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Abstract—In this paper, we propose a supervised Bayesian
sparse coding (SBSC) model for classification. The sparse coding
with Laplacian scale mixture prior is formulated as a weight-
ed l1 minimization problem. Category-specific discriminative
dictionaries and regularization parameters are learned using
variational EM algorithm from the training samples of each
category. Classification of a test sample is done using the MAP
estimate of the sparse codes. We have tested the model on different
recognition tasks and demonstrated the effectiveness of the model.

I. INTRODUCTION

Sparse coding has been applied successfully in numerous
classification tasks [1], [2], [3], [4], [5], [6], [7], [8], [9], [10].

There are two stages in classification application using
sparse coding. In the first stage, sparse codes and dictio-
nary(ies) are learned to represent the input signal. In the second
stage, classification is done based on the reconstruction error
or a classifier output. For unsupervised sparse coding and
dictionary learning, the two stages are separated completely,
and label information is not used in the first coding stage
[1], [6]. However, the sparse codes and dictionaries learned
via unsupervised learning are often lack of discrimination as
they are optimal for reconstruction but not for classification.
Recently, many algorithms have been proposed to enhance
the discrimination of visual dictionaries through supervised
learning, which can be divided into three categories.

The first class of approaches is supervised sparse coding,
that is, the label information is used for sparse coding. In some
previous work[5], [7], [11], [12], [13], [14], multiple category-
specific dictionaries were learned to promote discrimination
between classes. The simplest strategy consists of learning
one dictionary for each class and estimating the class based
on the reconstruction error. In [5], [11], the classical softmax
discriminative cost function was combined with sparse recon-
struction in the objective function and jointly optimized during
dictionary learning. In [12], an incoherence promoting term
was added to encourage dictionaries associated to different
classes to be as independent as possible. In [2], [13], the
Fisher discrimination criterion was imposed on the coding
coefficients so that they have small within-class scatter but
big between-class scatter. In [14], a joint dictionary learning
algorithm was proposed to exploit the visual correlation within
a group of visually similar object categories where a commonly
shared dictionary and multiple category-specific dictionaries
were accordingly modeled.

The second class of approaches combines the dictionary
learning and classifier training into a single objective func-
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tion, aiming at enhancing the discrimination of the learned
dictionary by solving the unified optimization[4], [10], [15],
[16]. The discrimination criteria include linear predictive
classification error [15], [16] and logistic loss function with
residual errors [4]. In [10], a label consistent constraint was
introduced and combined with the reconstruction error and the
linear predictive classification error to form a unified objective
function.

The last type of approaches updates the dictionary by
using backpropagation of the classification error [3], [9], [10],
[17], [18], [19]. It was indicated that dictionaries learned via
backpropagation yield better classification performances [3],
[9], [10]. Bradley and Bagnell [3] introduced a differentiable
KL prior as a smooth approximation of the sparse regular-
ization and employed a backpropagation procedure to train
the dictionary for sparse coding. In [9], supervised and semi-
supervised dictionary learning was introduced to various tasks.
It was shown that even for nonsmooth sparse regularization
such as l1, the resulting optimization problem is smooth under
mild assumptions and can be solved efficiently using stochastic
gradient descent. In [17], [18], discriminative dictionaries were
learned through back propagation by minimizing the training
error of the image level features, which are extracted by aver-
age pooling or max pooling over the sparse codes over larger
neighborhoods within a spatial pyramid. In [19], a top-down
saliency model was proposed that jointly learns a Conditional
Random Field (CRF) and a discriminative dictionary. The
dictionary was learned by minimizing the energy function.

Some recent research work suggested that image space is
actually a smooth low dimensional sub-manifold embedded
in a high dimensional ambient space. Standard sparse coding
does not include locality constraints explicitly, and thus may be
inaccurate in modeling the manifold[20]. Meanwhile, the over-
completeness of the dictionary and the independent coding
process may also result in the instability of sparse coding[21],
that is, similar features may be encoded as totally different
sparse codes. As suggested in [20], locality was more essential
than sparsity, since locality can lead to sparsity while sparsity
cannot cause locality. Therefore, some research has been done
to address locality-preserving or similarity preserving during
dictionary learning for image classification[8], [20], [21], [22],
[23].

In this paper, we address the supervised sparse coding with
locality preserving in a Bayesian framework. By assuming
that observations from the same class have the same prior
distribution, we build a Bayesian sparse coding model for each
class independently, where Laplacian scales of coefficients
are considered as random variables and sparse coding with
Laplacian scale mixture prior is formulated. Discriminative
dictionaries can then be learned with the regularization pa-
rameters using variational EM algorithms. Since each class
has its own regularization parameters, similar observations



from the same class will be encoded in similar sparse codes,
and the instability problem is alleviated. Different from the
existing approaches where a discriminative term based on
classification cost or Fisher discrimination criterion was added
in the objective function for sparse coding, we make the
learned dictionaries discriminative by Bayesian modeling of
the coefficients for each class. To the best of our knowledge,
this is the first work for discriminative dictionary learning and
stable sparse coding through sparsity regularization design.

The paper is organized as follows: Section 2 reviews some
related work. Section 3 describes the proposed supervised
Bayesian sparse coding method. Section 4 presents experi-
mental results on some well-known image databases. Finally,
discussions and conclusions are drawn in Section 5.

II. RELATED WORK

In this section, we first review the standard sparse coding
and dictionary learning model with Laplacian prior, then in-
troduce the related work on sparsity regularization, dictionary
learning and locality preserving sparse coding repspectively.

A. Standard Sparse coding with Laplacian prior

The graphical model of sparse coding and dictionary learn-
ing with Laplacian prior is depicted in Figure 1.

xi = ΦSi + ν, (1)

where xi ∈ Rd(i = 1, . . . , N) are observations. Φ =
[ϕ1, ϕ2, · · · , ϕm] ∈ Rd×m is an over-complete dictionary
(m > d), and the columns ϕi are visual words or basis
functions. m is the size of the dictionary. Si = [Si1, · · · , Sim]T

are the coefficients(sparse codes) which are independent with
each other. λ is a deterministic scale parameter of Laplacian
distribution for coefficients. ν ∼ N (0, σ2In) is small Gaussian
noise.

Fig. 1. The graphical model representation of sparse coding with Laplacian
prior. Here random variables are denoted by open circles, observable variables
by shaded circle, and deterministic parameters as smaller solid circle.

Denote D = {xi}Ni=1, S = {Si}Ni=1. The joint distribution

represented by the graphical model is

p(D, S) =
N∏
i=1

p(Si|λ)p(xi|Si,Φ)

=
N∏
i=1

( m∏
j=1

p(Sij |λ)
)
p(xi|Si,Φ), (2)

where p(Sij |λ) is a Laplace distribution

p(Sij |λ) =
λ

2
exp(−λ|Sij |), (3)

and the likelihood is a Gaussian distribution given by

p(xi|Si,Φ) = (2πσ2)(−d/2) exp(−∥xi − ΦSi∥2

2σ2
). (4)

Using Bayesian rule p(S|D) ∝ p(D|S)p(S), and from (3)
and (4), the MAP estimate Ŝ and dictionary Φ̂ are given by

< Ŝ, Φ̂ >= argmin
Si,Φ

∑
i

{∥xi − ΦSi∥2 + µ∥Si∥1}. (5)

where the first term is the reconstruction error and the second
term is the l1 sparsity regularizer. µ = 2σ2λ is a regularization
parameter that controls the tradeoff between the reconstruction
error and sparsity. Many efficient algorithms [24] have been
developed to solve the l1 minimization in (5).

After the dictionary is learned, the sparse coding of a new
signal x can be obtained by MAP estimate:

ŝ = argmax
s

p(s|x,Φ) = argmax
s

p(x, s|Φ), (6)

that is
ŝ = argmin

s
∥x− Φs∥2 + µ∥s∥1. (7)

B. Sparsity regularization

The sparsity of sparse representation is controlled by a
sparsity regularization term and its associated parameters.
The choice of the functional form of the regularizer and its
parameters is a challenging task [25]. Various regularizers have
been proposed for different purposes and applications. The
existing regularizers include l0 norm or l1 norm (Laplacian
prior)[26][27], Gaussian prior[28], KL prior[3], Laplacian s-
cale mixture prior [29] and reweighted l1 norm [30], mixture
of exponential (MOE) and Jeffreys mixture of exponentials
(JOE) prior[25]. In [28], the EM algorithm was used to solve
the sparse codes and the regularization parameters of Gaussian
prior. In [31], the adaptive lasso was proposed, where adaptive
weights were used for penalizing different coefficients in the
l1 penalty. In [30], reweighted l1 minimization was analysed
and demonstrated to enhance sparsity when compared with
l1 norm. In [25], sparsity regularization terms were designed
based on the minimum description length (MDL) principle.
A family of universal regularizer was proposed and shown to
enjoy several desirable theoretical and practical properties such
as statistical consistency, improved robustness to outliers in the
data, and improved sparse signal recovery when compared with
the traditional l0 and l1 norms.



C. Dictionary learning

There are two categories of dictionary learning approaches,
unsupervised data-driven dictionary learning and supervised
dictionary learning. Unsupervised dictionary learning are de-
signed to produce dictionaries useful for images reconstruc-
tion, e.g., the K-SVD algorithm [24], the method of optimal
directions (MOD) [32], the least squares optimization[33] and
gradient descent [34]. They do not utilize class information
about images in the training set. Dictionaries learned from
natural scenes were introduced in [34] for modeling the spatial
receptive fields of simple cells in the mammalian visual cortex,
and were used successfully for different recognition tasks[35].
Recently, many algorithms have been proposed to enhance
the discrimination of visual dictionaries through supervised
learning, as discussed in the last section.

D. Locality preserving sparse coding

Some recent research work suggested that image space is
actually a smooth low dimensional sub-manifold embedded in
a high dimensional ambient space. Standard sparse coding does
not include locality constraints explicitly, thus the locality or
the geometrical structure among the instances to be encoded
are lost. Research has been done to address this problem by
embedding the manifold structure into sparse coding algorithm
as regularization terms [8], [21], [22], [23]. In [8], locality-
constrained Linear Coding (LLC) was proposed. LLC incor-
porates locality constraint instead of the sparsity constraint.
Using the K nearest neighbors to select the local bases from
the codebook, a faster approximate LLC was implemented. In
[23], the geometrical structures are encoded in two situations.
When data points distribute on a single manifold,it is explicitly
modeled by locally linear embedding algorithm combined with
k-nearest neighbors. When data points often lie on multiple
manifolds, sparse representation algorithm combined with k-
nearest neighbors is utilized to construct the topological struc-
tures. After obtaining the local fitting relationship,these two
topological structures are then embedded into sparse coding
algorithm as regularization terms to formulate the correspond-
ing objective functions of dictionary learning.

Another related work is group sparse coding. Group sparse
coding was proposed in [36], [37], in which similar features
are encoded simultaneously, other than encoding each feature
one by one in sparse coding. A blockwise nonzero entry
distribution constraint was imposed on the sparse codes matrix,
thus the similarities among the features within the same
group can be preserved. Furthermore, nonoverlapping group
lasso [38], [39] and overlapping group lasso [40], [41] were
proposed to deal with nonoverlapping groups and overlapping
groups respectively.

III. SUPERVISED BAYESIAN SPARSE CODING

We propose a Bayesian sparse coding model for a multi-
class classification problem.

Assume signals from different classes have different prior
distributions, and signals from the same class have the same
prior distribution. We build a model for each of the C classes.
For the cth class, the graphical model of Bayesian sparse cod-
ing on the corresponding training data is depicted in Figure 2.
xi ∈ Rd(i = 1, . . . , Nc) are observations of the cth class from

the training set. Denote D = {xi}Nc
i=1, Λ = [λ1, . . . , λm]⊤,

S = {Si}Nc
i=1. It should be pointed out that λi(i = 1, · · · ,m)

are hidden random variables here.

Fig. 2. The graphical model of Baysesian sparse coding and dictionary
learning for the cth class.

The joint distribution represented by the graphical model
is

p(D, S,Λ) = p(Λ)

Nc∏
i=1

p(Si|Λ)p(xi|Si,Φ)

=
m∏
j=1

p(λj)

Nc∏
i=1

m∏
j=1

(
p(Sij |λj)

)
p(xi|Si,Φ),

(8)

p(λj) is a Gamma distribution with the form

p(λj) = Γ(λj |αj , βj) =
1

Γ(αj)
β
αj

j λ
αj−1
j e−βjλj , λj ∈ R+

(9)
where αj and βj are its shape and scale parameters, respec-
tively. p(Sij |λj) is a Laplace distribution

p(Sij |λj) =
λj

2
exp(−λj |Sij |), (10)

and the likelihood is a Gaussian distribution given by

p(xi|Si,Φ) = (2πσ2)(−d/2) exp(−∥xi − ΦSi∥2

2σ2
). (11)

The distribution over Sij is a continuous mixture of Lapla-
cian distributions with different inverse scale, and it can be
computed by integrated out λj

p(Sij) =

∫
p(Sij , λj)dλj =

∫
p(Sij |λj)p(λj)dλj . (12)

Note that for most choices of p(λj), we do not have an
analytical expression for p(Sij). Such a distribution is called
a Laplacian Scale Mixture (LSM) [29].



A. Reweighted l1 minimization

In this subsection, we will introduce an analytical solution
to the Bayesian sparse coding, which results in a nonconvex
log-sum regularizer.

With a conjugate Gamma prior distribution in (9), we can
compute p(Sij) analytically [29].

p(Sij) =

∫
p(Sij |λj)p(λj)dλj =

αjβ
αj

j

2(βj + |Sij |)αj+1
. (13)

As in the standard sparse coding and dictionary learning,
from (11) and (13), the MAP estimate Ŝ and dictionary is
given by

< Ŝ, Φ̂ >= argmax
Si,Φ

∑
i

{log p(xi|Si,Φ) + log p(Si)}, (14)

that is

< Ŝ, Φ̂ > = argmin
Si,Φ

∑
i

{∥xi − ΦSi∥2

+ 2σ2
m∑
j=1

(αj + 1) log(βj + |Sij |)}. (15)

The nonconvex log-sum regularizer in (15) was also proposed
in [25], which was called mixture of exponential (MOE)
prior. As discussed in [25], the parameters α and β are
noninformative, in the sense that the probability distribution of
the sparse codes does not depend on their choice. Therefore,
all shape parameters αj and scale parameter βj were set to be
same, that is, αj = α and βj = β for j = 1, · · · ,m. Thus the
graphical model is simplified as in Fig.3, where all coefficients
have the same prior distribution. The MAP estimate Ŝ and
dictionary Φ̂ are given by

< Ŝ, Φ̂ > = argmin
Si,Φ

∑
i

{∥xi − ΦSi∥2

+ 2σ2(α+ 1)

m∑
j=1

log(β + |Sij |)}. (16)

Fig. 3. The graphical model of sparse coding with log-sum regularizer.

After the dictionary is learned, the sparse coding of a new
signal x can be obtained by MAP estimate:

ŝ = argmin
s

∥x− Φs∥2 + γ
m∑
j=1

log(β + |sj |). (17)

where γ = 2σ2(α+1). Some work has been done to solve the
sparse coding problem with the nonconvex regularizer in (17)
[42], [43]. The iterative reweighted l1 algorithm was used in
[30], [25], which consists of solving a sequence of weighted
l1 minimization problems where the weights used for the next
iteration are computed from the value of the current solution.

st+1 = argmin
s

∥x− Φs∥2 + γ
m∑
j=1

1

β + |sj |t|
|sj |. (18)

B. Weighted l1 minimization

In this subsection, we introduce a variational approach to
the Bayesian sparse coding, which results in a convex weighted
l1 regularizer.

Instead of integrating λ out as in (13), we use variational
inference to calculate p(S).

log p(S) = L(q, S) +KL(q(Λ)∥p(Λ|S)), (19)

where

L(q, S) =

∫
Λ

q(Λ) log
p(S,Λ)

q(Λ)
dΛ, (20)

KL(q(Λ)∥p(Λ|S)) =

∫
Λ

q(Λ) log
q(Λ)

p(Λ|S)
dΛ. (21)

Here q(Λ) is an approximate distribution of p(Λ|S), which can
be any probability distribution. From (19) we know

log p(S) ≥ L(q, S),

and the equality holds only when q(Λ) = p(Λ|S).
We use EM algorithm for the MAP estimate of the

coefficients. In the E step, we update the approximate
distribution q(Λ) =

∏
j q(λj). In the M step, we update the

coefficients and dictionary with the current q(Λ).

E step: The Gamma distribution and Laplacian distribution
are conjugate, that is, the posterior probability of λj given
Sij is also a Gamma distribution. Hence, the posterior of λj

given S is a Gamma distribution with parameters αj +Nc and
βj +

∑
i |Sij |. Hence, we have

q(λj) = p(λj |S) = Γ(αj +Nc, βj +
∑
i

|Sij |). (22)

Then the expectation of λj is

Eq[λj ] =
αj +Nc

βj +
∑

i |Sij |
. (23)

When there are enough training examples, Nc >> αj , the
influence of the hyperparameters αj and βj are neglectable
and therefore can be set as constants. Then the expectation
can be simplified as

Eq[λj ] ≈
1

β0 + {
∑

i |Sij |}/Nc
. (24)



Here β0 is a small positive number to make the denominator
nonzero.

M step: The complete log-likelihood log p(S,Λ) can be cal-
culated analytically

log p(S,Λ) =
∑
i

log p(Si,Λ) =
∑
i,j

log p(Sij , λj)

= −
∑
i,j

λj |Sij |+Nc

∑
j

{log λj

2
+ log p(λj)}.

(25)

Then from (20) and (25)

L(q, S) = −Eq[
∑
i,j

λj |Sij |] + f0

= −
∑
i,j

Eq[λj ]|Sij |+ f0, (26)

here f0(Λ) = Nc

∑
j Eq[{log λj

2 +log p(λj)}]−Eq[q(Λ)] is a
constant which is irrelevant to S.

Since log p(S) ≥ L(q, S), that is, L(q, S) is the lower
bound of log p(S). The optimization problem in (14) can be
reformulated as

< Ŝ, Φ̂ >= argmax
Si,Φ

∑
i

{log p(xi|Si,Φ) + L(q, S)}. (27)

Insert (26) to (27), we have

< Ŝ,Φ >= argmin
S,Φ

∑
i

{∥xi−ΦSi∥22+2σ2
∑
j

Eq[λj ]|Sij |}.

(28)

The weighting factor Eq[λj ] in (24) has an appealing
intuitive interpretation. When the mean of the jth coefficient
is small, Eq[λj ] will be large, which increase the chance that it
will be smaller in the next iteration. On the other hand, when
the mean of the jth coefficient is large, Eq[λj ] will be small,
such that the jth component is not penalized to be large in the
next iteration.

The minimization problem in (28) can be solved using
an iterative method[24]. There are two main steps in each
iteration. The first step is sparse coding based on the current
dictionary. The second step is dictionary update with the cur-
rent coefficients. For a given dictionary Φ, the MAP estimate
ŝ of the coefficients in (28) can be solved by the existing l1
weighted minimization algorithms [30]:

Ŝi = argmin
Si

∥xi − ΦSi∥22 + 2σ2
∑
j

Eq[λj ]|Sij |. (29)

Now we consider the dictionary learning in (28). There are
many algorithms proposed for the dictionary learning, e.g. the
gradient descent [34], method of optimal directions (MOD)
[44] and K SVD [24]. Here we use a modified MOD for
dictionary learning.

The MOD was formulated as

Φ = XST (SST )−1. (30)

Here X ∈ Rd×Nc , and S ∈ Rm×Nc . Since the coefficients
of some components(words) for the training samples in one

class may be all zeros, that means these words are not used to
reconstruct the signal in this class, which are called inactive
words. It is unnecessary to update these words. The remaining
words are active words for this class, and denoted as Φact.
The corresponding coefficients of active words are denoted as
Sact. The modified MOD can be described as follows.

Φact = XST
act(SactS

T
act + ρI)−1. (31)

Here ρ is a small constant to make the matrix invertible.

The proposed Bayesian sparse coding and dictionary
learning algorithm with weighted l1 regularizer can be
summarized as follows.

Initialization.
Initialize Eq[λj ] and Φ;
Calculate the MAP estimate of Si.

E step.
Calculate expectation of Λ using (24) .

M step.
Update MAP estimate of Si by solving (29);
update dictionary Φ using (31).

Repeat the E step and M step.

The sparse coding in (28) is similar to group sparse coding
in the way that features from a group (class) are encoded
simultaneously. But different from group sparse coding, where
a blockwise nonzero entry distribution constraint was imposed
on the sparse codes matrix, we use the regularization parame-
ters to preserve the similarities among the features within the
same group.

After training, we have learned the dictionary Φc and
weighting factors Λc = [λc

1, · · · , λc
m] for the cth class. The

model of the cth class can be simplified as shown in Fig.4. The
probability distributions of the coefficients are still Laplacian
distribution

p(sj) =
λc
j

2
exp(−λc

j),

where
λc
j = Eq[λj ] =

1

β0 + {
∑

i |Sc
ij |}/Nc

. (32)

Here λc
j means the weighting factor of the jth component

for the cth class, and Sc
ij means the coefficients of the jth

component for the ith training samples from the cth class. It
should be noted that each class has its own set of regularization
parameters, which will determine the discriminative basis for
each class. If λc

j is small, it means the jth basis is more
discriminative for the cth class.

For a new test signal x, we need to predict its category.
That is

c∗ = argmax
c

p(x|Φc,Λc), (33)

here

p(x|Φc,Λc) =

∫
p(x, s|Φc,Λc)ds =

∫
p(x|s,Φc)p(s|Λc)ds.

(34)

There does not exist the analytic formulation for the
above marginalization. We can first get the MAP estimate s∗c,



Fig. 4. The graphical model of sparse coding with weighted l1 regularization
for the c class.

then plug the s∗c into (34) to give a point estimate of the
p(x|Φc,Λc) by p(x|s∗c,Φc)p(s∗c|Λc).

The MAP estimate of the coefficients of the signal x from
the c class can be written as

s∗c = argmin
s

{∥x− Φcs∥22 +
∑
j

λc
j |sj |}. (35)

Therefore we have

c∗ = argmin
c

∥x− Φcs∗c∥22 +
∑
j

λc
j |s∗cj |. (36)

IV. EXPERIMENTS

In this section, we test the proposed model with different
recognition tasks, including handwritten digits and handwritten
English characters. SIFT features are used in all experiments.
We used sparse modeling toolbox SPAMS to solve the s-
parse coding with weighted l1 norm, which is download-
able from http://spams-devel.gforge.inria.fr/downloads.html.
We compare the proposed sparse coding algorithms, the
weighted l1 (WL1) in (35), with the reweighted l1 (reWL1)
in (18) and L1 in (7). For WL1, We use (24) to estimate
the regularization parameters, and β0 is set as 0.01 in all
experiments. For reWL1 in (18), γ was set as 0.01 and β
as 0.05. For L1 in (7), µ was set as 0.15.

A. USPS dataset

The USPS dataset has 7291 training images and 2007 test
images of size 16x16.

We extracted 128 dimensional SIFT feature for each
digit image. The dictionary size is 256. The initial dictio-
nary was learned from all training features using (5). The
category-specific dictionaries and regularization parameters
were learned using the EM algorithm discussed in the last
section.

First, we investigated the discrimination of the learned dic-
tionary and stability of the proposed SBSC. We compared the
sparse codes obtained from our proposed supervised Bayesian
sparse coding WL1 (35) with standard sparse coding with l1
regularizer (7) and reWL1 in (18). The averages of sparse
codes for all test examples of digits 0 and digit 6 were

shown in Fig.5. Note the scale difference of the y axis. It
can be seen that almost all words in the dictionary were used
to represent the test examples using standard sparse coding
L1 in Fig.5(top), therefore the averages of sparse codes are
very small (< 0.02). As discussed in [37], the codes for the
group or category are not sparse, even though the code for
each sample is sparse. However for our supervised Bayesian
sparse coding in Fig.5(bottom), the averages of a small set
of coefficients are much larger than others, thus only a small
set of words were used to represent all test examples in this
category. This means these words are discriminative for this
category. Codes of WL1 are also more sparse than codes
of reWL1 in Fig.5(middle). To investigate the stability of
coding further, two similar images were shown in top panels
of Fig.6. The sparse codes from standard sparse coding (7)
and reWL1 were shown in Fig.6(b) and Fig.6(c) respectively.
It can be seen that as discussed in [30], reWL1 improved the
sparsity of L1, but the codes for two similar images are still
dissimilar to each other. This is because similarity preserving
was not considered in these two coding methods. The sparse
codes from our proposed SBSC WL1 were shown in Fig.6(d),
which are very similar. This demonstrates the stability of the
proposed SBSC. From Fig.6, we can see that the codes for one
image from our proposed SBSC are less sparse than that from
standard sparse coding. This is because that training samples
from the same category may still be very different, therefore
more regularization parameter λc

j in (32) will be small. As
suggested in [20], locality was more essential than sparsity,
therefore we focus on stability rather than sparsity.
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Fig. 5. Comparison of the proposed WL1 (bottom) with standard sparse
coding L1 (top) and reWL1 (middle). The average sparse codes of all test
examples of digit 0 (left panel) and digit 6 (right panel) are displayed.

Secondly, we tested our model for classification. The
accuracy on the test set are 98.90% using WL1, which is
slightly better than that of reWL1, 98.36%. But since sparse
coding for reWL1 in (18) has to be solved iteratively, the test
time for reWL1 is much longer than WL1. We have observed
that ten iterations are needed to converge. Thus, the cost of



sparse coding with the reweighted L1 regularizers, is ten times
that of the WL1. We also tested the standard sparse coding
L1. The accuracy of L1 is 98.36%, same as reWL1.

Finally, we compare our results with Mairal et al.’s unsu-
pervised and supervised approaches in [9]. The best results
of these approaches were shown in Table I. Our error rate is
significantly better than theirs on USPS dataset. But it should
be noted that we used SIFT feature in all our experiments,
rather than the raw patch in [9].

TABLE I. ERROR RATE FOR USPS FOR DIFFERENT APPROACHES

approaches Mairal et al. [9] Mairal et al. [9] reWL1 SBSC
(unsupervised) (supervised) [25] (WL1)

Error rate 4.58 2.84 1.64 1.10

B. Handwritten character dataset

We tested the proposed model on handwritten character
dataset downloaded from (http://ai.stanford.edu/∼btaskar/ocr/).
The dataset has 52152 English characters. The image size is
16×8 pixels. The dictionary size is 128. We randomly selected
M images as the training set, the rest as the test set. The
average accuracies of 10 runs for different M were shown in
Table II. We also tested the reWL1 on this dataset. Our results
are better for all training numbers than reWL1.

We compared our results with the previous work [3], in
which a differentiable smooth KL prior for sparse coding
was proposed to improve the prediction performance over
L1-prior, and supervised dictionary learning through back-
propagation further improved the performance. As shown in
Table II, our results are better than their KL prior and back-
propagation when the number of training samples is less than
20000, but not as good as their results of back-propagation
for M = 20000. This may be because the codes obtained by
the proposed supervised Bayesian learning are less sparse and
discriminative when the training set is too large.

TABLE II. RECOGNITION ACCURACY FOR HANDWRITTEN
CHARACTER DATASET

Training L1[3] KL[3] KL+BP[3] reWL1 SBSC
100 44.0 49.4 50.7 30.21 51.69
500 63.7 69.2 69.9 63.54 72.73
1000 69.5 75.0 76.4 71.11 78.58
5000 78.9 82.5 84.2 84.89 85.57

20000 83.3 86.0 89.1 87.63 87.88

V. CONCLUSIONS

We made three main contributions in this paper. First,
we built a Bayesian sparse coding model for each class, and
sparse coding was formulated as a weighted l1 minimization
problem. It is about ten times faster than the reweighted l1
minimization[25]. Second, we proposed a novel discrimina-
tive dictionary learning approach, which can be learned with
the regularization parameters using variational EM algorithm.
Finally, the instablity problem of sparse coding with l1 and
reweighted l1 minimization was alleviated, and similar fea-
tures can be encoded similarly using the same regularization
parameters.

Since we assume that images from the same class have
the same prior distribution, our method can only be applied
to patch-level images, such as digits, characters and faces,

where the images are taken as patches. For other images
such as natural scenes, different regions in a image have
different appearance and therefore different prior distributions,
our method is not applicable.
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(a) Two similar images.
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(b) Sparse codes of L1.
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(c) Sparse codes of reWL1.
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(d) Sparse codes of the proposed WL1.

Fig. 6. Sparse codes for two similar images from different coding methods.
The proposed supervised Bayesian sparse coding has similarity preserving
property.


