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Abstract—In this paper, we present a novel dimensional-
ity reduction method, called sparse uncorrelated cross-domain
feature extraction (SUFE), for signal classification in brain-
computer interfaces (BCIs). Considering the differences between
the source and target distributions of signals from different
subjects, we construct an optimization objective which aims to
find a projection matrix to transform the original data in a high-
dimensional space into a low-dimensional latent space. In the
low-dimensional space, both the discrimination of different classes
and transferability between the source and target domains are
preserved. To make sure the minimum information redundancy,
the extracted features are designed to be statistically uncorrelated.
Then, by adding the l1-norm penalty, we incorporate sparsity into
the uncorrelated transformation. In the experiments, we evaluate
the method with multiple datasets, and compare with the state-
of-the-art methods. The results show that the proposed approach
has better performance and is suitable for cross-domain signal
classification.

I. INTRODUCTION

Brain-computer interfaces (BCIs) are systems used for as-
sisting, augmenting, or repairing human cognitive or sensory-
motor functions by analyzing electro-physiological signals
of the brain and then translating the signals into physical
commands [24], [31]. They are direct communication and
control pathways between the brain and external devices that
do not require any peripheral devices. Thus BCIs are very
helpful to predict the movement intentions, e.g., left or right
hand movement, of subjects (or users) who suffer from motor
disabilities and help them to interact with the environment.
In the past ten years, the development of BCIs has grown
substantially to which many machine learning methods have
been successfully applied [2], [29], [32]. In BCIs, it is known
that the patterns of the recorded signals are considerably
different among subjects due to the diversity among persons,
especially at the early training stage. However, the latent
characteristics among signals may not change vastly according
to the assumption in [18]. Therefore, cross-domain learning
methods [23] can be applied, and an inter-subject/inter-section
knowledge transformation model can be trained to learn some
common knowledge from some subjects/periods to accelerate
the training procedures for other subjects/periods [1], [10],
[26], [27]. In such a model, both the differences and the
relations among the signals recorded from different subjects
or periods are considered to gain a better performance when
applying to the target subjects. In this paper, we focus on the

knowledge transfer in the feature extraction stage and propose
a novel sparse cross-domain feature extraction method for
signal classification in BCIs to quicken the training session
in the systems.

For many applications in data mining and machine learn-
ing, a very important problem is feature extraction. There
are many feature extraction methods proposed for the single
domain scenario where the training and test samples are ob-
tained from the same distribution, such as principal component
analysis (PCA) [17] and linear discriminant analysis (LDA)
[11], [12]. Given a data set, LDA seeks an optimal linear
transformation by maximizing the ratio of the between-class
distance to the within-class distance which are encoded in the
between-class scatter matrix and the within-class scatter matrix
respectively. The singularity problem is a major disadvantage
of LDA and for computational purpose the scatter matrices
must be nonsingular. But in many applications, such as face
recognition [15], [25], pattern recognition [3], [12], and mi-
croarray analysis [8], the between-class and within-class scatter
matrices are usually singular for undersampled data, that is,
the dimension of the feature space is larger than the number
of data points. Another disadvantage is the lack of sparsity in
the LDA solution [35].

To address the singularity problem, there are many exten-
sions of LDA proposed, including regularized linear discrim-
inant analysis [7], orthogonal LDA (OLDA) [34], subspace
LDA [25], etc. One of the other important extensions of LDA,
i.e., uncorrelated LDA (ULDA), is motivated by extracting
features with uncorrelated attributes [6], [15], [16], [33]–[35].
It is shown that the feature vectors extracted via ULDA are
statistically uncorrelated, indicating the minimum information
redundancy, which is greatly desirable for many applications.
In [15], Jin et al. proposed an algorithm whose solution
involves d generalized eigenvalues, if there exist d optimal
discriminant vectors. However, this algorithm is computation-
ally expensive for high-dimensional and large datasets, and
does not address the singularity problem either. In [33], Ye et
al. addressed the singularity problem in classical ULDA. By
introducing an optimization criterion which combines the key
ingredients of ULDA (which is based on QR-decomposition)
and regularized LDA, they employed the generalized singular
value decomposition (GSVD) tool [13] to solve the singularity
problem directly. In this way, they avoided the information loss
in the subspace. In many numerical experiments [6], [15], [33],



[35], the effectiveness of ULDA has been demonstrated.

Sparsity in the LDA solution has a great advantage for the
high-dimensional data analysis to make the interpretation of
the extracted features much easier. In LDA, every extracted
feature in the low-dimensional space is a linear combination
of all the original features. However, the coefficients of such
linear combination are general nonzero. So the interpretation
of the extracted features is difficult. There are some works
established to overcome this obstacle, such as the penalized
LDA (PLDA) [30], the sparse discriminant analysis (SLDA)
[5], and sparse Fisher linear discriminant [9], etc. Almost
all existing sparse LDA methods deal with sparsity by using
l1 penalty (i.e. Lasso penalty [28]) or its variants of the
transformation matrix to objective functions [35].

In BCIs, though they may share some common knowledge,
the signals recorded for one subject may be largely different
from the signals for another subject, and the differences cannot
be ignored. Thus, former feature extraction methods in single
domain may not generalize well in these applications. In this
case, researchers can develop cross-domain learning methods,
and learn classification models on the source domain (data
from one subject or one period) and apply them to the target
domain (data from another subject or period) for classification
tasks. In this paper we aims to design a new sparse cross-
domain dimensionality reduction method for BCIs. We refer
the proposed method as sparse uncorrelated cross-domain
feature extraction, SUFE for short. Inspired by the previ-
ous framework of uncorrelated discriminative dimensionality
reduction methods constructed in one domain, we find a
transferable feature extraction method which can be used from
the source domain to the target domain. In the proposed
SUFE approach, a transformation G> is learned which projects
the original data space into a low-dimensional space. After
projection, we make sure the following characteristics of
the latent space: 1). The distance between the source and
target distributions can be minimized; 2). The discrimination
among classes can be preserved; 3). The extracted features are
statistically uncorrelated, indicating the minimum information
redundancy; 4). A sparse LDA transformation is computed,
simultaneously. In this way, we consider the discrimination and
transferability of the transformed space as well as the sparsity
of the solution. To evaluate the discrimination in domain-
merged training data and the transferability of the latent space
to bridge the source and target domains, we firstly design
mathematical terms to reveal these two characteristics using the
scatter matrices of the data sets. Then we characterize all the
solutions of the generalized ULDA by solving the optimization
problem proposed in [22]. By finding the minimum l1-norm
solution from all the solutions with minimum dimension,
we compute the sparse solution of ULDA to find a sparse
uncorrelated solution for SUFE. In this paper, we employ the
accelerated linearized Bregman method [4], [14] to solve the
l1-minimization problem.

The rest of this paper is organized as follows. In Section II
we review some related work on transfer learning, the BCI
application, ULDA and sparse LDA. The proposed sparse
uncorrelated cross-domain feature extraction method (SUFE)
is introduced in detail in Section III. We display in Section IV
the experimental results on data from multiple signal datasets.
Finally, the conclusion is given in Section V.

II. RELATED WORK

In [1], Alamgir et al. utilized the framework of multitask
learning to construct a BCI system to learn feature charac-
teristics that are consistent across subjects, which could be
used without any subject-specific calibration process. In their
framework, each subject was regarded as one task, and shared
priors were employed in a parametric probabilistic approach.
Specifically, they firstly trained off-line tasks to learn the model
parameters and the shared prior parameters, by inferring K
linear functions ft(x; wt) = 〈wt, x〉 associated to each task
such that yti = ft(xti; wt) + εt. Then for a new subject, the
subject-specific parameters were inferred with respect to these
shared prior parameters in an online fashion and an out-of-the-
box BCI was defined to adapt to the new subject.

In [10], Fazli et al. introduced a subject-independent zero-
training procedure for BCI applications. They constructed
an ensemble method which was built upon common spatial
pattern filters (CSP) for spatial filtering. Using a large database
of pairs of spatial filters and classifiers from 45 subjects, they
proposed to construct an ensemble of classifiers and learned
a sparse subset of these pairs which were predictive across
subjects. Then the quadratic regression with l1 norm penalty is
used to make sure the sparsity. The final classifier generalized
well in a target subject. Finally, the authors demonstrated
through a leave-one-subject-out cross-validation procedure that
the sparse subset of spatial filters and classifiers could be
applied to new subjects with only a moderate performance
loss.

In [22], Shi et al. introduced a novel uncorrelated di-
mensionality reduction method for transfer learning in BCI
applications. By maximizing the distance between classes
and minimizing the distance between domains, their proposed
method found a low-dimensional space that ensures the dis-
crimination of merged training data and the transferability
between the source domain and the target domain. By in-
troducing a constraint G>SMT G = I where SMT is the total
scatter matrix of the merged data for the source domain and
target domain, their proposed method extracted features that
are mutually uncorrelated indicating the minimum information
redundancy. The experimental results on a real BCI dataset
with nine subjects demonstrated the effectiveness of their work.
However, the authors ignored the sparsity in the solutions.

A recent work by Tu and Sun [27] introduced a two-level
ensemble subject transfer learning framework for EEG classi-
fication. By dynamically and locally combining the outcomes
of a robust classifier and an adaptive classifier to give the final
classification results, their framework achieved positive subject
transfer with improvements on both feature extraction and
classification stages. Despite the encouraging results achieved
by the proposed framework, the extracted features in their
framework may not be uncorrelated, which may damage the
classification performance.

III. THE PROPOSED METHOD

Given three kinds of data matrix, i.e., a large number
of source training data XS

tr ∈ RM×NS with their labels
LSi ∈ {1, 2, . . . , c} from a source domain S, a very small
number of target training data XT

tr ∈ RM×NT with their
labels LTi ∈ {1, 2, . . . , c} from a target domain T , and a



large number of unlabeled target test data XT
te. The unlabeled

target test data XT
te are used for later tasks (e.g., classification

or regression). In these matrices, each column represents one
data point. For cross-domain learning, both the differences
and the relations between the target domain and the source
domain should be considered. Due to the differences, the
models learned on the single distribution may perform poorly
on the target domain. On the other hand, we can expect the
performance improvement by avoiding the differences and
making full use of the relations. Therefore, the quality of a low-
dimensional space should be taken into consideration both by
its transferability from the source domain to the target domain
and discriminability in the merged data simultaneously. To get
a good computational acceleration for large scale datasets,
the sparsity of the solution should also be considered. In
this section, we firstly consider the transferability and the
discriminability to construct an objective function for uncorre-
lated feature extraction. Then by finding the minimum l1-norm
solution we can get a sparse transformation for uncorrelated
feature extraction to propose our sparse uncorrelated feature
extraction method.

A. Domain-merged and between-domain scatter matrices

When given a source domain training dataset and a target
domain training dataset as mentioned above, the within-class
and between-class scatter measurements can be computed on
the dataset merged by them which is called merged training
dataset XM

tr as in [22], [26]. As in cross-domain learning
problems, the training and test data in the target domain
are sampled from the same distribution and share the same
characteristics. We should consider the different importances
of the target domain and the source domain to take more
advantages of the target. To this end we can add a weight
WT
tr into the target data points to control the influence of

its training samples. Since the reliability of the distribution
estimation of target training set is constrained by the sample
size intuitively, the weight is related to the number of the target
training samples. So we can add WT

tr = 1 + NT /NS to the
target training samples to attach more importance to them,
where NT and NS are the numbers of training data points from
the target domain and the source domain, respectively. Thus we
can define the merged training dataset as XM

tr = {XS
tr;X

T
wtr},

where XT
wtr represents the weighted target training data using

the weight defined above.

On the merged dataset, the between-class scatter matrix
SMB , the within-class scatter matrix SMW and the total scatter
matrix SMT are defined as follows:

SMB =
1

n

c∑
i=1

ni(µi − µ)(µi − µ)
>
, (1)

SMW =
1

n

c∑
i=1

∑
xj∈Ai

(xj − µi)(xj − µi)>, (2)

SMT = SMW + SMB , (3)

where c is the class number, n is the sample number of the
merged dataset, ni is the number of samples belonging to the
ith class, Ai is the set of ith class dataset, µi is the class mean

of ith class in the merged dataset, and µ is the class mean of
the merged dataset.

In cross-domain learning, only a few (even zero) labeled
target samples can be used for later classification. Later clas-
sification models are vastly based on the source samples. So
the low-dimensional latent space should bridge the source and
target distributions to make sure the models trained on source
samples can generalized well to the target domain. To measure
the transferability between the source and target domains,
a between-domain scatter matrix which bridges the source
domain and the target domain is defined. The between-domain
scatter matrix is related to the distance between the source and
target distributions. Here as in our previous work we consider
three different forms of the between-domain scatter matrix, i.e.,
supervised, semi-supervised and unsupervised between-
domain scatter matrices.

1) Supervised between-domain scatter matrix. In the
supervised case, the between-domain scatter matrix SSTL is
defined as follows:

SSTL =

c∑
i=1

(
µSi − µTi

)(
µSi − µTi

)>
, (4)

where µSi and µTi are the ith class means of the source training
and target training datasets, respectively. The term µSi − µTi
reflects the scatter of class i between the source and target
domains. To improve the transferability of the low-dimensional
space, the distance between the distributions of the source and
target domains should be minimized, thus making sure that
the distributions of these two distributions can be as close as
possible.

2) Unsupervised between-domain scatter matrix. In many
cross-domain learning problems, however, no labeled target
data samples can be used in the training session. So the class
mean can not be measured. One alternative way under such a
setting is using the means of the whole data, i.e.,

SSTU = (µS − µT )(µS − µT )>, (5)

where µS and µT are means of the source training and target
training datasets, respectively. Similarly, the distance between
the distributions of the source and target domains in the low-
dimensional space should be minimized.

3) Semi-supervised between-domain scatter matrix.
When both a few labeled target samples and a large number
of unlabeled target samples are available, we can combine the
supervised and unsupervised between-domain scatter matrices
to define a semi-supervised one. Similar with the weight defini-
tion in the merged training set XM

tr , the different importances
of the supervised and unsupervised between-domain scatter
matrices should be considered with respect to the sample
numbers of training (labeled) and test (unlabeled) samples
from target domain as follows:

SST = SSTU + (1 + nTtr/n
T
te)S

ST
L , (6)

where nTtr and nTte are the sample numbers of labeled and
unlabeled target datasets. We attach more importance to the
target data with label information.



B. SUFE

Once the scatter matrices are defined, the trace of the
scatter matrices can be viewed as a measurement of the
quality of the class structure and the domain characteristic.
In particular, we can use trace(SMB ) to measure the distance
between classes and use trace(SMW ) to measure the closeness
of the data within the classes over all c classes. According
to [12], there are some typical criteria, one of which is
J = trace(S−12 S1), where S1 and S2 are combinations of
SW , SB , and ST . In a cross-domain learning problem, the
closeness between the source domain and the target domain
can be measured by trace(SST ). So a generalized S̃W can be
defined as S̃W = SMW +αSST to measure both class closeness
and domain closeness.

In the low-dimensional space mapped by the transforma-
tion G> ∈ RL×M , the between-class, within-class, between-
domain and total scatter matrices can be written in the follow-
ing form:

SML
B = G>SMB G, SML

W = G>SMWG,

SSTL = G>SSTG, SML
T = G>SMT G.

To accomplish uncorrelated feature extraction, in [22] the
optimization problem is defined as follows:

G∗ = arg max
G>SM

T G=I
trace((SML

W + αSSTL)−1SML
B ). (7)

The constraint G>SMT G = I used here makes sure that
the extracted features are mutually uncorrelated. So the low-
dimensional space obtained contains the minimum information
redundancy. Since the rank of the between-class scatter matrix
is bounded by c − 1, there are at most c − 1 discriminant
vectors in the solution. The uncorrelated feature extraction
problem can be computed based on the generalized singular
value decomposition (GSVD) [22], [33],

Next, let us characterize the solutions of the optimization
problem (7). Inspired by [35], we employ the singular value
decomposition (SVD) [13] to study the characteristics of all the
solutions. Let S̃W = SMW + αSST , S̃B = SMB and S̃T = SMT .
We decompose the three matrices S̃W , S̃B and S̃T as

S̃W = H̃W H̃
>
W , S̃B = H̃BH̃

>
B , S̃T = H̃T H̃

>
T .

Let the reduced SVD of H̃T be

H̃T = U1ΣTV
>
1 , (8)

where U1 ∈ R∗×r and V1 ∈ R∗×r are column orthogonal, and
ΣT ∈ Rr×r is diagonal and nonsingular with r = rank(H̃T ).
And let the reduced SVD of Σ−1U>1 H̃B be

Σ−1U>1 H̃B = P1ΣBQ
>
1 , (9)

where P1 ∈ R∗×q and V1 ∈ R∗×q are column orthogonal, and
ΣB ∈ Rq×q is diagonal and nonsingular with q = rank(H̃B).
Then G is a solution of the optimization problem (7) if and
only if q ≤ L ≤ r and

G = (U1Σ−1T [P1M1] +M2)F, (10)

where M1 ∈ Rr×(L−q) is column orthogonal satisfying
M>1 P1 = 0, M2 ∈ Rm×L is an arbitrary matrix satisfying
MT

2 U1 = 0, and F ∈ RL×L is orthogonal.

For data dimensionality reduction, the goal is to find an
optimal linear transformation G∗ which transforms the original
space into a low dimensional space. On the other hand, the
dimension of the low space should be as small as possible. We
propose a sparse solution to find the sparsest transformation of
uncorrelated feature extraction from all G satisfying problem
(7). A natural way to do this is to find a matrix G that
minimizes the l0-norm. However, l0-norm is non-convex and
NP-hard. So we use the convex relaxation of l0-norm, say,
l1-norm to compute the sparsest solution of problem (7),
resulting the following optimization problem, which is the
main optimization problem proposed in this paper:

G∗ = arg min
G
‖G‖1 ,

s.t. U>1 G = Σ−1T P1F, F
>F = I,

(11)

where ‖G‖1 =
∑M
i=1

∑q
j=1 ‖Gij‖.

When q = 1, the l1-norm minimization problem in (11)
can be reduced to the following problem

x∗1 = arg min ‖x‖1 : x ∈ Rn, Ax = b. (12)

The numerical methods to solve problem (12) can be extended
to solve problem (11) without any change. In this paper, we
employed the accelerated linearized Bregman method [14]
to solve problem (12). According to [14], the accelerated
linearized Bregman method for solving (12) is : xi+1 = βSξ(ỹi),

yi+1 = ỹi − τA>(Axi+1 − b), i ≥ 0,
ỹi+1 = γiy

i+1 + (1− γi)yi,
(13)

where β, ξ and τ are positive parameters,γi = 2i+3
i+3 , ỹ0 =

y0 = τA>b, and Sξ(·) is the component-wise soft-thresholding
operator Sξ(x) = sign(x) = max{‖x‖ − ξ, 0}.

Now we can extend the accelerated linearized Bregman
method (13) to the proposed optimization problem (11) as
follows:  Gi+1 = βSξ(Ỹ i),

Y i+1 = Ỹ i − τU1(U>1 G
i+1 − Σ−1t P1Z),

Ỹ i+1 = γiY
i+1 + (1− γi)Y i,

(14)

where Ỹ 0 = Y 0 = τU1Σ−1t P1Z. As to the convergence of
the above accelerated linear Bregman method, researchers can
refer to the results in [14].

IV. EXPERIMENTS

A. Datasets

In this work, we used three datasets to evaluate the
proposed sparse uncorrelated cross-domain feature extraction
method: the EEG dataset and two sEMG basic hand move-
ments datasets.

The EEG dataset used in this study was a BCI dataset
and provided by Dr. Allen Osman of University of Pennsyl-
vania [19]. There were a total of nine subjects denoted as
S1, S2, S3, . . . , S9, respectively. Each subject was required to



imagine moving either the left or right index finger in response
to a highly predictable visual cur. EEG data were recorded
from 59 channels mounted according to the international 10/20
system. The sampling rate was 100 HZ. Each movement lasted
for six seconds with two cues. The first cue turned up at
3.75s imagining which hand to move, and the second one
appeared at 5.0s indicating that it was time to carry out the
assigned response. For each subject, a total of 180 movements
were recorded, with 90 trials labeled as left and the rest as
right. Ninety movements with half labeled as right and half as
left were used to training, while the other 90 for test in the
experiments. We preprocessed the dataset as in [26].

The sEMG basic hand movements datasets were collected
at a sampling rate of 500 Hz, using as a programming kernel
the National Instruments (NI) Labview. Although they are not
BCI datasets, their characteristics make them ideal to test the
cross-domain feature extraction algorithm. The signals were
band-pass filtered using a Butterworth Band Pass filter with
low and high cutoff at 15Hz and 500Hz respectively and a
notch filter at 50Hz to eliminate line interference artifacts.
There are two different databases including: 1) data obtained
from 5 healthy subjects (two males and three females, denoted
as M1,M2 and F1, F2, F3) of the same age approximately
[20]. We regarded it as sEMG-1 dataset. 2) data obtained from
1 healthy subject during three days (denoted as D1, D2, D3)
[21]. We regarded it as sEMG-2 dataset. The subjects were
asked to perform repeatedly the following six movements,
which can be considered as daily hand grasps: spherical, tip,
palmar, lateral, cylindrical, and hook. The five subjects in
sEMG-1 were asked to conducted the six grasps for 30 times
each and each grasp held for 6 seconds. The subject in sEMG-
2 was asked to conducted the six grasps for 100 times each
for 3 consecutive days and each grasp held for 5 seconds. For
both datasets, we randomly select half of each movement for
training and the rest data for test in the experiments.

B. Results and discussions

In our experiments, we design a one-source-vs-one-target
transfer task for the three real datasets. The one-source-vs-one-
target transfer task selects one domain (one subject in EEG
dataset, one person in sEMG-1 dataset, or one day in sEMG-
2 dataset) to act as the source domain, and selects another
domain in the corresponding dataset as the target domain. In
order to verify the effectiveness of the proposed method, we
perform two previous methods, i.e., uncorrelated transferable
feature extraction (UTFE) [22] and transferable discriminative
dimensionality reduction (TDDR) [26], in the same setting as
comparisons. When no labeled target data points are available
in the training session, we have SST = SSTU in the SUFE and
UTFE approaches. Additionally, to simulate the real conditions
that the target domain has only a few labeled data points
for training, which is common in transfer learning, we also
select some target training samples to help the classifications.
The number of labeled target samples nTtr is set to five or
ten. In these settings, SST = SSTU + (1 + nTtr/n

T
te)S

ST
L . The

parameter α in our objective function Eq. (7) is selected from
[0.1, 0.15, 0.2, 0.25, . . . , 1] using 10-fold cross-validation tech-
nology. We employ the k-nearest-neighbor (kNN) classifier
with k = {1, 3, 5} to perform classifications. Therefore, there
are nine experimental settings in total for each dataset with a
combination of k and nTtr, where nTtr = {0, 5, 10}.

TABLE 1. The classification accuracies (%) for EEG dataset when k = 5 in kNN and
there are ten labeled target data points available. Each column reports three accuracies,

using UTFE, TDDR, SUFE for classification, respectively.

HH
HHS
T

S1 S2 S3

UTFE TDDR SUFE UTFE TDDR SUFE UTFE TDDR SUFE
S1 - 60.0 63.8 80.0 75.3 65.9 85.0
S2 67.1 67.0 76.3 - 75.3 65.0 87.5
S3 83.5 67.5 83.8 73.6 80.0 86.3 -
S4 71.3 64.7 80.0 53.8 76.7 77.5 76.5 64.4 80.0
S5 76.3 70.0 80.0 77.6 63.8 81.3 75.3 66.7 87.5
S6 71.3 66.7 77.5 63.5 63.4 77.8 75.6 62.5 78.8
S7 75.3 62.5 76.3 70.0 80.0 82.5 77.6 65.6 82.5
S8 86.3 63.8 83.8 78.8 64.7 83.8 77.5 71.1 86.3
S9 75.3 64.4 77.5 77.6 68.2 81.3 78.8 67.5 86.3

TABLE 1 (continued). The classification accuracies (%) for EEG dataset when k = 5
in kNN and there are ten labeled target data points available. Each column reports

three accuracies, using UTFE, TDDR, SUFE for classification, respectively.

HH
HHS
T

S4 S5 S6

UTFE TDDR SUFE UTFE TDDR SUFE UTFE TDDR SUFE
S1 68.8 68.2 77.5 68.8 70.0 78.8 70.0 66.3 81.3
S2 54.1 61.2 77.5 62.5 67.8 72.5 55.0 61.1 71.3
S3 68.8 71.3 80.0 70.0 68.2 78.8 75.0 68.8 78.8
S4 - 71.8 73.8 82.5 73.0 68.8 80.0
S5 77.5 63.5 81.2 - 76.5 66.3 80.0
S6 76.3 63.3 83.7 80.0 70.6 85.0 -
S7 82.5 65.0 83.7 82.4 66.3 83.8 81.3 65.0 82.5
S8 71.8 63.7 77.5 72.9 65.9 77.5 74.4 67.1 81.3
S9 71.3 65.5 80.0 76.5 67.8 73.8 83.8 62.4 86.2

TABLE 1 (continued). The classification accuracies (%) for EEG dataset when k = 5
in kNN and there are ten labeled target data points available. Each column reports

three accuracies, using UTFE, TDDR, SUFE for classification, respectively.

HHHHS
T

S7 S8 S9

UTFE TDDR SUFE UTFE TDDR SUFE UTFE TDDR SUFE
S1 78.9 66.3 87.5 65.9 71.3 82.5 72.9 67.1 73.8
S2 68.8 67.1 86.3 60.0 70.6 86.3 66.3 68.9 78.8
S3 84.4 71.7 85.0 69.4 70.6 78.8 73.7 71.3 83.7
S4 84.4 65.9 91.5 70.6 66.3 80.0 70.0 66.7 81.3
S5 91.3 63.8 90.0 70.0 71.8 78.8 82.5 68.8 78.7
S6 86.3 73.8 88.8 72.5 66.7 86.3 77.5 69.4 81.3
S7 - 73.8 63.5 82.5 77.5 65.0 78.8
S8 80.0 62.4 85.0 - 75.3 66.3 78.8
S9 76.3 72.5 87.5 70.6 70.0 83.8 -

TABLE 2. The classification accuracies (%) for sEMG-1 dataset when k = 5 in kNN
and there are ten labeled target data points available. Each column reports three

accuracies, using UTFE, TDDR, SUFE for classification, respectively.

H
HHHS

T
M1 M2 F1

UTFE TDDR SUFE UTFE TDDR SUFE UTFE TDDR SUFE
M1 - 31.2 31.8 43.5 23.6 28.2 30.0
M2 36.5 27.6 40.0 - 21.2 22.4 32.4
F1 25.3 29.4 34.1 30.0 26.7 40.0 -
F2 22.4 18.8 32.9 26.5 22.9 31.2 25.3 40.0 35.9
F3 18.2 20.6 27.6 14.7 22.4 24.7 30.0 20.6 37.1

TABLE 2 (continued). The classification accuracies (%) for sEMG-1 dataset when
k = 5 in kNN and there are ten labeled target data points available. Each column
reports three accuracies, using UTFE, TDDR, SUFE for classification, respectively.

HH
HHS
T

F2 F3

UTFE TDDR SUFE UTFE TDDR SUFE
M1 15.9 31.8 29.4 15.3 24.1 25.9
M2 17.1 25.3 30.6 13.5 25.3 29.4
F1 20.6 33.5 34.1 22.9 22.9 27.1
F2 - 15.8 17.7 27.7
F3 18.2 21.8 24.1 -



TABLE 3. The classification accuracies (%) for sEMG-2 dataset when k = 5 in kNN
and there are ten labeled target data points available. Each column reports three

accuracies, using UTFE, TDDR, SUFE for classification, respectively.

HH
HHS
T

D1 D2 D3

UTFE TDDR SUFE UTFE TDDR SUFE UTFE TDDR SUFE
D1 - 16.6 18.9 19.8 16.9 18.8 19.3
D2 16.6 19.3 19.2 - 16.6 19.5 20.7
D3 18.9 20.5 20.9 14.7 17.3 23.2 -

In Table 1∼3 we report the classification accuracies for the
EEG dataset, the sEMG-1 dataset, and the sEMG-2 dataset,
respectively, when there are ten labeled target data points
available with k = 5 in the kNN classifier. Because we
observed the similar comparison results and due to limitation
of space, we don’t report in this paper the results on the
other eight settings. We can see from the results that the
proposed sparse uncorrelated cross-domain feature extraction
method (SUFE) outperforms the other two methods, TDDR
and UTFE. For the EEG dataset, our method achieves a
significant improvement in the classification accuracies. For
the sEMG-1 dataset and the sEMG-2 dataset, to the best of
our knowledge, we make the first attempt for cross-domain
classification on these two datasets. To sum up, we offer a
new baseline for the researchers who are interested in domain
adaptation.

V. CONCLUSION

In this paper, we present a new sparse uncorrelated dimen-
sionality reduction method for cross-domain learning in brain-
computer interface systems. By maximizing the trace of the
between-class scatter matrix and minimizing the trace of the
within-class scatter matrix and the trace of the between-domain
scatter matrix, the new method seeks an uncorrelated low-
dimensional space which obtains the maximum discrimination
and transferability between the source and target domains.
What’s more, by adding the l1-norm penalty to the objective
function, our method obtains a sparse LDA transformation,
simultaneously. The evaluations on three real datasets demon-
strate that our method outperforms the previous methods.
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