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Abstract

A novel semi-supervised dimensionality reduction method named Semi-supervised

Tangent Space Discriminant analysis (STSD) is presented, where we assume

that data can be well characterized by a linear function on the underlying man-

ifold. For this purpose, a new regularizer using tangent spaces is developed,

which not only can capture the local manifold structure from both labeled and

unlabeled data, but also has the complementarity with the Laplacian regular-

izer. Furthermore, STSD has an analytic form of the global optimal solution

which can be computed by solving a generalized eigenvalue problem. To per-

form non-linear dimensionality reduction and process structured data, a kernel

extension of our method is also presented. Experimental results on multiple

real-world data sets demonstrate the effectiveness of the proposed method.

Keywords: Dimensionality reduction, Semi-supervised learning, Manifold

learning, Tangent space

1. Introduction

Dimensionality reduction is to find a low-dimensional representation of high-

dimensional data, while preserving data information as much as possible. Pro-

cessing data in the low-dimensional space can reduce computational cost and

suppress noises. Provided that dimensionality reduction is performed appro-5
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priately, the discovered low-dimensional representation of data will benefit sub-

sequent tasks, e.g., classification, clustering and data visualization. Classical

dimensionality reduction methods include supervised approaches like Linear

Discriminant Analysis (LDA) [1], and unsupervised ones such as Principal Com-

ponent Analysis (PCA) [2].10

LDA is a supervised dimensionality reduction method. It finds a subspace

in which the data points from different classes are projected far away from each

other, while the data points belonging to the same class are projected as close

as possible. One merit of LDA is that LDA can extract the discriminative

information of data, which is crucial for classification. Due to its effectiveness,15

LDA is widely used in many applications, e.g., bankruptcy prediction, face

recognition and data mining. However, LDA may get undesirable results when

the labeled examples used for learning are not sufficient, because the between-

class scatter and the within-class scatter of data could be estimated inaccurately.

PCA is a representative of unsupervised dimensionality reduction methods.20

It seeks a set of orthogonal projection directions along which the sum of the vari-

ances of data is maximized. PCA is a common data preprocessing technique

to find a low-dimensional representation of high-dimensional data. In order to

meet the requirements of different applications, many unsupervised dimension-

ality reduction methods have been proposed, such as Laplacian Eigenmaps [3],25

Hessian Eigenmaps [4], Locally Linear Embedding [5], Locality Preserving Pro-

jections [6], and Local Tangent Space Alignment [7], etc. Although it is shown

that unsupervised approaches work well in many applications, they may not be

the best choices for some learning scenarios because they may fail to capture

the discriminative structure from data.30

In many real-world applications, only limited labeled data can be accessed

while a large number of unlabeled data are available. In this case, it is reasonable

to perform semi-supervised learning which can utilize both labeled and unla-

beled data. Recently, several semi-supervised dimensionality reduction meth-

ods have been proposed, e.g., Semi-supervised Discriminant Analysis (SDA) [8],35

Semi-supervised Discriminant Analysis with path-based similarity (SSDA) [9],
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and Semi-supervised Local Fisher Discriminant Analysis (SELF) [10]. SDA aims

to find a transformation matrix following the criterion of LDA while imposing a

smoothness penalty on a graph which is built to exploit the local geometry of the

underlying manifold. Similarly, SSDA also builds a graph for semi-supervised40

learning. However, the graph is constructed using a path-based similarity mea-

sure to capture the global structure of data. SELF combines the ideas of local

LDA [11] and PCA so that it can integrate the information brought by both

labeled and unlabeled data.

Although all of these methods have their own advantages in semi-supervised45

learning, the essential strategy of many of them for utilizing unlabeled data

relies on the Laplacian regularization. In this paper, we present a novel method

named Semi-supervised Tangent Space Discriminant analysis (STSD) for semi-

supervised dimensionality reduction, which can reflect the discriminant infor-

mation and a specific manifold structure from both labeled and unlabeled data.50

Unlike adopting the Laplacian based regularizer, we develop a new regulariza-

tion term which can discover the linearity of the local manifold structure of data.

Specifically, by introducing tangent spaces we represent the local geometry at

each data point as a linear function, and make the change of such functions

as smooth as possible. This means that STSD appeals a linear function on55

the manifold. In addition, the objective function of STSD can be optimized

analytically through solving a generalized eigenvalue problem.

2. Preliminaries

Consider a data set consisting of ` examples and labels, {(xi, yi)}`i=1, where

xi ∈ Rd denotes a d -dimensional example, yi ∈ {1, 2, . . . , C} denotes the class

label corresponding to xi, and C is the total number of classes. LDA seeks

a transformation t such that the between-class scatter is maximized and the

within-class scatter is minimized [1]. The objective function of LDA can be

written as:

t(LDA) = arg max
t

t>Sbt

t>Swt
, (1)
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where > denotes the transpose of a matrix or a vector, Sb is the between-class

scatter matrix, and Sw is the within-class scatter matrix. The definitions of Sb

and Sw are:

Sb =

C∑
c=1

`c(µc − µ)(µc − µ)>, (2)

Sw =

C∑
c=1

∑
{i|yi=c}

(xi − µc)(xi − µc)>, (3)

where `c is the number of examples from the c-th class, µ = 1
`

∑`
i=1 xi is the

mean of all the examples, and µc = 1
`c

∑
{i|yi=c} xi is the mean of the examples60

from class c.

Define the total scatter matrix as:

St =
∑̀
i=1

(xi − µ)(xi − µ)>. (4)

It is well known that St = Sb + Sw [1] and (1) is equivalent to

t(LDA) = arg max
t

t>Sbt

t>Stt
. (5)

The solution of (5) can be readily obtained by solving a generalized eigenvalue

problem: Sbt = λStt. It should be noted that the rank of the between-class

scatter matrix Sb is at most C − 1, and thus we can obtain at most C − 1

meaningful eigenvectors with respect to non-zero eigenvalues. This implies that65

LDA can project data into a space whose dimensionality is at most C − 1.

In practice, we usually impose a regularizer on (5) to obtain a more stable

solution. Then the optimization problem becomes

max
t

t>Sbt

t>Stt+ βR(t)
,

where R(t) denotes the imposed regularizer, and β is a trade-off parameter.

When we use the Tikhonov regularizer, i.e., R(t) = t>t, the optimization prob-

lem is usually referred to as Regularized Discriminant Analysis (RDA) [12].
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3. Semi-supervised Tangent Space Discriminant Analysis70

As a supervised method, LDA has no ability to extract information from

unlabeled data. Motivated by Tangent Space Intrinsic Manifold Regularization

(TSIMR) [13], we develop a novel regularizer to capture the manifold struc-

ture of both labeled and unlabeled data. Utilizing this regularizer, the LDA

model can be extended to a semi-supervised one following the regularization75

framework. Then we will first derive our novel regularizer for semi-supervised

learning, and then present our Semi-supervised Tangent Space Discriminant

analysis (STSD) algorithm as well as its kernel extension.

3.1. The Regularizer for Semi-supervised Dimensionality Reduction

TSIMR [13] is a regularization method for unsupervised dimensionality re-

duction, which is intrinsic to data manifold and favors a linear function on the

manifold. Inspired by TSIMR, we employ tangent spaces to represent the local

geometry of data. Suppose that the data are sampled from an m-dimensional

smooth manifold M in a d-dimensional space. Let TzM denote the tangent

space attached to z, where z ∈ M is a fixed data point on the M. Using the

first-order Taylor expansion at z, any function f defined on the manifold M

can be expressed as:

f(x) = f(z) +wz
>uz(x) +O(‖x− z‖2),

where x ∈ Rd is a d-dimensional data point and uz(x) = T>z (x − z) is an m-80

dimensional tangent vector which gives the m-dimensional representation of x

in TzM. Tz is a d×m matrix formed by the orthonormal bases of TzM, which

can be estimated through local PCA, i.e., performing standard PCA on the

neighborhood of z. wz is an m-dimensional vector representing the directional

derivative of f at z with respect to uz(x) on the manifold M.85

Consider a transformation t ∈ Rd which can map the d-dimensional data

to a one-dimensional embedding. Then the embedding of x can be expressed

as f(x) = t>x. If there are two data points z and z′ have a small Euclidean
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distance, by using the first-order Taylor expansion at z′ and z, the embeddings

f(z) and f(z′) can be represented as:90

f(z) = f(z′) +wz′
>uz′(z) +O(‖z − z′‖2), (6)

f(z′) = f(z) +wz
>uz(z′) +O(‖z′ − z‖2). (7)

Suppose that the data can be well characterized by a linear function on the

underlying manifold M. Then the remainders in (6) and (7) can be omitted.

Substitute f(x) = t>x into (6), we have:

t>z ≈ t>z′ +w>z′T>z′(z − z′). (8)

Furthermore, by substituting (7) into (6), we obtain:

(Tz′wz′ − Tzwz)>(z − z′) ≈ 0,

which naturally leads to

Tzwz ≈ Tz′wz′ . (9)

Since Tz is formed by the orthonormal bases of TzM, it satisfies T>z Tz = I(m×m)

for all z, where I(m×m) is an m-dimensional identity matrix. We can multiply

both sides of (9) with T>z , then (9) becomes to

wz ≈ T>z Tz′wz′ . (10)

Armed with the above results, we can formulate our regularizer for semi-

supervised dimensionality reduction. Consider data xi ∈ X (i = 1, . . . , n)

sampled from a function f along the manifold M. Since every example xi

and its neighbors should satisfy (8) and (10), it is reasonable to formulate a

regularizer as follows:

R(t,w) =

n∑
i=1

∑
j∈N (xi)

[(
t>(xi − xj)−

w>xj
T>xj

(xi − xj)
)2

+ γ‖wxi − T>xi
Txjwxj‖22

]
,

(11)

where w = (w>x1
,w>x2

, . . . ,w>xn
)>, N (xi) denotes the set of nearest neighbors

of xi, and γ is a trade-off parameter to control the influences of (8) and (10).
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Relating data with a discrete weighted graph is a popular choice, and there

are indeed a large family of graph-based statistical and machine learning meth-

ods. It also makes sense for us to generalize the regularizer R(t,w) in (11) using

a symmetric weight matrix W constructed from the above data collection X.

There are several manners to construct W . One typical way is to build an ad-

jacency graph by connecting each data point to its k -nearest-neighbors with an

edge, and then weight every edge of the graph by a certain measure. Generally,

if two data points xi and xj are “close”, the corresponding weight Wij is large,

whereas if they are “far away”, then the Wij is small. For example, the heat

kernel function is widely used to construct a weight matrix. The weight Wij is

computed by

Wij = exp(−‖xi − xj‖
2

σ2
), (12)

if there is an edge connecting xi with xj , and Wij = 0 otherwise.

Therefore, the generalization of the proposed regularizer turns out to be

R(t,w) =

n∑
i=1

n∑
j=1

Wij

[(
t>(xi − xj)−

w>xj
T>xj

(xi − xj)
)2

+ γ‖wxi
− T>xi

Txj
wxj
‖22
]
,

(13)

and W is an n×n symmetric weight matrix reflecting the similarity of the data

points. It is clear that when the variation of the first-order Taylor expansion at95

every data point is smooth, the value of R(t,w), which measures the linearity

of the function f along the manifold M, will be small.

The regularizer (13) can be reformulated as a canonical matrix quadratic

form as follows:

R(t,w) =

 t

w

>S
 t

w


=

 t

w

> XS1X
> XS2

S2
>X> S3

 t

w

 ,

(14)

where X = (x1, . . . ,xn) is the data matrix, and S is a positive semi-definite

matrix constructed by four blocks, i.e., XS1X
>, XS2, S>2 X

> and S3. This

7



formulation will be very useful in developing our algorithm. Recall that the100

dimensionality of the directional derivative wxi
(i = 1, . . . , n) is m. Thereby

the size of S is (d + mn) × (d + mn). For simplicity, we omit the detailed

derivation of S.

It should be noted that besides the principle accorded with TSIMR, the reg-

ularizer (13) can be explained from another perspective. Recently, Lin et al.[14]105

proposed a regularization method called Parallel Field Regularization (PFR)

for semi-supervised regression. In spite of the different learning scenarios, PFR

shares the same spirit with TSIMR in essence. Moreover, when the bases of the

tangent space TzM at any data point z are orthonormal, PFR can be converted

to TSIMR. It also provides a more theoretical but complex explanation for our110

regularizer from the vector field perspective.

3.2. An Algorithm

With the regularizer developed in Section 3.1, we can present our STSD

algorithm. Suppose the training data include ` labeled examples {(xi, yi)}`i=1

belonging to C classes and n− ` unlabeled examples {xi}ni=`+1 where xi ∈ Rd

is a d -dimensional example, and yi ∈ {1, 2, . . . , C} is the class label associated

with the example xi. Define f = (t>,w>)>, and let S̃b =

 Sb 0

0 0

, S̃t = St 0

0 0

 be two (d + mn) × (d + mn) augmented matrices extended from

the between-class scatter matrix Sb and the total scatter matrix St. Note that

in the semi-supervised learning scenario discussed in this section, the mean of

all the samples in (2) and (4) should be the center of both the labeled and

unlabeled examples, i.e., µ = 1
n

∑n
i=1 xi. The objective function of STSD can

be written as follows:

max
f

f>S̃bf

f>(S̃t + αS)f
, (15)

where α is a trade-off parameter. It is clear that f>S̃bf = t>Sbt and f>S̃tf =

t>Stt. Therefore, STSD seeks a optimal f such that the between-class scatter
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is maximized, and the total scatter as well as the regularizer R(t,w) defined in115

(14) are minimized at the same time.

The optimization of the objective function (15) can be achieved by solving

a generalized eigenvalue problem:

S̃bf = λ(S̃t + αS)f (16)

whose solution can be easily given by the eigenvector with respect to the max-

imal eigenvalue. Note that since the mean u is the center of both labeled and

unlabeled examples, the rank of S̃b is C. It implies that there are at most C

eigenvectors with respect to the non-zero eigenvalues. Therefore, given the op-120

timal eigenvectors f1, . . . ,fC , we can form a transformation matrix sized d×C

as T = (t1, . . . , tC), and then the C -dimensional embedding b of an example x

can be computed through b = T>x.

In many applications, especially when the dimensionality of data is high

while the data size is small, the matrix S̃t + αS in (16) may be singular. This

singularity problem may lead to an unstable solution and deteriorate the per-

formance of STSD. Fortunately, there are many approaches to deal with the

singularity problem. In this paper, we use the Tikhonov regularization because

of its simplicity and wide applicability. Finally, the generalized eigenvalue prob-

lem (16) turns out to be

S̃bf = λ(S̃t + αS + βI)f , (17)

where I is the identity matrix and β ≥ 0. Algorithm 1 gives the pseudo-code

for STSD.125

The main computational cost of STSD lies in building tangent spaces for

n data points and solving the generalized eigenvalue problem (17). The naive

implementation for our algorithm has a runtime of O((d2m+m2d)× n) for the

construction of tangent spaces and O((d+mn)3) for the generalized eigenvalue

decomposition. This suggests that STSD might be a time-consuming method.130

However, given a neighborhood size k, there are only k + 1 examples as the

inputs of local PCA . Then we can obtain at most k+1 meaningful orthonormal
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Algorithm 1 STSD

Input: Labeled and unlabeled examples {(xi, yi)|xi ∈ Rd, yi ∈

{1, 2, . . . , C}}`i=1, {xi|xi ∈ Rd}ni=`+1;

Trade-off parameters α, β, γ (α, β, γ ≥ 0).

Output: d× C transformation matrix T .

Construct the adjacency graph;

Calculate the weight matrix W ;

for i = 1 to n do

Construct Txi
using local PCA;

end for

Compute the eigenvectors f1,f2, . . . ,fC of (17) with respect to the non-zero

eigenvalues;

T = (t1, t2, . . . , tC).

bases to construct each tangent space, which implies that the dimensionality m

of the directional derivative wxi
(i = 1, . . . , n) is always less than k + 1. In

practice, k is usually small to ensure the locality. This makes sure that m is135

actually a small constant. Furthermore, recall that the number of eigenvectors

with respect to non-zero eigenvalues is equal to the number of classes C. Using

the technique of sparse generalized eigenvalue decomposition, the corresponding

computational cost is reduced to O(C2 × (d+mn)).

In summary, the overall runtime of STSD is O((d2m + m2d) × n + C2 ×140

(d + mn)). Since m and C are always small, STSD actually has an acceptable

computational cost.

3.3. Kernel STSD

Essentially STSD is a linear dimensionality reduction method, which can

not be used for non-linear dimensionality reduction or processing structured145

data such as graphs, trees, or other types of structured inputs. To handle this

problem, we extend STSD to a Reproducing Kernel Hilbert Space (RKHS).
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Suppose examples xi ∈ X (i = 1, . . . , n), where X is an input domain.

Consider a feature space F induced by a non-linear mapping φ : X → F .

We can construct an RKHS HK by defining a kernel function K(·, ·) using the150

inner product operation 〈·, ·〉, such that K(x,y) = 〈φ(x), φ(y)〉. Let Φl =

(φ(x1), . . . , φ(x`)), Φu = (φ(x`+1), . . . , φ(xn)) be the labeled and unlabeled

data matrix in the feature space F , respectively. Then the total data matrix

can be written as Φ = (Φl,Φu).

Let φ(µ) be the mean of all the examples in F , and define Ψ = (φ(µ1), . . . , φ(µC))155

which is constituted by the mean vectors of each class in F . Suppose that

φ(µ) = 01 and the labeled examples in Φl are ordered according to their labels.

Then the between-class scatter matrix Sφb and the total scatter matrix Sφt in F

can be written as: Sφb = ΨMΨ>, Sφt = ΦĨΦ> where M is a C × C diagonal

matrix whose (c, c)-th element is the number of the examples belonging to class160

c, and Ĩ =

 I`×` 0

0 0

 is a n × n matrix where I`×` is the identity matrix

sized `× `.

Recall that STSD aims to find a set of transformations to map data into a

low-dimensional space. Given examples x1, . . . ,xn, one can use the orthogonal

projection to decompose any transformation t ∈ HK into a sum of two func-

tions: one lying in the span{φ(x1), . . . , φ(xn)}, and the other one lying in the

orthogonal complementary space. Therefore, there exist a set of coefficients αi

(i = 1, 2, . . . , n) satisfying

t =

n∑
i=1

αiφ(xi) + v = Φα+ v, (18)

where α = (α1, α2, . . . , αn)> and 〈v, φ(xi)〉 = 0 for all i. Note that although

we set f = (t>,w>)> and optimize t and w together, there is no need to

reparametrize w like t. What we need is to estimate tangent spaces in F165

through local Kernel PCA [15].

Let Tφxi
be the matrix formed by the orthonormal bases of the tangent space

1It can be easily achieved by centering the data in the feature space.
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attached to φ(xi). Substitute (18) into (14) and replace Txi with Tφxi
(i =

1, 2, . . . , n). We can reformulate the regularizer (14) as follows:

R(α,w) =α>Φ>ΦS1Φ>Φα+w>S3w+

α>Φ>ΦS2w +w>S>2 Φ>Φα

=α>KS1Kα+w>S3w+

α>KS2w +w>S>2 Kα,

where K is a kernel matrix with Kij = K(xi,xj). With this formulation, Kernel

STSD can be converted to a generalized eigenvalue problem as follows:

S̃φb ϕ = λ(S̃φt + αSφ)ϕ, (19)

where we have defined ϕ = (α>,w>)>. The definitions of S̃φb , S̃φt and Sφ are

given as follows:

S̃φb =

 Φ>Sφb Φ 0

0 0

 =

 Φ>ΨMΨ>Φ 0

0 0

 ,

S̃φt =

 Φ>Sφt Φ 0

0 0

 =

 KĨK 0

0 0

 ,

Sφ =

 KS1K KS2

S>2 K S3

 .

It should be noted that every term of v vanishes from the formulation of Kernel

STSD because of 〈v, φ(xi)〉 = 0 for all i. Since Ψ>Φ can be computed through

the kernel matrix K, the solution of Kernel STSD can be obtained without

knowing the explicit form of the mapping φ.170

Given the eigenvectors ϕ1, . . . ,ϕC with respect to the non-zero eigenvalues

of (19), the resulting transformation matrix can be written as Γ = (α1, . . . ,αC).

Then, the embedding b of an original example x can be computed as:

b = Γ>Φ>φ(x) = Γ>(K(x1,x), . . . ,K(xn,x))>.
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4. Experiments

4.1. Toy Data

In order to illustrate the behavior of STSD, we first perform STSD on a toy

data set (Two Moons) compared with PCA and LDA. The toy data set contains

100 data points, and is used under different label configurations. Specifically,175

6, 10, 50, 80 data points are randomly labeled, respectively, and the rest are

unlabeled, where PCA is trained by all the data points without labels, LDA

is trained by labeled data only, and STSD is trained by both the labeled and

unlabeled data. In Figure 1, we show the one-dimensional embedding spaces

found by different methods (onto which data points will be projected). As can180

be seen in Figure 1(a), although LDA is able to find an optimum projection

where the within-class scatter is minimized while the between-class separability

is maximized, it can hardly find a good projection when the labeled data are

scarce. In addition, PCA also finds a bad solution, since it has no ability to

utilize the discriminant information from class labels. On the contrary, STSD,185

which can utilize both the labeled and unlabeled data, finds a desirable projec-

tion onto which data from different classes have the minimal overlap. As the

number of labeled data increases, we can find that the solutions of PCA and

STSD do not change, while the projections found by PCA are gradually close

to those of STSD. In Figure 1(d), the solutions of LDA and STSD are almost190

identical, which means that by utilizing both labeled and unlabeled data, STSD

can obtain the optimum solutions even when only a few data points are labeled.

This demonstrates the usefulness and advantage of STSD in the semi-supervised

scenario.

4.2. Real-world Data195

In this section, we evaluate STSD with real-world data sets. Specifically,

we first perform dimensionality reduction to map all examples into a subspace,

and then carry out classification using the nearest neighbor classifier (1-NN) in

the subspace. This measurement for evaluating semi-supervised dimensionality
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(a) 6 Labeled (b) 10 Labeled

(c) 50 Labeled (d) 80 Labeled

Figure 1: Illustrative examples of STSD, LDA and PCA on the two moons data set under

different label configurations. The circles and squares denote the data points in positive

and negative classes, and the filled or unfilled symbols denote the labeled or unlabeled data,

respectively.
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reduction methods is widely used in literature, such as [8, 9, 10, 16]. For each200

data set, we randomly split out 80% of the data as the training set and the

rest as the test set. In the training set, a certain number of data are randomly

labeled while the rest data are unlabeled. Moreover, every experimental result

is obtained from the average over 20 splits.

In our experiments, we compare STSD with multiple dimensionality reduc-205

tion methods including PCA, LDA, SELF and SDA, where LDA is performed

only on the labeled data, while PCA, SELF, SDA and STSD are performed on

both the labeled and unlabedled data. In addition, we also compare our method

with the baseline method which just employs the 1-NN classifier with the labeled

data in the original space. Since the performances of PCA and SELF depend210

on the dimensionality of the embedding subspace discovered by each method,

we show the best results for them.

For the graph based methods, including SELF, SDA and STSD, the number

of nearest neighbors for constructing adjacency graphs is determined by four-fold

cross-validation. The parameters α and γ for STSD are selected through four-215

fold cross-validation, while the Tikhonov regularization parameter β is fixed to

10−1. In addition, the parameters involved in SELF and SDA are also selected

through four-fold cross-validation. We use the heat kernel function (12) to

construct the weight matrix, and the kernel parameter σ2 is fixed as dav unless

otherwise specified where dav is the average of the squared distances between220

all data points and their nearest neighbors.

Two types of data sets under different label configurations are used to con-

duct our experiments. One type of data sets is the face images which consist of

high-dimensional images, and the other one is the UCI data sets constituted by

low-dimensional data. For the convenience of description, we name each con-225

figuration of experiments as “Data Set” + “Labeled Data Size”. For example,

for the experiments with the face images, “Yale 3” means the experiment is

performed on the Yale data set with 3 labeled data per class. Analogously, for

the experiments with the UCI data sets, “BCWD 20” means the experiment is

performed on the Breast Cancer Wisconsin (Diagnostic) data set with a total230
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of 20 labeled examples from all classes.

4.2.1. Face Images

It is well known that high-dimensional data such as images and texts are

supposed to live on or near a low-dimensional manifold. In this section, we

test our algorithm with the Yale and ORL face data sets which are deemed to235

satisfy this manifold assumption. The Yale data set contains 165 images of 15

individuals and there are 11 images per subject. The images have different facial

expressions, illuminations and facial details (with or without glass). The ORL

data set contains 400 images of 40 distinct subjects under varying expressions

and illuminations. In our experiments, every face image is cropped to consist240

of 32× 32 pixels with 256 grey levels per pixel. Furthermore, for the Yale data

set, we set the parameter σ2 of the heat kernel to 0.1dav. We report the error

rates on both the unlabeled training data and test data. Tables 1 and 2 show

that STSD always better than, or at least comparable with other counterparts

in all the cases, which demonstrates that STSD can well exploit the manifold245

structure for dimensionality reduction. Notice that SELF gets inferior results.

We conjecture that this is because it has no ability to capture the underlying

manifold structures of the data.

Table 1: Mean values and standard deviations of the unlabeled error rates (%) with different

label configurations on the face data sets.

Method Yale 3 Yale 4 ORL 2 ORL 3

Baseline 49.50± 4.86 43.93± 4.71 30.31± 3.11 21.13± 2.29

PCA 47.67± 4.40 42.60± 5.05 29.23± 2.56 20.30± 2.22

LDA 32.56± 3.85 25.60± 2.98 17.17± 3.23 8.05± 2.51

SELF 54.22± 3.88 52.07± 4.67 48.79± 4.39 37.48± 2.81

SDA 32.33± 4.11 25.93± 3.22 16.67± 3.36 7.85± 2.48

STSD 32.28± 4.09 25.27± 3.61 16.00± 3.03 7.73± 2.30
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Table 2: Mean values and standard deviations of the test error rates (%) with different label

configurations on the face data sets.

Method Yale 3 Yale 4 ORL 2 ORL 3

Baseline 46.17± 7.67 46.67± 8.65 29.94± 3.66 19.19± 3.50

PCA 40.67± 8.06 42.00± 7.29 28.06± 3.92 18.13± 3.71

LDA 32.33± 8.31 26.17± 7.74 16.56± 3.97 9.13± 3.63

SELF 50.00± 6.49 49.33± 8.28 47.88± 4.82 35.56± 3.52

SDA 32.00± 8.40 26.17± 7.67 16.13± 4.05 9.00± 3.33

STSD 31.83± 8.41 25.33± 8.54 15.69± 3.68 9.00± 3.16

4.2.2. UCI Data Sets

In this set of experiments, we use three UCI data sets [17] including Breast250

Cancer Wisconsin (Diagnostic), Climate Model Simulation Crashes, and Car-

diotocography which may not well satisfy the manifold assumption. For sim-

plicity, we abbreviate these data sets as BCWD, CMSC, and CTG, respectively.

BCWD consists of 569 data points from two classes in R30. CMSC consists of

540 data points from two classes in R18. CTG consists of 2126 data points from255

ten classes in R23.

From the results reported in Tables 3 and 4, it can be seen that when the

labeled data are scarce, the performance of LDA is even worse than the baseline

method due to the inaccurate estimation of the scatter matrices. However,

STSD achieves the best or comparable results among all other methods in all260

configurations, expect for the test error rate in BCWD 10. Although STSD

adopts a relatively strong manifold assumption, it still has sufficient flexibility

to handle general data which may not live on a low-dimensional manifold.

Notice that the error rates of several dimensionality reduction methods over

the CMSC data set do not improve with the increasing size of labeled data.265

The reason may be that the data in the CMSC data set contain some irrelevant

features as reflected by the original data description [18], which leads to the un-

expected results. Nevertheless, SDA and STSD achieve more reasonable results

due to their capabilities to extract information from both labeled and unlabeled

17



data.270

It should be noted that overall the experiments are conducted with 5 data

sets, and 5 success out of 5 account for a sign-test’s p-value of 0.031, which is

statistically significant. This also demonstrates that STSD is better than the

related methods.

4.3. Connection with the Laplacian Regularization275

Essentially, both STSD and SDA are regularized LDA methods with specific

regularizers. STSD imposes the regularizer (13) which prefers a linear function

along the manifold, while SDA employs the Laplacian regularizer to penalize

the function differences among “similar” examples. Now consider a regularized

LDA method using both of these regularizers named STSLap, whose objective

function can be written as follows:

max
t,w

t>Sbt

t>Stt+ ᾱRLap(t) + β̄RSTS(t,w)
, (20)

where RLap(t) = t>Lt is the Laplacian regularizer used in SDA with L being

the Laplacian matrix [19] and RSTS(t,w) is the regularizer used in STSD, which

is defined as (13). The parameters ᾱ and β̄ are used to control the trade-off

between the influences of RLap(t) and RSTS(t,w). Similar to STSD, STSLap

can also be converted to a generalized eigenvalue problem, which can be easily280

solved through eigenvalue-decomposition.

Although the previous experiments have shown that STSD gets better results

than SDA in most situations, SDA can achieve similar results with STSD in some

configurations. However, this does not mean that STSD and SDA are similar,

or, in other words, RSTS(t,w) and RLap(t) have similar behavior. In fact, the285

two regularizers seem to complement with each other. To demonstrate this

complementarity, we compare STSLap with SDA and STSD under a medium-

sized label configuration over all the data sets used in the previous experiments.

Specifically, the experiments are performed on BCWD 30, CMSC 30, CTG 160,

Yale 3 and ORL 2. For each data set, the neighborhood size used to construct290

the adjacency graph is set to be the one supported by the experimental results
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with both SDA and STSD in Sections 4.2.1 and 4.2.2. This means that all the

methods compared in this section utilize the same graph to regularize the LDA

model for each data set. The parameters ᾱ, β̄ in (20), and γ in RSTS(t,w) are

selected through four-fold cross-validation.295

Note that given a graph, the performance of STSLap can be at least, ideally,

identical to SDA or STSD, because STSLap degenerates to SDA or STSD when

the parameter ᾱ or β̄ is set to zero. However, if STSLap achieves better results

than both SDA and STSD, we can deem that RLap(t) and RSTS(t,w) are

complementary.300

Tables 5 and 6 show that the performance of STSLap is better than both

SDA and STSD in most of the cases. Moreover, although it is not shown in

the tables, the trade-off parameter ᾱ and β̄ are scarcely set to be zero by cross-

validation. This means that STSLap always utilizes the information discovered

from both RLap(t) and RSTS(t,w). In conclusion, the proposed regularizer305

RSTS(t,w) can capture the manifold structure of data which can not be dis-

covered by Laplacian regularizer. This implies that these two regularizers are

complementary to each other, and we could use them together to yield probably

better results in practice. It should be noted that our aim is not to compare

STSD with SDA in this set of experiments, and we can not make any conclusion310

about whether or not STSD is better than SDA from Tables 5 and 6 because

the neighbourhood size for each data set is fixed.

Table 5: Mean values and standard deviations of the unlabeled error rates (%) with medium-

sized labeled data on different data sets.

Method BCWD 30 CMSC 30 CTG 160 Yale 3 ORL 2

SDA 6.88± 2.53 9.60± 2.27 41.97± 2.72 32.39± 5.98 20.81± 2.76

STSD 6.96± 2.45 9.40± 2.30 43.47± 2.83 32.56± 6.67 16.48± 2.14

STSLap 7.07± 2.46 9.60± 2.24 41.57± 2.66 33.39± 7.01 16.42± 2.07
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Table 6: Mean values and standard deviations of the test error rates (%) with medium-sized

labeled data on different data sets.

Method BCWD 30 CMSC 30 CTG 160 Yale 3 ORL 2

SDA 6.90± 2.86 9.56± 3.28 41.85± 3.23 33.33± 5.92 20.63± 5.98

STSD 6.70± 2.81 9.44± 3.45 42.47± 3.57 33.00± 6.20 14.81± 4.20

STSLap 6.45± 2.74 9.38± 3.13 41.18± 3.54 32.83± 6.24 14.44± 4.28

5. Discussion

5.1. Related Work

STSD is a semi-supervised dimensionality reduction method under a certain315

manifold assumption. More specifically, we assume that the distribution of data

can be well approximated by a linear function on the underlying manifold. One

related method named SDA [8] adopts another manifold assumption. It sim-

ply assumes that the mapping function should be as smooth as possible on a

given graph. This strategy is well known as the Laplacian regularization which320

is widely employed in the semi-supervised learning scenario. However, STSD

follows a different principle to regularize the mapping function, which not only

provides an alternative strategy for semi-supervised dimensionality reduction,

but also attains the complementarity with the classic Laplacian regularization.

SELF [10] is another related approach, which is a hybrid method of local LDA325

[11] and PCA. Despite of its simplicity, SELF can only discover the linear struc-

ture of data, whereas our method is able to capture the non-linear intrinsic

manifold structure.

Rather than constructing an appropriate regularizer on a given graph, SSDA

[9] and semi-supervised dimensionality reduction (SSDR) [16] focus on building330

a good graph and then perform the Laplacian-style regularization on this graph.

SSDA regularizes LDA on a graph constructed by a path-based similarity mea-

sure. The advantage of SSDA is its robustness against outliers, because SSDA

aims to preserve the global manifold information. SSDR constructs a graph

according to the so called must-link and cannot-link pairwise constraints, which335
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gives a natural way to incorporate prior knowledge into the semi-supervised di-

mensionality reduction. However, these prior knowledge is not always available

in practice. In contrast to SSDA and SSDR, our method is flexible enough

to perform regularization on any graph and free from the necessity of extra

prior knowledge. In fact, the advantage of SSDA or SSDR can be easily in-340

herited through performing STSD with the graph constructed by corresponding

method (SSDA or SSDR), which is another important merits of STSD.

5.2. Further Improvements

For the manifold related learning problem considered in STSD, the estima-

tion of bases for tangent spaces is an important step. In this paper, we use345

local PCA with fixed neighborhood size to calculate the tangent spaces, and

the neighborhood size is set to be same as the one used to construct the ad-

jacency graph. This is certainly not the optimal choice, since manifolds can

have varying curvatures and data could be non-uniformly sampled. Note that

the neighborhood size can determine the evolution of calculated tangent spaces350

along the manifold. When a small neighborhood size k is used, there are at most

k+ 1 examples for the inputs of local PCA. However, when we need to estimate

a set of tangent spaces which have relative high dimensionality m (m > k + 1),

it is almost impossible to get accurate estimates of the tangent spaces, because

there are at most k+1 meaningful orthonormal bases obtained from local PCA.355

Moreover, noises can damage the manifold assumption as well to a certain ex-

tent. All these factors explain the necessity for using different neighborhood

sizes and more robust subspace estimation methods.

In our method, each example in the data matrix can be treated as an anchor

point, where local PCA is used to calculate the tangent space. The number360

of parameters that should be estimated in our method basically grows linearly

with respect to the number of anchor points. Therefore, in order to reduce

the parameters to be estimated, one possible approach is to reduce the anchor

points where only “key” examples are kept as the anchor points. This will be

a kind of research for data set sparsification. People can make different criteria365
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to decide whether or not an example should be regarded as the “key” one.

The research of anchor point reduction is especially useful when training data

are of large-scale. For large-scale data, anchor point reduction can be promising

to speed up the training process. In addition, data can exhibit different man-

ifold dimensions at different regions, especially for complex data. Therefore,370

adaptively determining the dimensionality at different anchor points is also an

important refinement of the current approach.

6. Conclusion

In this paper, we have proposed a novel semi-supervised dimensionality re-

duction method named Semi-supervised Tangent Space Discriminant analysis375

(STSD), which can extract the discriminant information as well as the manifold

structure from both labeled and unlabed data, where a linear function assump-

tion on the manifold is exploited. Local PCA is involved as an important step

to estimate tangent spaces and certain relationships between adjacent tangent

spaces is derived to reflect the adopted model assumption. The optimization of380

STSD is readily achieved by the eigenvalue decomposition.

Experimental results on multiple real-world data sets including the compar-

isons with related works have shown the effectiveness of the proposed method.

Furthermore, the complementarity between our method and the Laplacian reg-

ularization has also been verified. Future work directions include finding more385

accurate methods for tangent space estimation, and extending our method to

different learning scenarios such as multi-view learning and transfer learning.
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