slightly worse
than IVM. MPGR has a less time consumption than IVM.

5.2. Multitask sparse Gaussian processes

The Landmine data set is collected from a real landmine
field. It’s a binary classification problem that has 19 related
tasks with totally 9674 data points and each point is represented
by a nine-dimensional feature vector. We randomly choose 320
points as the training data, 80 for test and the subset size is 40.

The CS data set includes 103 data points. There are seven
input variables, and three output variables in the data set. We
apply this multi-output data to multitask experiments by set-
ting each output as a task. This is a regression problem. We
randomly choose 80 points as the training data, 23 for test and
the subset size is 50.

The experimental results are shown in TABLE 4 and TABLE
5, which indicate that the multitask sparsity regularizer can help



TABLE 5. Experimental Results on CS.

Method Error rate (%) Time (s)

MTIVM 15.3+ 2.6 14.1
rMTIVM 14.7+1.4 33.7
MTMPGR 17.1£3.9 15.0
rMTMPGR 16.0 + 3.4 36.6

to promote the performance. With the time consumption of our
methods being less than three times that of contrast methods,
both the averaged error rates and the standard deviations of our
methods are smaller.

6. Conclusions

In this paper we have applied the MPGR algorithm to con-
struct single-task sparse Gaussian processes. As a graph sparsi-
fication algorithm MPGR works well at maintaining the global
structure, which is desirable for constructing sparse Gaussian
processes. Experimental results show that our method is com-
parable to IVM.

We have also proposed a multitask sparsity regularizer for
subset selection among multiple tasks. The regularization for-
mulation is composed of two factors, which reflect the task rel-
evance and the similarities of the global structures of retained
points between related tasks, respectively. It encourages the
global structures of retained points from closely related tasks
to be similar. Combining the regularizer with existing single-
task sparse criteria results in our multitask sparse Gaussian pro-
cesses. Experimental results show their effectiveness.

In this paper, we utilized the principal variable algorithm to
describe task features that are employed to measure the task
relevance. Extensions of our multitask sparsity regularizer to
including other task relevance measurements can be interesting
future work.
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