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Semi-Supervised Support Vector Machines with
Tangent Space Intrinsic Manifold Regularization

Shiliang Sun and Xijiong Xie

Abstract —Semi-supervised learning has been an active research topic in machine learning and data mining. One main reason is
that labeling examples is expensive and time-consuming while there are large numbers of unlabeled examples available in many
practical problems. So far, Laplacian regularization has been widely used in semi-supervised learning. In this paper, we propose a new
regularization method called tangent space intrinsic manifold regularization. It is intrinsic to data manifold and favors linear functions
on the manifold. Fundamental elements involved in the formulation of the regularization are local tangent space representations which
are estimated by local principal component analysis, and the connections which relate adjacent tangent spaces. Simultaneously,
we explore its application to semi-supervised classification and propose two new learning algorithms called tangent space intrinsic
manifold regularized support vector machines (TiSVMs) and tangent space intrinsic manifold regularized twin support vector machines
(TiTSVMs). They effectively integrate the tangent space intrinsic manifold regularization consideration. The optimization of TiSVMs
can be solved by a standard quadratic programming while the optimization of TiTSVMs can be solved by a pair of standard
quadratic programmings. Experimental results on semi-supervised classification problems show the effectiveness of the proposed
semi-supervised learning algorithms.

Index Terms —Support vector machine, twin support vector machine, semi-supervised classification, manifold learning, tangent space
intrinsic manifold regularization

✦

1 INTRODUCTION

S EMI-SUPERVISED classification, which estimates a de-
cision function from few labeled examples and a

large quantity of unlabeled examples, is an active re-
search topic. Its prevalence is mainly motivated by the
need to reduce the expensive or time-consuming label
acquisition process. Evidence shows that, provided that
the unlabeled data which are inexpensive to collect
are properly exploited, people can obtain a superior
performance over the counterpart supervised learning
approaches with few labeled examples. For a compre-
hensive survey of semi-supervised learning methods,
refer to [1] and [2].

Current semi-supervised classification methods can be
divided into two categories, which are called single-
view and multi-view algorithms, respectively. Their dif-
ference lies in the number of feature sets used to train
classifiers. If more than one feature set is adopted to
learn classifiers, the algorithm would be called a multi-
view semi-supervised learning algorithm. The Lapla-
cian support vector machines (LapSVMs) [3], [4] and
Laplacian twin support vector machines (LapTSVMs) [5],
which can be regarded as two applications of Lapla-
cian eigenmaps to semi-supervised learning, are rep-
resentative algorithms for single-view semi-supervised
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classification. Typical multi-view classification meth-
ods include co-training [6], SVM-2K [7], co-Laplacian
SVMs [8], manifold co-regularization [9], multi-view
Laplacian SVMs [10], sparse multi-view SVMs [11] and
multi-view Laplacian TSVMs [12]. Although the regular-
ization method presented in this paper can be applied
to multi-view semi-supervised classification after some
appropriate manipulation, in this paper we only focus
on the single-view classification problem.

The principle of regularization has its root in mathe-
matics to solve ill-posed problems [13], and is widely
used in statistics and machine learning [3], [14],
[15]. Many well-known algorithms, e.g., SVMs [16],
TSVMs [17], ridge regression and lasso [18], can be
interpreted as instantiations of the idea of regularization.
A close parallel to regularization is the capacity control
of function classes [19]. Both regularization and the
capacity control can alleviate the ill-posed and over-
fitting problems of learning algorithms. Moreover, from
the point of view of Bayesian learning, the solution to
a regularization problem corresponds to the maximum
a posterior (MAP) estimate for a parameter of interest.
The regularization term plays the role of the prior dis-
tribution on the parameter in the Bayesian model [20].

In many real applications, data lying in a high-
dimensional space can be assumed to be intrinsically
of low dimensionality. That is, data can be well char-
acterized by far fewer parameters or degrees of freedom
than the actual ambient representation. This setting is
usually referred to as manifold learning, and the dis-
tribution of data is regarded to live on or near a low-
dimensional manifold. The validity of manifold learning
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has already been testified by some recent developments,
e.g., the work in [21], [22] and [23]. Laplacian regu-
larization is an important manifold learning method,
which is used to exploit the geometry of the probabil-
ity distribution by assuming that its support has the
geometric structure of a Riemannian manifold. Graph-
based learning methods often use this regularization to
obtain an approximation to the underlying manifold.
In particular, Laplacian regularization has been widely
used in semi-supervised learning to effectively combine
labeled examples and unlabeled examples. For exam-
ples, LapSVMs and LapTSVMs are two representative
semi-supervised classification methods with Laplacian
regularization. Laplacian regularized least squares are
regarded as a representative semi-supervised regression
method with Laplacian regularization [3]. The optimiza-
tion of such algorithms is built on a representer theorem
that provides a basis for many algorithms for unsuper-
vised, semi-supervised and fully supervised learning.

In this paper, we propose a new regularization method
called tangent space intrinsic manifold regularization
to approximate a manifold more subtly. Through this
regularization we can learn a linear function f(x) on the
manifold. The new regularization has potentials to be
applied to a variety of statistical and machine learning
problems. In later descriptions, Laplacian regularization
is in fact only a part of the tangent space intrinsic
manifold regularization.

Part of this research has been reported in a short
conference paper [24]. Compared to the previous work,
we have derived the formulation of the new regular-
ization in detail. While the previous work mainly con-
sidered data representation with the new regularization,
this paper considers a different task semi-supervised
classification and exhibits the usefulness of the new
regularization method for this task. Two new learn-
ing machines TiSVMs and TiTSVMs are thus proposed.
TiSVMs integrate the common hinge loss for classifica-
tion, norm regularization, and the tangent space intrinsic
manifold regularization term, and lead to a quadratic
programming problem, while TiTSVMs lead to a pair
of quadratic programming problems. Semi-supervised
classification experiments with TiSVMs and TiTSVMs on
multiple datasets give encouraging results.

The remainder of this paper is organized as follows. In
Section 2, we introduce the methodology of the tangent
space intrinsic manifold regularization. Then in Section 3
we generalize it based upon the popular weighted-
graph representation of manifolds from data, and re-
formulate the regularization term as a matrix quadratic
form through which we can gain insights about the
regularization and draw connections with related reg-
ularization methods. Moreover, this reformulation will
facilitate resolving semi-supervised classification tasks,
and the corresponding algorithms are given in Section 4
and Section 5, respectively. Experimental results which
shows the effectiveness of the regularization method in
semi-supervised classification are reported in Section 6,

followed by Section 7 which discusses further refine-
ments about the proposed methods and other possible
applications. Concluding remarks are given in Section 8.

2 METHODOLOGY OF THE TANGENT SPACE
INTRINSIC MANIFOLD REGULARIZATION

We are interested in estimating a function f(x) defined
on M ⊂ R

d, where M is a smooth manifold on R
d. We

assume that f(x) can be well approximated by a linear
function with respect to the manifold M. Let m be the
dimensionality of M. At each point z ∈ M, f(x) can be
represented as a linear function f(x) ≈ bz + w⊤

z uz(x) +
o(‖x − z‖2) locally around z, where uz(x) = Tz(x − z) is
an m-dimensional vector representing x in the tangent
space around z, and Tz is an m×d matrix that projects x
around z to a representation in the tangent space of M
at z. Note that in this paper the basis for Tz is computed
using local principal component analysis (PCA) for its
simplicity and wide applicability. In particular, the point
z and its neighbors are sent over to the regular PCA
procedure [25] and the top m eigenvectors of the d × d
covariance matrix are returned back as rows of matrix
Tz. The weight vector wz ∈ R

m is an m-dimensional
vector, and it is also the manifold-derivative of f(x) at z
with respect to the uz(·) representation on the manifold,
which we write as ∇T f(x)|x=z = wz.

Mathematically, a linear function with respect to the
manifold M, which is not necessarily a globally linear
function in R

d, is a function that has constant manifold
derivative. However, this does not mean wz is a constant
function of u due to the different coordinate systems
when the “anchor point” z changes from one point to
another. This needs to be compensated using “connec-
tions” that map a coordinate representation uz′ to uz for
any z′ near z. For points far apart, the connections are
not of interest for our purpose, since coordinate systems
on a manifold usually change and representing distant
points with a single basis would thereby lead to a large
bias.

To see how our approach works, we assume for
simplicity that Tz is an orthogonal matrix for all z:
TzT

⊤
z = I(m×m). This means that if x ∈ M is close to

z ∈ M, then x − z ≈ T⊤
z Tz(x − z) + O(‖x − z‖2). Now

consider x that is close to both z and z′. We can express
f(x) both in the tangent space representation at z and
z′, which gives

bz + w⊤
z uz(x) ≈ bz′ + w⊤

z′uz′(x) + O(‖x − z′‖2 + ‖x− z‖2).

That is, bz + w⊤
z uz(x) ≈ bz′ + w⊤

z′uz′(x) . This means that

bz + w⊤
z Tz(x − z) ≈ bz′ + w⊤

z′Tz′(x − z′).

Setting x = z, we obtain bz ≈ bz′ + w⊤
z′Tz′(z − z′), and

bz′ + w⊤
z′Tz′(z − z′) + w⊤

z Tz(x − z) ≈ bz′ + w⊤
z′Tz′(x − z′).

This implies that

w⊤
z Tz(x − z) ≈ w⊤

z′Tz′(x − z) ≈ w⊤
z′Tz′T

⊤
z Tz(x − z) +

O(‖x − z′‖2 + ‖x − z‖2). (1)
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Since (1) holds for arbitrary x ∈ M close to z ∈ M,
it follows that, w⊤

z ≈ w⊤
z′Tz′T

⊤
z + O(‖z − z′‖) or wz ≈

TzT
⊤
z′ wz′ + O(‖z − z′‖) .

This means that if we expand at points z1, . . . , zk ∈ Z ,
and denote neighbors of zj as N (zj), then the correct
regularizer will be

R({bz, wz}z∈Z) =
∑k

i=1

∑

j∈N (zi)

[(
bzi

− bzj

−w⊤
zj

Tzj
(zi − zj)

)2
+ γ‖wzi

− Tzi
T⊤

zj
wzj

‖2
2

]

. (2)

The function f(x) is approximated as follows

f(x) = bz(x) + w⊤
z(x)Tz(x)

(
x − z(x)

)
, (3)

where z(x) = argminz∈Z ‖x − z‖2. This is a very natural
formulation for out-of-example extensions.

2.1 Effect of Local PCA

As we consider the setting of manifold learning and the
dimensionality of the tangent space is usually less than
the one of the outer space, the local PCA is used to
determine the local tangent space. If we don’t use local
PCA and consider the original space, the above approach
is equivalent to considering a piecewise linear function,
namely Tz = T⊤

z = I . The corresponding expression of
the regularization becomes

R({bz, wz}z∈Z) =
∑k

i=1

∑

j∈N (zi)

[(
bzi

− bzj

−w⊤
zj

(zi − zj)
)2

+ γ‖wzi
− wzj

‖2
2

]

. (4)

However, this will lead to higher dimensionality and
more parameters.

The rationality of the proposed regularization prin-
ciple can be interpreted from the standpoint of effec-
tive function learning. A globally linear function in the
original ambient Euclidean space is often too simple,
but instead a locally or piecewise linear function in this
space would be too complex, since it can have too many
parameters to be estimated. The linear function with
respect to the manifold as favored by the current regu-
larization method is a good trade-off between these two
situations. Basically it can be seen as a locally linear func-
tion in the ambient space, but since the dimensionality
of the function weights is m rather than d, the number of
parameters to be learned is greatly reduced compared to
the local linear function setting in the original Euclidean
space. This reflects a good leverage between flexibility
and manageability for effective function learning from
data.

3 GENERALIZATION AND REFORMULATION OF
THE REGULARIZATION TERM

Relating data with a discrete weighted graph is a pop-
ular choice, and there are indeed a large family of
graph-based statistical and machine learning methods.
It also makes sense for us to generalize the regularizer

R({bz, wz}z∈Z) in (2) using a symmetric weight matrix
W constructed from the above data collection Z .

Entries in W characterize the closeness of different
points where the points are often called nodes in the
terminology of graphs. Usually there are two steps in-
volved in constructing a weighted graph. The first step
builds an adjacency graph by putting an edge between
two “close” points. People can choose to use parameter
ǫ ∈ R or parameter n ∈ N to determine close points,
which means that two nodes would be connected if their
Euclidean distance is within ǫ or either node is among
the n nearest neighbors of the other as indicated by the
Euclidean distance. The second step calculates weights
on the edges of the graph with a certain similarity
measure. For example, the heat-kernel method computes
weight Wij for two connected nodes i and j by

Wij = exp−
‖xi−xj‖2

t (5)

where parameter t > 0, while for nodes not directly con-
nected the weights would be zero [23]. One can also use
the polynomial kernel to calculate weights Wij = (x⊤

i xj)
p

where parameter p ∈ N is the polynomial degree. The
simplest approach for weight assignment is to adopt the
{0, 1} values where weights are 1 for connected edges
and 0 for others.

Therefore, the generalization of the tangent space in-
trinsic manifold regularizer turns out to be

R({bz, wz}z∈Z) =
∑k

i=1

∑k

j=1 Wij

[(
bzi

− bzj

−w⊤
zj

Tzj
(zi − zj)

)2
+ γ‖wzi

− Tzi
T⊤

zj
wzj

‖2
2

]

. (6)

The previous regularizer is a special case of (6) with
{0, 1} weights. The advantage of the new regularizer is
that the discrepancy of the neighborhood relationship is
treated more logically.

Now we reformulate the regularizer (6) into a canon-
ical matrix quadratic form. The benefits include relat-
ing our regularization method with other regularization
approaches and facilitating subsequent formulations on
semi-supervised classification. In particular, we would
like to rewrite the regularizer as a quadratic form in
terms of a symmetric matrix S as follows,

R({bz, wz}z∈Z) =













bz1

...
bzk

wz1

...
wzk













⊤

S













bz1
...

bzk

wz1

...
wzk













=













bz1

...
bzk

wz1

...
wzk













⊤

(
S1 S2

S⊤
2 S3

)













bz1

...
bzk

wz1

...
wzk













, (7)
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where

(
S1 S2

S⊤
2 S3

)

is a block matrix representation of

matrix S and the size of S1 is k × k. In this paper,
we suppose that wzi

(i = 1, . . . , k) is an m-dimensional
vector. Therefore, the size of S is (k +mk)× (k +mk). In
order to fix S, we decompose (6) into four additive terms
as follows and then examine their separate contributions
to the whole S

R({bz, wz}z∈Z) =

k∑

i=1

k∑

j=1

Wij(bzi
− bzj

)2

︸ ︷︷ ︸

term one

+

k∑

i=1

k∑

j=1

Wij

(
w⊤

zj
Tzj

(zi − zj)
)2

︸ ︷︷ ︸

term two

+

k∑

i=1

k∑

j=1

Wij

[
− 2(bzi

− bzj
)w⊤

zj
Tzj

(zi − zj)
]

︸ ︷︷ ︸

term three

+ γ

k∑

i=1

k∑

j=1

Wij‖wzi
− Tzi

T⊤
zj

wzj
‖2
2

︸ ︷︷ ︸

term four

.

3.1 Term One

k∑

i=1

k∑

j=1

Wij(bzi
− bzj

)2 = 2






bz1

...
bzk






⊤

(D − W )






bz1
...

bzk




,

where D is a diagonal weight matrix with Dii =
∑k

j=1 Wij . This means that term one contributes to S1

in (7). Actually, we have S1 = 2(D − W ).

3.2 Term Two

Define vector Bji = Tzj
(zi − zj). Then,

k∑

i=1

k∑

j=1

Wij

(
w⊤

zj
Tzj

(zi − zj)
)2

=

k∑

i=1

k∑

j=1

Wij(w
⊤
zj

Bji)
2

=

k∑

i=1

k∑

j=1

Wijw⊤
zj

BjiB
⊤
jiwzj

=

k∑

j=1

w⊤
zj

(
k∑

i=1

WijBjiB
⊤
ji

)
wzj

=

k∑

i=1

w⊤
zi

Hiwzi
,

where we have defined matrices {Hj}k
j=1 with Hj =

∑k

i=1 WijBjiB
⊤
ji .

Now suppose we define a block diagonal matrix SH
3

sized mk × mk with block size m × m. Set the (i, i)-th
block (i = 1, . . . , k) of SH

3 to be Hi. Then the resultant
SH

3 is the contribution of term two for S3 in (7).

3.3 Term Three

k∑

i=1

k∑

j=1

Wij

[
− 2(bzi

− bzj
)w⊤

zj
Tzj

(zi − zj)
]

=

k∑

i=1

k∑

j=1

Wij

[
− 2(bzi

− bzj
)w⊤

zj
Bji

]

= 2

k∑

i=1

k∑

j=1

Wij(−bzi
w⊤

zj
Bji) + 2

k∑

i=1

k∑

j=1

Wij(bzj
w⊤

zj
Bji)

=

k∑

i=1

k∑

j=1

Wij(−bzi
B⊤

jiwzj
) +

k∑

i=1

k∑

j=1

Wij(−w⊤
zj

Bjibzi
)

+

k∑

j=1

bzj
(

k∑

i=1

WijB
⊤
ji)wzj

+

k∑

j=1

w⊤
zj

(

k∑

i=1

WijBji)bzj

=

k∑

i=1

k∑

j=1

Wij(−bzi
B⊤

jiwzj
) +

k∑

i=1

bzi
F⊤

i wzi

+

k∑

i=1

k∑

j=1

Wij(−w⊤
zj

Bjibzi
) +

k∑

i=1

w⊤
zi

Fibzi
,

where we have defined vectors {Fj}
k
j=1 with Fj =

∑k

i=1 WijBji. From this equation, we can give the formu-
lation of S2, and then the S⊤

2 in (7), which is its transpose,
is ready to get.

Suppose we define two block matrices S1
2 and S2

2 sized
k × mk each where the block size is 1 × m, and S2

2 is
a block diagonal matrix. Set the (i, j)-th block (i, j =
1, . . . , k) of S1

2 to be −WijB
⊤
ji , and the (i, i)-th block (i =

1, . . . , k) of S2
2 to be F⊤

i . Then, it is clear that S2 = S1
2+S2

2 .

3.4 Term Four

Denote matrix Tzi
T⊤

zj
by Aij . Then, with γ omitted

temporarily,

k∑

i=1

k∑

j=1

Wij‖wzi
− Tzi

T⊤
zj

wzj
‖2
2

=
k∑

i=1

k∑

j=1

Wij‖wzi
− Aijwzj

‖2
2

=

k∑

i=1

k∑

j=1

Wijw⊤
zi

wzi
+

k∑

i=1

k∑

j=1

Wijw⊤
zj

A⊤
ijAijwzj

−
k∑

i=1

k∑

j=1

2Wijw⊤
zi

Aijwzj

=

k∑

i=1

Diiw
⊤
zi

I(m×m)wzi
+

k∑

j=1

w⊤
zj

(

k∑

i=1

WijA
⊤
ijAij)wzj

−
k∑

i=1

k∑

j=1

2Wijw⊤
zi

Aijwzj

=

k∑

i=1

w⊤
zi

(DiiI + Ci)wzi
−

k∑

i=1

k∑

j=1

w⊤
zi

(2WijAij)wzj
,
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where in the last line we have defined matrices {Cj}k
j=1

with Cj =
∑k

i=1 WijA
⊤
ijAij .

Now suppose we define two block matrices S1
3 and

S2
3 sized mk × mk each where the block size is m × m,

and S1
3 is a block diagonal matrix. Set the (i, i)-th block

(i = 1, . . . , k) of S1
3 to be DiiI + Ci, and the (i, j)-th

block (i, j = 1, . . . , k) of S2
3 to be 2WijAij . Then the

contribution of term four for S3 would be γ(S1
3 − S2

3).
Further considering the contribution of term two for S3,
we finally have S3 = SH

3 + γ(S1
3 − S2

3).

3.5 Connections with the Laplacian Regularization

From our reformulation, we can draw a connection
between our regularizer and the Laplacian regulariza-
tion [23]. The Laplacian regularizer, in our current ter-
minology, can be expressed as

k∑

i=1

k∑

j=1

Wij(bzi
− bzj

)2

= 2






bz1

...
bzk






⊤

(D − W )






bz1
...

bzk






= 2






bz1

...
bzk






⊤

L






bz1

...
bzk




,

where L = D−W is the Laplacian matrix. Obviously, the
matrix S1 in the tangent space intrinsic manifold regu-
larizer equals 2L. In this sense, we can say that our reg-
ularizer reflects the Laplacian regularization to a certain
extent. However, this regularizer is more complicated as
it intends to favor linear functions on the manifold, while
the Laplacian regularization only requests the function
values for connected nodes to be as close as possible.

4 SEMI-SUPERVISED SVMS

In this section, we first introduce the model of TiSVMs.
Then we transform the optimization problem to a
quadratic programming problem. Finally, we give the
computational complexity and algorithmic description of
TiSVMs.

4.1 TiSVMs

The SVM is a powerful tool for classification and regres-
sion. It is based on structural risk minimization that min-
imizes the upper bound of the generalization error [28].
The standard SVMs solve a quadratic programming
problem and output the hyperplane that maximizes the
margin between two parallel hyperplanes.

For the semi-supervised classification problem, sup-
pose we have ℓ labeled examples and u unlabeled exam-
ples {xi}

ℓ+u
i=1 , and without loss of generalization the first

ℓ examples correspond to the labeled ones with labels

yi ∈ {+1,−1} (i = 1, . . . , ℓ). Only binary classification is
considered in this paper.

We propose a new method named tangent space in-
trinsic manifold regularized SVMs (TiSVMs) for semi-
supervised learning, which attempts to solve the follow-
ing problem

min
{bi,wi}

ℓ+u
i=1

1

ℓ

ℓ∑

i=1

(1 − yif(xi))+ + γ1

ℓ+u∑

i=1

‖wi‖
2
2

+ γ2R({bi, wi}
ℓ+u
i=1 ),

(8)

where (1 − yif(xi))+ is the hinge loss [16], [26] defined
as

(1 − yf(x))+ =

{
1 − yf(x), for 1 − yf(x) ≥ 0
0, otherwise,

γ1, γ2 ≥ 0 are regularization coefficients, and
R({bi, wi}

ℓ+u
i=1 ) is the regularizer analogical to that

given in (6). Note that, for labeled examples, f(xi) is
equal to the corresponding bi.

For classification purpose, the classifier outputs for the
unlabeled training examples are

yi = sgn(bi), i = ℓ + 1, . . . , ℓ + u, (9)

where sgn(·) is the sign function which outputs 1 if
its inputs are nonnegative and −1 otherwise. For a test
example x which is not in {xi}

ℓ+u
i=1 , the SVM classifier

predicts its label by

sgn
(

bz(x) + w⊤
z(x)Tz(x)

(
x − z(x)

))

, (10)

where z(x) = argminz∈{xi}
ℓ+u
i=1

‖x − z‖2.

4.2 Optimization via Quadratic Programming

We now show that the optimization of (8) can be im-
plemented by a standard quadratic programming solver.
To begin with, using slack variables to replace the hinge
loss, we rewrite (8) as

min
{bi,wi}

ℓ+u
i=1

,{ξi}ℓ
i=1

1

ℓ

ℓ∑

i=1

ξi + γ1

ℓ+u∑

i=1

‖wi‖
2
2

+ γ2R({bi, wi}
ℓ+u
i=1 )

s.t.

{
yibi ≥ 1 − ξi, i = 1, . . . , ℓ
ξi ≥ 0, i = 1, . . . , ℓ .

(11)

Define ξ = (ξ1, . . . , ξℓ)
⊤, and a = (ξ⊤, b⊤, w⊤)⊤. Sup-

pose the first ℓ entries of b correspond to the ℓ labeled
example x1, . . . , xℓ, respectively. We can reformulate (11)
as a standard quadratic program [27]

min
a

1

2
a⊤H1a + h⊤

1 a

s.t. H2a ≤ h2 , (12)

where H1 is a sparse matrix whose nonzero entries are
only included in the bottom right sub-block Hbr

1 sized
(ℓ + u)(m + 1) × (ℓ + u)(m + 1), h⊤

1 = (1
ℓ
, . . . , 1

ℓ
, 0, . . . , 0)

with the first ℓ entries being nonzero, H2 is a sparse
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matrix with 2ℓ rows, h⊤
2 = (−1, . . . ,−1, 0, . . . , 0) with the

front ℓ entries being −1 and the back ℓ entries being 0.
The matrix Hbr

1 is given by 2(γ1Hd +γ2S) where Hd is a
diagonal matrix whose first ℓ + u diagonal elements are
zero and the last m(ℓ + u) diagonal elements are 1, and
S is taken from (7) where we set k = ℓ + u and zi = xi

(i = 1, . . . , k). The nonzero entries of H2 can be specified
as follows. For row i (i ≤ ℓ), the i-th element is −1 and
the (ℓ + i)-th element is −yi. For row ℓ + i (i ≤ ℓ), the
i-th element is −1.

TiSVMs solve a quadratic program and have the com-
putational complexity of O([(ℓ + u)(m + 1) + ℓ]3). For
clarity, we explicitly state our tangent space intrinsic
manifold regularized support vector machines algorithm
in Algorithm 1.

Algorithm 1 Tangent Space Intrinsic Manifold Regular-
ized Support Vector Machines (TiSVMs)

1: Input: ℓ labeled examples, u unlabeled examples.
2: Obtain H1, h1, H2, h2.
3: Solve the quadratic programming (12) by using

cross-validation to choose parameters.
4: Output: Predict the label of unlabeled training ex-

amples according to (9); predict the label of a new
example according to (10).

5 SEMI-SUPERVISED TSVMS

In this section, we first introduce the model of TiTSVMs.
Then we transform the optimization problems to
quadratic programming problems. We give the com-
putational complexity and algorithmic description of
TiTSVMs. Finally, we introduce related work and make
comparisons.

5.1 TiTSVMs

The twin support vector machine (TSVM) [17] is a
nonparallel hyperplane classifier which aims to generate
two nonparallel hyperplanes such that one of the hyper-
planes is closer to one class and has a certain distance
to the other class. Two classification hyperplanes are
obtained by solving a pair of quadratic programming
problems. The label of a new example is determined
by the minimum of the perpendicular distances of the
example to the two classification hyperplanes.

For the semi-supervised classification problem of
TSVMs, suppose we have ℓ labeled examples which
contain ℓ1 positive examples, ℓ2 negative examples and
u unlabeled examples.

We propose a new method named TiTSVMs for semi-
supervised learning, which attempts to solve the two

quadratic programming problems in turn

min
{b

+

i
,w+

i
}ℓ+u

i=1
,{ξi}

ℓ2
i=1

1

ℓ2

ℓ2∑

i=1

ξi + γ1

ℓ1∑

i=1

‖b+
i ‖

2
2

+ γ2R({b+
i , w+

i }
ℓ+u
i=1 )

s.t.

{
b+
ℓ1+i ≥ 1 − ξi, i = 1, . . . , ℓ2

ξi ≥ 0, i = 1, . . . , ℓ2,

(13)

and

min
{b

−
i

,w−
i
}ℓ+u

i=1
,{ηi}

ℓ1
i=1

1

ℓ1

ℓ1∑

i=1

ηi + γ1

ℓ2∑

i=1

‖b−i ‖
2
2

+ γ2R({b−i , w−
i }

ℓ+u
i=1 )

s.t.







b−ℓ2+i ≥ 1 − ηi, i = 1, . . . , ℓ1

ηi ≥ 0, i = 1, . . . , ℓ1

b−i < b+
ℓ1+i, i = 1, . . . , ℓ2

b−ℓ2+i > b+
i , i = 1, . . . , ℓ1,

(14)

where γ1, γ2 ≥ 0 are regularization coefficients, and
R({b+

i , w+
i }

ℓ+u
i=1 ) and R({b−i , w−

i }
ℓ+u
i=1 ) are the regularizer

analogical to that given in (6). Note that, for labeled
examples, f+(xi) is equal to the corresponding b+

i and
f−(xi) is equal to the corresponding b−i . From (13), we
obtain a set of classification hyperplanes such that posi-
tive examples are closer to them and negative examples
are at a certain distance to them. Then, after we obtain
the first set of classification hyperplanes, we add two
additive constraints such that the distance of positive
examples to the first set of classification hyperplanes is
smaller than the distance to the other set of classification
hyperplanes and the distance of negative example to the
first set of classification hyperplanes is larger than the
distance to the other.

For classification purpose, we at first search the nearest
neighbor of a new example and find the tangent space
representation of the nearest neighbor. The classifier
outputs for the unlabeled training examples are

yi = sgn(|b−i | − |b+
i |), i = ℓ + 1, . . . , ℓ + u. (15)

For a test example x which is not in {xi}
ℓ+u
i=1 , the TiTSVM

classifier predicts its label by

sgn
(

|b−z(x) + w−⊤
z(x)Tz(x)

(
x − z(x)

)
| − |b+

z(x)+

w+⊤
z(x)Tz(x)

(
x − z(x)

)
|
)

,
(16)

where z(x) = argminz∈{xi}
ℓ+u
i=1

‖x − z‖2.

5.2 Optimization via Quadratic Programming

Define ξ = (ξ1, . . . , ξℓ2)
⊤, η = (η1, . . . , ηℓ1)

⊤, a+ =
(ξ⊤, b+⊤, w+⊤)⊤, and a− = (η⊤, b−⊤, w−⊤)⊤. Suppose
the first ℓ entries of b+ and b− correspond to the ℓ
labeled example x1, . . . , xℓ, respectively. We can reformu-
late (13) as a standard quadratic program

min
a+

1

2
a+⊤H+

1 a+ + h+⊤
1 a+

s.t. H+
2 a+ ≤ h+

2 , (17)
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where H+
1 is a sparse matrix whose nonzero entries are

only included in the bottom right sub-block H+br
1 sized

(ℓ+u)(m+1)×(ℓ+u)(m+1), h+⊤
1 = ( 1

ℓ2
, . . . , 1

ℓ2
, 0, . . . , 0)

with the first ℓ2 entries being nonzero, H+
2 is a sparse

matrix with 2ℓ2 rows, and h+⊤
2 = (−1, . . . ,−1, 0, . . . , 0)

with the front ℓ2 entries being −1 and the back ℓ2 entries
being 0. The matrix H+br

1 is given by 2γ2S
++Mℓ1 where

S+ is taken from (7) by setting k = ℓ+u and zi = xi (i =
1, . . . , k) and Mℓ1 is a diagonal matrix with the first ℓ1

diagonal elements being 2γ1 and the rest 0. The nonzero
entries of H+

2 can be specified as follows. For row i (i ≤
ℓ2), both the i-th element and the (ℓ1 + ℓ2 + i)-th element
are −1. For row ℓ2 + i (i ≤ ℓ2), the i-th element is −1.

Then we reformulate (14) as a standard quadratic
program

min
a−

1

2
a−⊤H−

1 a− + h−⊤
1 a−

s.t. H−
2 a− ≤ h−

2 , (18)

where H−
1 is a sparse matrix whose nonzero entries are

only included in the bottom right sub-block H−br
1 sized

(ℓ+u)(m+1)×(ℓ+u)(m+1), h−⊤
1 = ( 1

ℓ1
, . . . , 1

ℓ1
, 0, . . . , 0)

with the first ℓ1 entries being nonzero, H−
2 is a

sparse matrix with 2ℓ1 + ℓ2 + ℓ1 rows, and h−⊤
2 =

(−1, . . . ,−1, 0, . . . , 0, . . . , b+
ℓ1+1, . . . , b

+
ℓ1+ℓ2

,−b+
1 , . . . ,−b+

ℓ1
)

with the front ℓ1 entries being −1, the back ℓ1 entries
being 0. The matrix H−br

1 is given by 2γ2S
− + Mℓ2

where S− is taken from (7) by setting k = ℓ + u and
zi = xi (i = 1, . . . , k) and Mℓ2 is a diagonal matrix
with the first ℓ2 diagonal elements being 2γ1 and the
rest 0. The nonzero entries of H−

2 can be specified as
follows. For row i (i ≤ ℓ1), both the i-th element and the
(ℓ1 + ℓ2 + i)-th element are −1. For row ℓ1 + i (i ≤ ℓ1),
the i-th element is −1. For row 2ℓ1 + i (i ≤ ℓ2), the
(ℓ1 + i)-th element is 1. For row 2ℓ1 + ℓ2 + i (i ≤ ℓ1), the
(ℓ1 + ℓ2 + i)-th element is −1.

TiTSVMs solve a pair of quadratic programs and have
the computational complexity of O([(ℓ+u)(m+1)+ℓ1]

3+
[(ℓ + u)(m + 1) + ℓ2]

3). For clarity, we explicitly state
our tangent space intrinsic manifold regularized twin
support vector machines algorithm in Algorithm 2.

Algorithm 2 Tangent Space Intrinsic Manifold Regular-
ized Twin Support Vector Machines (TiTSVMs)

1: Input: ℓ labeled examples (ℓ1 positive examples and
ℓ2 negative examples), u unlabeled examples.

2: Obtain H+
1 , H−

1 , h+
1 , h−

1 , H+
2 , H−

2 , h+
2 , h−

2 .
3: Solve the quadratic programming (17) and (18) by

using cross-validation to choose parameters.
4: Output: Predict the label of unlabeled training ex-

amples according to (15); predict the label of a new
example according to (16).

5.3 Comparisons with Related Work

For the purpose of comparison, below we give the
objective functions for SVMs [16], [28], TSVMs [17] and

LapSVMs [3], [10], respectively.
In its most natural form, the optimization of soft-

margin SVMs for supervised classification is to find a
function fs from a reproducing kernel Hilbert space
(RKHS) H. Optimization in the original space is sub-
sumed in the RKHS case with a linear kernel. Given
a set of ℓ labeled examples {(xi, yi)} (i = 1, ..., ℓ) with
yi ∈ {+1,−1}, the optimization problem is

min
fs∈H

1

ℓ

ℓ∑

i=1

(1 − yifs(xi))+ + γs‖fs‖
2
2,

where γs ≥ 0 is a norm regularization parameter.
Suppose examples belonging to classes 1 and −1 are

represented by matrices A+ and B−, and the size of A+

and B− are (ℓ1 × d) and (ℓ2 × d), respectively. We define
two matrices A, B and four vectors v1, v2, e1, e2, where
e1 and e2 are vectors of ones of appropriate dimensions
and

A = (A+, e1), B = (B−, e2), v1 =

(
w1

b1

)

, v2 =

(
w2

b2

)

. (19)

TSVMs obtain two nonparallel hyperplanes

w⊤
1 x + b1 = 0 and w⊤

2 x + b2 = 0 (20)

around which the examples of the corresponding class
get clustered. The classifier is given by solving the
following quadratic programs separately
(TSVM1)

min
v1,q

1

1

2
(Av1)

⊤(Av1) + c1e⊤
2 q1

s.t. − Bv1 + q1 � e2, q1 � 0,

(21)

(TSVM2)

min
v2,q

2

1

2
(Bv2)

⊤(Bv2) + c2e⊤1 q2

s.t. Av2 + q2 � e1, q2 � 0,

(22)

where c1, c2 are nonnegative parameters and q1, q2

are slack vectors of appropriate dimensions. The label
of a new example x is determined by the minimum
of |x⊤wr + br| (r = 1, 2) which are the perpendicular
distances of x to the two hyperplanes given in (20).

The intension of LapSVMs is for effective semi-
supervised learning under the local smoothness reg-
ularization. The role of unlabeled data is to restrict
the capacity of the considered function set through the
Laplacian matrix L. Namely, desirable functions must be
smooth across all the training examples. Given ℓ labeled
and u unlabeled examples, LapSVMs solve the following
problem in an RKHS

min
fls∈H

1

ℓ

ℓ∑

i=1

(1 − yifls(xi))+ + γ1‖fls‖
2
2 + γ2fls

⊤Lfls,

where γ1 and γ2 are nonnegative regularization
parameters as given before, and vector fls =
(fls(x1), . . . , fls(xℓ+u))⊤.
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Fig. 1. Examples of digits 3 and 8 in the handwritten digit
data set.

SVMs, TSVMs and LapSVMs are important learning
machines making use of the “kernel trick” where a linear
classification function in a potentially high-dimensional
RKHS is learned, whose relationship with respect to
the original inputs is usually nonlinear when nonlinear
kernel maps are adopted to generate the space. There
are two main differences between them and our TiSVMs
and TiTSVMs: i) They seek linear functions in probably
high-dimensional kernel spaces [19], while TiSVMs and
TiTSVMs pursue linear functions in low-dimensional
tangent spaces of manifolds; ii) They only learn one sin-
gle classification function, while TiSVMs and TiTSVMs
learn many (bi, wi) pairs which are then dynamically
selected to determine the label of some test example
depending on the distances between this example and
the training examples. However, there is a common
property among all the considered learning machines.
That is, they are all able to learn nonlinear classifiers
with respect to the original feature representation.

6 EXPERIMENTS

We evaluated the tangent space intrinsic manifold regu-
larization for semi-supervised classification with multi-
ple real-world datasets. There is a parameter γ, which is
intrinsic in the regularization matrix S. This parameter
leverages the two components in (6). Because there are
not very reasonable and necessary reasons to overweight
one over the other, we treat them equally in S, namely
γ = 1. Other parameters in classifiers are selected
through cross-validation. For example, regularization
parameters for TiSVMs and TiTSVMs, namely γ1 and
γ2, are selected from the set {10−6, 10−4, 10−2, 1, 10, 100}
through a two-fold cross-validation of labeled training
examples on the training set.

6.1 Handwritten Digit Classification

This dataset comes from the UCI Machine Learning
Repository. The data we use here include 2400 examples
of digits 3 and 8 chosen from the MNIST digital images1,
and half of the data are digit 3. Image sizes are 28× 28.
Ten images are shown in Figure 1. The training set
includes 80% of the data, and the remaining 20% serve as
the test set. For semi-supervised classification, 1% of the
whole data set are randomly selected from the training
set to serve as labeled training data.

For the construction of adjacency graphs, 10 nearest
neighbors are used. For edge weight assignment, we
choose the polynomial kernel of degree 3, following [30]
and [3] on similar classification tasks. The local tangent

1. http://yann.lecun.com/exdb/mnist/

Fig. 2. Examples of face and non-face images in the face
detection data set.

spaces are fixed to be 2-dimensional and 3-dimensional,
since for handwritten digits people usually obtain good
embedding results with these dimensionalities.

With the identified regularization parameters, we re-
train TiSVMs and TiTSVMs, and evaluate performances
on the test data and unlabeled training data, respec-
tively. The entire process is repeated over 10 random
divisions of the training and test sets, and the reported
performance is the averaged accuracy and the corre-
sponding standard deviation. Besides SVMs, LapSVMs
and LapTSVMs, parallel field regularization (PFR) [29]
is also adopted to compare with our method under
the same setting, e.g., the same kernel is used, and
regularization parameters are selected with the same
two-fold cross-validation method from the same range.
PFR, which is briefly mentioned in Section 7.4, is a recent
semi-supervised regression method which is used here
for classification. For SVMs the unlabeled training data
are neglected because they are only for semi-supervised
learning.

6.2 Face Detection

Face detection is a binary classification problem which
intends to identify whether a picture is a human face or
not. In this experiment, 2000 face and non-face images
from the MIT CBCL repository2 [31], [32] are used, where
half of them are faces and each image is a 19 × 19 gray
picture. Figure 2 shows a number of examples. The same
experimental setting with the previous handwritten digit
classification is adopted, such as the percentage of train-
ing data and the percentage of labeled data.

6.3 Speech Recognition

The Isolet dataset3 comes from the UCI Machine Learn-
ing Repository. It is collected from 150 subjects speaking
each letter of the alphabet twice. Hence, we have 52
training examples from each speaker. Due to the lack of
three examples, there are 7797 examples in total. These
speakers are grouped into five sets of 30 speakers each.
These groups are referred to as isolet1-isolet5. Each of
these datasets has 26 classes. The attribute information
include spectral coefficients, contour features, sonorant
features, pre-sonorant features and post-sonorant fea-
tures. In Isolet dataset, we choose two classes (a, b)
for classification. So there are in total 480 examples.
The training set includes 80% of the data, and the
remaining 20% serve as the test set. For semi-supervised
classification, 1/48 of the whole data set are randomly

2. http://cbcl.mit.edu/software-datasets/FaceData2.html
3. http://archive.ics.uci.edu/ml/datasets/
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TABLE 1
Classification Accuracies (%) (with Standard Deviations) and Time (with Standard Deviations) of Different Methods

on the Handwritten Digit Classification Data.

SVM LapSVM PFR(m=2) TiSVM(m=2)
U 88.04 (1.78) 90.56 (1.74) 88.51 (6.64) 92.09 (1.58)
T 87.98 (1.96) 90.40 (1.37) 88.56 (6.25) 92.40 (1.79)

T1 3.62×10
−1(4.86×10

−2) 3.03×10
2 (9.75) 6.05×10

3 (7.07×10) 6.70×10
3 (1.6×10

2)

T2 6.87×10
−2 (2.11×10

−2) 5.90×10
−3 (1.40×10

−3) 3.00×10
−4 (4.80×10

−4) 3.00×10
−4 (4.80×10

−4)

T3 1.55×10
−2 (5.00×10

−4) 1.55×10
−1 (2.39×10

−2) 1.57×10
−1 (2.24×10

−2) 1.55×10
−1 (1.28×10

−2)

TiTSVM(m=2) PFR(m=3) TiSVM(m=3) TiTSVM(m=3) LapTSVM
U 91.21 (1.99) 90.48 (2.63) 91.49 (1.88) 90.43 (2.52) 92.80 (1.71)
T 91.48 (2.34) 90.73 (2.87) 91.90 (1.85) 90.71 (2.29) 90.31 (2.37)

T1 4.52×10
4 (8.26×10

2) 7.29×10
3 (2.13×10

2) 8.95×10
3 (2.08×10

2) 1.24×10
5 (9.31×10

3) 2.88×10
3 (1.96×10

2)

T2 2.00×10
−3 (0.00) 4.00×10

−4 (5.16×10
−4) 4.00×10

−4 (5.16×10
−4) 4.50×10

−3 (4.30×10
−3) 1.03×10 (8.45×10

−1)

T3 2.22×10
−1 (8.74×10

−2) 1.89×10
−1 (7.00×10

−2) 1.85×10
−1 (4.61×10

−2) 1.96 (1.96) 2.59 (3.16×10
−1)

TABLE 2
Classification Accuracies (%) (with Standard Deviations) and Time (with Standard Deviations) of Different Methods

on the Face Detection Data.

SVM LapSVM PFR(m=2) TiSVM(m=2)
U 76.42 (6.34) 79.42 (6.65) 80.25 (7.21) 85.42 (3.86)
T 76.43 (6.12) 79.43 (5.65) 79.75 (7.76) 84.63 (3.64)

T1 3.58×10
−1 (4.97×10

−2) 1.87×10
2 (4.83) 1.97×10

3 (1.29×10) 2.27×10
3 (6.64×10)

T2 2.12×10
−2 (2.70×10

−3) 3.90×10
−3 (8.75×10

−4) 1.00×10
−4 (3.16×10

−4) 1.00×10
−4 (3.16×10

−4)

T3 5.50×10
−3 (1.40×10

−3) 7.70×10
−2 (9.30×10

−3) 7.21×10
−2 (9.70×10

−3) 6.40×10
−2 (3.30×10

−3)

TiTSVM(m=2) PFR(m=3) TiSVM(m=3) TiTSVM(m=3) LapTSVM
U 77.04 (10.78) 80.17 (7.77) 85.26 (4.11) 77.94 (7.79) 81.44 (2.77)
T 77.22 (10.73) 79.95 (7.95) 84.58 (3.97) 78.70 (8.40) 81.12 (3.26)

T1 2.68×10
4 (5.48×10

2) 2.89×10
3 (8.43×10) 4.17×10

3 (1.13×10
2) 6.69×10

4 (7.86×10
3) 1.77×10

3 (2.48×10)

T2 1.90×10
3 (3.16×10

−4) 2.00×10
−4 (4.22×10

−4) 2.00×10
−4 (4.22×10

−4) 2.90×10
−3 (3.20×10

−3) 6.34 (3.00×10
−1)

T3 7.75×10
−2 (1.82×10

−2) 6.53×10
−2 (1.19×10

−2) 7.39×10
−2 (9.70×10

−3) 4.00×10
−1 (5.24×10

−1) 1.56 (5.13×10
−2)

selected from the training set to serve as labeled training
examples. The same experimental setting is adopted as
the previous experiments.

6.4 German Credit Data

This German Credit dataset4 also comes from the UCI
Machine Learning Repository and consists of 1000 exam-
ples (300 positive examples and 700 negative examples).
The training set includes 80% of the data, and the
remaining 20% serve as the test set. For semi-supervised
classification, 1% of the whole data set are randomly
selected from the training set to serve as the labeled
training data. The same experimental setting is adopted
as the previous experiments.

6.5 Australian

The Australian dataset5 contains 690 examples (307
positive examples and 383 negative examples) and 14
attributes. The training set includes 80% of the data,
and the remaining 20% serve as the test set. For semi-
supervised classification, 1/30 of the whole data set are

4. https://archive.ics.uci.edu/ml/datasets/
Statlog+(German+Credit+Data)

5. http://archive.ics.uci.edu/ml/datasets/
Statlog+%28Australian+Credit+Approval%29

randomly selected from the training set to serve as the
labeled training data. In this dataset, we use RBF kernel
and set the adjusting kernel parameter to be 100 which
can perform well for LapSVMs. The other experimental
setting is adopted as the previous experiments.

6.6 Contraceptive Method Choice

The Contraceptive Method Choice dataset6 contains 1473
examples containing three classes. We choose 629 pos-
itive examples and 511 negative examples for binary
classification. The training set includes 80% of the data,
and the remaining 20% serve as the test set. For semi-
supervised classification, 1/50 of the whole data set are
randomly selected from the training set to serve as the
labeled training data. In this dataset, we use RBF kernel
and set the adjusting kernel parameter to be 100 which
can perform well for LapSVMs. The other experimental
setting is adopted as the previous experiments.

6.7 Experimental Results

Handwritten Digit Classification: The classification ac-
curacies and time of different methods on this dataset are

6. https://archive.ics.uci.edu/ml/datasets/
Contraceptive+Method+Choice
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TABLE 3
Classification Accuracies (%) (with Standard Deviations) and Time (with Standard Deviations) of Different Methods

on the Isolet Data.

SVM LapSVM PFR(m=2) TiSVM(m=2)
U 93.93 (3.30) 97.11 (0.95) 95.61 (8.01) 97.49 (0.63)
T 94.16 (4.48) 97.08 (2.90) 95.42 (9.82) 98.23 (0.85)

T1 4.20×10
−2 (7.40×10

−3) 4.54 (2.79×10
−1) 5.22×10

2 (2.01×10) 3.54×10
2 (7.00)

T2 1.51×10
−2 (3.16×10

−2) 5.00×10
−4 (5.30×10

−4) 1.00×10
−4 (3.16×10

−4) 1.00×10
−4 (3.16×10

−4)

T3 1.30×10
−2 (6.75×10

−4) 8.60×10
−3 (2.40×10

−3) 1.98×10
−2 (2.48×10

−2) 9.90×10
−3 (2.10×10

−3)

TiTSVM(m=2) PFR(m=3) TiSVM(m=3) TiTSVM(m=3) LapTSVM
U 98.18 (0.92) 95.24 (8.53) 97.27 (0.47) 97.41 (1.78) 97.91 (0.85)
T 98.65 (1.21) 95.42 (10.57) 97.81 (1.04) 98.23 (1.63) 98.33 (1.22)

T1 1.08×10
3 (1.06×10

2) 3.97×10
2 (1.72×10) 4.25×10

2 (2.10×10) 1.67×10
3 (7.99×10) 9.30×10 (4.82)

T2 5.00×10
−4 (5.27×10

−4) 1.00×10
−4 (4.25×10

−4) 1.00×10
−4 (3.164.25×10

−4) 7.00×10
−4 (4.83×10

−4) 8.26×10
−2 (1.47×10

−2)

T3 1.26×10
−2 (3.50×10

−3) 1.25×10
−2 (4.50×10

−3) 1.04×10
−2 (2.40×10

−3) 1.15×10
−2 (2.20×10

−3) 2.48×10
−2 (8.00×10

−3)

TABLE 4
Classification Accuracies (%) (with Standard Deviations) and Time (with Standard Deviations) of Different Methods

on the German Credit Data.

SVM LapSVM PFR(m=2) TiSVM(m=2)
U 60.03 (7.63) 67.48 (4.22) 70.00 (0.00) 70.00 (0.00)
T 59.50 (6.21) 66.55 (3.47) 70.00 (0.00) 70.00 (0.00)

T1 1.05×10
−1 (1.35×10

−1) 2.79×10 (1.86) 3.28×10
2 (8.32) 6.90×10

2 (2.58×10
2)

T2 1.10×10
−3 (1.10×10

−3) 1.10×10
−3 (3.16×10

−4) 1.00×10
−4 (3.16×10

−4) 1.00×10
−4 (3.16×10

−4)

T3 4.00×10
−4 (6.99×10

−4) 1.74×10
−2 (3.10×10

−3) 1.63×10
−2 (1.01×10

−2) 2.04×10
−2 (1.96×10

−2)

TiTSVM(m=2) PFR(m=3) TiSVM(m=3) TiTSVM(m=3) LapTSVM
U 66.55 (0.92) 70.00 (0.00) 70.00 (0.00) 68.13 (3.79) 61.96 (7.44)
T 67.55 (4.46) 70.00 (0.00) 70.00 (0.00) 67.10 (5.11) 62.30 (7.26)

T1 4.42×10
3 (8.26×10) 4.14×10

2 (8.21) 4.92×10
2 (1.35×10) 9.18×10

3 (4.03×10
2) 3.40×10

2 (1.08×10)

T2 1.00×10
−3 (2.12×10

−5) (8.21) 1.00×10
−4 (3.16×10

−4) 1.00×10
−4 (3.16×10

−4) 1.00×10
−3 (0.00) 7.42×10

−1 (6.71×10
−2)

T3 1.14×10
−2 (2.30×10

−3) 1.16×10
−2 (3.50×10

−3) 1.06×10
−2 (2.90×10

−3) 2.5610−2 (4.83×10
−2) 1.87×10

−1 (2.87×10
−2)

shown in Table 1, where U and T represent the accuracy
on the unlabeled training and test data, respectively, and
the best accuracies are indicated in bold. T 1, T 2 and
T 3 (all in seconds) represent training time, test time on
the unlabeled data and test time on the labeled data,
respectively. From this table, we see that semi-supervised
methods give better performance than the supervised
SVMs, which indicates the usefulness of unlabeled ex-
amples. Moreover, the proposed TiSVMs and TiTSVMs
perform much better than LapSVMs and PFR. TiSVMs
perform a little better than TiTSVMs. LapTSVMs perform
best on the classification of the unlabeled data while
TiSVMs performs best on the classification of the labeled
data.

Face Detection: The classification results and time
of TiSVMs and TiTSVMs with comparisons to other
methods are given in Table 2, which show that our
TiSVMs have got the best accuracies on both the test and
unlabeled training data. However, the performance of
our TiTSVMs is not good, just a little better than SVMs.
We conjecture this is caused by the fact that TiTSVMs
have more parameters to train and thus it is sometimes
difficult to return a very good solution.

Speech Recognition: The classification accuracies and
time of different methods on this dataset are shown in
Table 3. This table shows that semi-supervised meth-

ods give better performance than the supervised SVMs.
Moreover, the proposed TiSVMs and TiTSVMs perform
much better than LapSVMs and PFR. LapTSVMs and
TiTSVMs perform a little better than TiSVMs.

German Credit Data: The classification accuracies and
time of different methods on this dataset are shown
in Table 4. Again, we see that semi-supervised meth-
ods give better performance than the supervised SVMs.
Moreover, the proposed TiSVMs perform much better
than TiTSVMs, LapSVMs, LapTSVMs and SVMs, and
perform the same as PFR. TiTSVMs perform a little better
than LapSVMs on the classification of the labeled data
and a little worse than LapSVMs on the classification of
the unlabeled data.

Australian: The classification accuracies and time of
different methods on this dataset are shown in Ta-
ble 5. We see that semi-supervised methods give better
performance than the supervised SVMs. Moreover, the
proposed TiTSVMs perform much better than TiSVMs,
LapSVMs, LapTSVMs and SVMs.

Contraceptive Method Choice: The classification ac-
curacies and time of different methods on this dataset
are shown in Table 6. Semi-supervised methods give
better performance than the supervised SVMs. TiTSVMs
(m = 3) perform best on the classification of the unla-
beled data and TiSVMs (m = 2) perform best on the
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TABLE 5
Classification Accuracies (%) (with Standard Deviations) and Time (with Standard Deviations) of Different Methods

on the Australian Data.

SVM LapSVM PFR(m=2) TiSVM(m=2)
U 56.25 (5.92) 60.44 (4.76) 61.70 (4.92) 61.02 (4.52)
T 54.86 (7.60) 60.14 (6.12) 61.16 (5.10) 60.58 (3.17)

T1 6.33×10
−2 (9.98×10

−2) 1.34×10 (9.56×10
−1) 1.65×10

2 (6.80) 2.03×10
3 (7.16×10

2)

T2 1.50×10
−3 (1.30×10

−3) 5.00×10
−4 (5.27×10

−4) 1.00×10
−4 (3.16×10

−4) 1.00×10
−4 (3.16×10

−4)

T3 9.00×10
−4 (5.68×10

−4) 1.74×10
−2 (3.86×10

−2) 6.70×10
−3 (1.70×10

−3) 6.10×10
−3 (1.90×10

−3)

TiTSVM(m=2) PFR(m=3) TiSVM(m=3) TiTSVM(m=3) LapTSVM
U 64.64 (3.92) 62.20 (4.74) 62.10 (4.19) 62.36 (4.54) 59.96 (6.64)
T 63.48 (6.49) 62.32 (6.74) 60.72 (4.19) 64.04 (6.94) 60.80 (11.84)

T1 4.49×10
3 (1.14×10

3) 2.09×10
2 (7.67) 2.84×10

3 (7.47×10
2) 1.05×10

4 (2.16×10
3) 1.64×10

2 (1.68×10)

T2 8.00×10
−4 (4.22×10

−4) (8.21) 1.40×10
−3 (4.10×10

−3) 1.40×10
−3 (4.10×10

−3) 8.75×10
−4 (3.53×10

−4) 1.70×10
−1 (1.85×10

−2)

T3 7.70×10
−3 (3.20×10

−3) 7.90×10
−3 (4.00×10

−3) 7.90×10
−3 (4.40×10

−3) 1.92×10
−2 (3.27×10

−2) 4.08×10
−2 (7.60×10

−3)

TABLE 6
Classification Accuracies (%) (with Standard Deviations) and Time (with Standard Deviations) of Different Methods

on the Contraceptive Method Choice Data.

SVM LapSVM PFR(m=2) TiSVM(m=2)
U 55.81 (1.00) 56.20 (3.47) 56.53 (1.29) 56.71 (1.19)
T 55.13 (2.08) 57.06 (3.93) 56.54 (3.48) 57.06 (3.79)

T1 7.70×10
−2 (1.02×10

−2) 3.77×10 (1.37×10
−1) 4.86×10

2 (2.66×10) 5.03×10
2 (9.39×10)

T2 1.10×10
−3 (3.16×10

−4) 1.40×10
−3 (5.16×10

−4) 3.00×10
−4 (4.83×10

−4) 3.00×10
−4 (4.83×10

−4)

T3 3.00×10
−4 (4.83×10

−4) 8.80×10
−3 (6.32×10

−4) 2.51×10
−2 (1.09×10

−2) 1.27×10
−2 (2.20×10

−3)

TiTSVM(m=2) PFR(m=3) TiSVM(m=3) TiTSVM(m=3) LapTSVM
U 56.58 (1.74) 56.90 (1.41) 56.57 (1.18) 56.98 (0.02) 56.37 (6.05)
T 56.14 (3.77) 56.89 (3.91) 56.71 (3.03) 56.62 (4.27) 56.93 (6.46)

T1 4.70×10
3 (9.40×10

2) 6.41×10
2 (6.13) 5.60×10

2 (2.54×10) 8.68×10
3 (4.80×10

2) 4.45×10
2 (2.36×10)

T2 1.00×10
−3 (0.00) 1.00×10

−4 (3.16×10
−4) 1.00×10

−4 (3.16×10
−4) 1.10×10

−3 (3.16×10
−4) 1.19 (6.95×10

−2)

T3 1.84×10
−2 (5.10×10

−3) 2.30×10
−2 (7.50×10

−3) 1.89×10
−2 (2.50×10

−2) 2.02×10
−2 (2.05×10

−2) 3.10×10
−1 (4.53×10

−2)

TABLE 7
Classifier Rank of All the Methods

method SVM LapSVM PFR(m=2) TiSVM(m=2) TiTSVM(m=2) PFR(m=3) TiSVM(m=3) TiTSVM(m=3) LapTSVM
Average rank (U) 9.00 6.33 5.25 2.83 4.33 4.42 3.67 4.33 4.83
Average rank (T) 9.00 5.75 5.67 2.75 4.50 4.17 3.75 4.75 4.67

classification of the labeled data.

Table 7 lists the average rank of all the methods
for their classification accuracies, from which we can
conclude our methods outperform other methods. From
the perspective of time, as can be seen from Table 1∼6,
they usually take more training time, less test time on
the unlabeled data and more test time on the labeled
data.

7 DISCUSSIONS

Here we discuss some possible improvements and exten-
sions of the proposed tangent space intrinsic manifold
regularization and semi-supervised classification algo-
rithms, which can be very helpful to adapt to different
applications.

7.1 Out-of-Sample Extension Using Multiple Neigh-
bors

In this paper, we only used one nearest neighbor from
the training data to represent the out-of-sample exten-
sion for the learned functions, as given in (3). The
performance would depend largely on the property of
the selected neighboring point.

However, in order to enhance the robustness, we can
adopt a weighted average to represent the function f(x)
for x out of the training set Z . Suppose we adopt n
neighbors to carry out the out-of-example extension, and
N (x) ⊂ Z includes the n neighbors of x. Then f(x) is
computed as follows

f(x) =
1

∑

z∈N (x) Wxz

∑

z∈N (x)

Wxz

[
bz + w⊤

z Tz

(
x − z

)]
,

where Wxz is the weight calculated with the same man-
ner as constructing the weighted graphs from Z . Here
n, which is not necessarily equal to the neighborhood



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 12

number used to construct the adjacency graphs, can
be selected through some appropriate model selection
procedure. (10) and (16) can be extended similarly.

7.2 Reducing Anchor Points

We treated each example from the training set as an
anchor point, where local PCA is used to calculate the
tangent space. The number of parameters that should
be estimated in our methods basically grows linearly
with respect to the number of anchor points. Therefore,
in order to reduce the parameters to be estimated, one
possible approach is to reduce anchor points where
only “key” examples are kept as anchor points and the
function values for the other examples are extended from
those of the anchor points. This is a kind of research
for data set sparsification. People can devise different
methods to find the examples which they regard as
“key”.

The research of anchor point reduction is especially
useful whether training data are very limited or of large-
scale. For limited data, the precision for parameter esti-
mation can be improved as a result of parameter reduc-
tion, while for large-scale data, anchor point reduction
can be promising to speed up the training process. For
example, reducing anchor points can be applied to semi-
supervised learning where the training data include a
large number of unlabeled examples.

7.3 Improving the Estimation of Tangent Spaces

For the manifold learning problems considered in this
paper, the estimation of bases for tangent spaces is an
important step where local PCA with fixed neighbor-
hood size was used. This is certainly not the optimal
choice, since data could be non-uniformly sampled and
manifolds can have a varying curvature. Notice that
the neighborhood size can determine the evolution of
calculated tangent spaces along the manifold. If a small
neighborhood size is used, the tangent spaces would
change more sharply when the manifold is not flat.
Moreover, noise can damage the manifold assumption
as well to a certain extent. All these factors explain
the necessity for using different neighborhood sizes and
more robust subspace estimation methods.

In addition, data can exhibit different manifold dimen-
sions at different regions, especially for complex data.
Therefore, adaptively determining the dimensionality at
different anchor points is also an important refinement
concern of the current approach.

7.4 Semi-Supervised Regression

The proposed tangent space intrinsic manifold regular-
ization can also be applied to semi-supervised regression
problems. Using the same notations as in Section 4, we
give the following objective function for semi-supervised

regression with the squared loss

min
{bi,wi}

ℓ+u
i=1

1

ℓ

ℓ∑

i=1

(
yi − f(xi)

)2
+ γ1

ℓ+u∑

i=1

‖wi‖
2
2

+ γ2R({bi, wi}
ℓ+u
i=1 ).

(23)

The generalization to examples not in the training set is
analogical to (10) but without the sign function.

It can be easily shown that the optimization of (23)
is obtained by solving a sparse linear system, which is
much simpler than the quadratic programming for the
classification case. This is reminiscent of the works by
[33] and [29], which are both on semi-supervised re-
gression preferring linear functions on manifolds. These
works perform regression from the more complex per-
spectives of Hessian energy and parallel fields, respec-
tively. There are two main differences between (23) and
their works: i) Their objective functions do not contain
the second term of (23) and thus cannot regularize the
norms of {wi}

ℓ+u
i=1 ; ii) Their works focus on transductive

learning while by solving (23) we can do both inductive
and transductive learning. Comparing the performances
of these methods on regression is not the focus of this
paper, which can be explored as interesting future work.

7.5 Entirely Supervised Learning

The TiSVMs for semi-supervised classification can be
extended to the entirely supervised learning scenario
when all the training examples are labeled (a similar
extension of TiTSVMs is also possible). In this case, the
objective function could probably have the following
form

min
{bi,wi}ℓ

i=1

1

ℓ

ℓ∑

i=1

(1 − yif(xi))+ + γ1

ℓ∑

i=1

‖wi‖
2
2

+ γ2R({bi, wi}i∈I+) + γ3R({bi, wi}i∈I−),

where I+ and I− are the index set for positive and neg-
ative examples, respectively. The separation of positive
and negative examples reflects our intension to construct
a weight graph for each class [3], since we do not expect
that a positive example is among the neighbors for a
negative example or vice versa. The function values for
the positive and negative examples would tend to be far
apart, which is clearly an advantage. A more detailed
study of the entirely supervised learning case is left for
future work.

8 CONCLUSION

In this paper, we have proposed a new regularization
method called tangent space intrinsic manifold regular-
ization, which favors linear functions on the manifold.
Local PCA is involved as an important step to estimate
tangent spaces and compute the connections between
adjacent tangent spaces. Simultaneously, we proposed
two new methods for semi-supervised classification with
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tangent space intrinsic manifold regularization. Experi-
mental results on multiple datasets including compar-
isons with state-of-the-art algorithms have shown the
effectiveness of the proposed methods.

Future work directions include analyzing the general-
ization error of TiSVMs and TiTSVMs, and applying the
tangent space intrinsic manifold regularization to semi-
supervised regression and supervised learning tasks.
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