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Abstract

Support vector machines (SVMs) are theoretically well-justified machine learning
techniques, which have also been successfully applied to many real-world domains.
The use of optimization methodologies plays a central role in finding solutions of
SVMs. This paper reviews representative and state-of-the-art techniques for opti-
mizing the training of SVMs, especially SVMs for classification. The objective of this
paper is to provide readers an overview of the basic elements and recent advances
for training SVMs and enable them to develop and implement new optimization
strategies for SVM-related research at their disposal.
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1 Introduction

Support vector machines (SVMs) are state-of-the-art machine learning tech-
niques with their root in structural risk minimization [51,60]. Roughly speak-
ing, by the theory of structural risk minimization, a function from a function
class tends to have a low expectation of risk on all the data from an under-
lying distribution if it has a low empirical risk on a certain data set that is
sampled from this distribution and simultaneously the function class has a low
complexity, for example, measured by the VC-dimension [61]. The well-known
large margin principle in SVMs [8] essentially restricts the complexity of the
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function class, making use of the fact that for some function classes a larger
margin corresponds to a lower fat-shattering dimension [51].

Since their invention [8], research on SVMs has exploded both in theory and
applications. Recent theory advances in characterizing their generalization
errors include Rademacher complexity theory [3,52] and PAC-Bayesian the-
ory [33,39]. In practice, SVMs have been successfully applied to many real-
world domains [11]. Moreover, SVMs have been combined with some other
research directions, for example, multitask learning, active learning, multi-
view learning and semi-supervised learning, and brought forward fruitful ap-
proaches [4,15,16,55,56].

The use of optimization methodologies plays an important role in training
SVMs. Due to different requirements on the training speed, memory con-
straint and accuracy of optimization variables, practitioners should choose
different optimization methods. It is thus instructive to review the optimiza-
tion techniques used to train SVMs. Given that SVMs have been blended into
the developments of other learning mechanisms, this would also be beneficial
to facilitate readers to formulate and solve their own optimization objectives
arising from SVM-related research.

Since developments on optimization techniques for SVMs are still active, and
SVMs have multiple variants depending on different purposes such as classifi-
cation, regression and density estimation, it is impractical and unnecessary to
include every optimization technique used so far. Therefore, this paper mainly
focuses on reviewing representative optimization methodologies used for SVM
classification. Being familiar with these techniques is, however, helpful to un-
derstand other related optimization methods and implement optimization for
other SVM variants.

The rest of this paper is organized as follows. Section 2 introduces the theory
of convex optimization, which is closely related to the optimization of SVMs.
Section 3 gives the formulation of SVMs for pattern classification, where the
kernel trick is also involved. Also, in Section 3, we derive the dual optimization
problems and provide optimality conditions for SVMs. They constitute a foun-
dation for the various optimization methodologies detailed in Section 4. Then
we briefly describe SVMs for density estimation and regression in Section 5,
and introduce optimization techniques used for learning kernels in Section 6.
Finally, concluding remarks are given in Section 7.

2 Convex optimization theory

An optimization problem has the form
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min f(x)

s.t. fi(x) ≤ 0, i = 1, . . . , n. (1)

Here, the vector x ∈ R
m is the optimization variable, the function f : R

m → R

is the objective function, and the functions fi : R
m → R (i = 1, . . . , n)

are the inequality constraint functions. The domain of this problem is D =
domf ∩n

i=1 domfi. A vector from the domain is said to be one element of the
feasible set Df if and only if the constraints hold on this point. A vector x∗

is called optimal, or the solution of the optimization problem, if its objective
value is the smallest among all vectors satisfying the constraints [10]. For now
we do not assume the above optimization problem is convex.

The Lagrangian associated with the problem (1) is defined as

L(x,α) = f(x) +
n
∑

i=1

αifi(x), αi ≥ 0, (2)

where α = [α1, . . . , αn]>. The scalar αi is referred to as the Lagrange multiplier
associated with the ith constraint. The vector α is called a dual variable
or Lagrange multiplier vector. The Lagrange dual function is defined as the
infimum of the Lagrangian

g(α) = inf
x∈Df

L(x,α). (3)

Denote the optimal value of problem (1) by f ∗. It can be easily shown that
g(α) ≤ f ∗ [10].

With the aim to approach f ∗, it is natural to define the following Lagrange
dual optimization problem

max g(α)

s.t. α � 0, (4)

where α � 0 means αi ≥ 0 (i = 1, . . . , n).

2.1 Optimality conditions for generic optimization problems

KKT (Karush-Kuhn-Tucker) conditions are among the most important suffi-
cient criteria for solving generic optimization problems, which are given in the
following theorem [26,31,36,49].
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Theorem 1 (KKT saddle point conditions) Consider a generic optimiza-
tion problem given by (1) where f and fi are arbitrary functions. If a pair of
variables (x∗,α∗) exists where x∗ ∈ R

m ∩ D and α∗ � 0, such that for all
x ∈ R

m ∩ D and α ∈ [0,∞)n,

L(x∗,α) ≤ L(x∗,α∗) ≤ L(x,α∗) , (5)

then x∗ is a solution to the optimization problem.

One of the important insights derived from (5) is

α∗
i fi(x

∗) = 0, i = 1, . . . , n, (6)

which is usually called complementary slackness conditions. Furthermore, un-
der the assumption that (5) holds, it is straightforward to prove that L(x∗,α∗) =
f ∗ = g∗ with g∗ being the optimal value of the dual problem, and α∗ is the
associated optimal solution. The important step is to show that

max
α�0

g(α) = max
α�0

inf
x∈Df

L(x,α) ≥ inf
x∈Df

L(x,α∗) = L(x∗,α∗) = f ∗. (7)

Combining this with g(α) ≤ f ∗ results in the assertion. Now, there is no gap
between the optimal values of the primal and dual problems. The KKT-gap
∑n

i=1 αifi(x) vanishes when the optimal pair of solutions satisfying (5) are
found.

If equality constraints are included in an optimization problem, such as h(x) =
0, we can split it into two inequality constraints h(x) ≤ 0 and −h(x) ≤ 0 [49].
Suppose the optimization problem is

min f(x)

s.t. fi(x) ≤ 0, i = 1, . . . , n,

hj(x) = 0, j = 1, . . . , e. (8)

The Lagrangian associated with it is defined as

L(x,α,β) = f(x) +
n
∑

i=1

αifi(x) +
e
∑

j=1

βjhj(x), αi ≥ 0, βj ∈ R. (9)

The corresponding KKT saddle point conditions for problem (8) are given by
the following theorem [49].

Theorem 2 (KKT saddle point conditions with equality constraints)
Consider a generic optimization problem given by (8) where f , fi and hj are
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arbitrary. If a triplet of variables (x∗,α∗,β∗) exists where x∗ ∈ R
m ∩ D,

α∗ � 0, and β∗ ∈ R
e, such that for all x ∈ R

m ∩ D, α ∈ [0,∞)n and
β ∈ R

e,

L(x∗,α,β) ≤ L(x∗,α∗,β∗) ≤ L(x,α∗,β∗) , (10)

then x∗ is a solution to the optimization problem, where D is temporarily
reused to represent the domain of problem (8).

As equality constraints can be equivalently addressed by splitting them to
two inequality constraints, we will mainly use the formulation given in (1) for
optimization treatment in the sequel.

2.2 Optimality conditions for convex optimization problems

The KKT saddle point conditions are sufficient for any optimization problems.
However, it is more desirable to disclose necessary conditions when implement-
ing optimization methodologies. Although it is difficult to provide necessary
conditions for generic optimization problems, this is quite possible for some
convex optimization problems having nice properties.

Definition 3 (Convex function) A function f : R
m → R is convex if its

domain domf is a convex set and if for 0 ≤ θ ≤ 1 and all x,y ∈ domf , the
following holds

f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y). (11)

If the functions f and fi are all convex functions, then the problem (1) is a
convex optimization problem. For a convex optimization problem shown in (1),
both the domain D and the feasible region

Df = {x ∈ D and fi(x) ≤ 0 (i = 1, . . . , n)} (12)

can be proved to be convex sets.

The following theorem [36,49] states the nice properties required for the con-
straints in order to obtain the necessary optimality conditions for convex op-
timization problems.

Theorem 4 (Constraint qualifications) Suppose D ∈ R
m is a convex do-

main, and the feasible region Df is defined by (12) where functions fi : D → R

are convex (i = 1, . . . , n). Then the following three qualifications on constraint
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functions fi are connected by (i)⇔ (ii) and (iii)⇒ (i):
(i) There exists an x ∈ D s.t. fi(x) < 0 for all i = 1, . . . , n (Slater’s condi-
tion [54]).
(ii) For all nonzero α ∈ [0,∞)n there exists an x ∈ D s.t.

∑n
i=1 αifi(x) ≤ 0

(Karlin’s condition [25]).
(iii) The feasible region Df contains at least two distinct points, and there
exists an x ∈ Df s.t. all fi are strictly convex at x with respect to Df (Strict
constraint qualification).

Now we reach the theorem [31,25,49] stating the necessity of KKT conditions.

Theorem 5 (Necessity of KKT conditions) For a convex optimization
problem defined by (1), if all the inequality constraints fis satisfy one of
the constraint qualifications of Theorem 4, then the KKT saddle point con-
ditions (5) given in Theorem 1 are necessary for optimality.

A convex optimization problem is defined as the minimization of a convex
function over a convex set. It can be represented as

min f(x)

s.t. fi(x) ≤ 0, i = 1, . . . , n,

a>
j x = bj, j = 1, . . . , e, (13)

where the functions f and fi are convex, and the equality constraints hj(x) =
a>

j x− bj are affine [10]. In this case, we can eliminate the equality constraints
by updating the domain D ∩e

j=1 (a>
j x = bj) → D and then apply Theorem 5

on a convex problem with no equality constraints.

Slater’s condition can be further refined when some of the inequality con-
straints in the convex problem defined by (1) are affine. The strict feasibility
in Slater’s condition for these constraints can be relaxed to feasibility [10].

2.3 Optimality conditions for differentiable convex problems

For SVMs, we often encounter convex problems whose objective and constraint
functions are further differentiable. Suppose a convex problem (1) satisfies the
conditions of Theorem 5. Then we can find its solutions making use of the
KKT conditions (5). Under the assumption that the objective and constraint
functions are differentiable, the KKT conditions can be simplified as in the
following theorem [31,49]. Many optimization methodologies frequently use
these conditions.

Theorem 6 (KKT for differentiable convex problems) Consider a con-
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vex problem (1) whose objective and constraint functions are differentiable at
solutions. The vector x∗ is a solution, if there exists some α∗ ∈ R

n s.t. the
following conditions hold:

α∗ � 0 (Required by the Lagrangian), (14)

∂xL(x∗,α∗) = ∂xf(x∗) +
n
∑

i=1

α∗
i ∂xfi(x

∗) = 0 (Saddle point at x∗), (15)

∂αi
L(x∗,α∗) = fi(x

∗) ≤ 0, i = 1, . . . , n (Saddle point at α∗), (16)

α∗
i fi(x

∗) = 0, i = 1, . . . , n (Zero KKT-gap). (17)

Note that the sign ‘≤’ in (16) is correct as a result of the domain of αi (i =
1, . . . , n) in the Lagrangian being [0,∞).

3 SVMs and kernels

In this section, we describe the optimization formulations, dual optimization
problems, optimality conditions and related concepts for SVMs for binary
classification, which will be shown very useful for various SVM optimization
methodologies introduced in later sections. Here after addressing linear clas-
sifiers for linearly separable and nonseparable problems, respectively, we then
describe nonlinear classifiers with kernels.

Henceforth, we use boldface x to denote an example vector, and the sign ‘n’
will be used to denote the number of training examples for consistency with
most literature on SVMs. Given a training set S = {xi, yi}ni=1 where xi ∈ R

d

and yi ∈ {1,−1}, the aim of SVMs is to induce a classifier which has good
classification performance on future unseen examples.

3.1 Linear classifier for linearly separable problems

When the data set S is linearly separable, SVMs solve the problem

min
w,b

Φ(w) =
1

2
‖w‖2

s.t. yi(w
>xi + b) ≥ 1, i = 1, . . . , n, (18)

where the constraints represent the linearly separable property. The large mar-
gin principle is reflected by minimizing 1

2
‖w‖2 with 2/‖w‖ being the margin
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between two lines w>x + b = 1 and w>x + b = −1. The SVM classifier would
be

cw,b(x) = sign(w>x + b). (19)

Problem (18) is a differentiable convex problem with affine constraints, and
therefore the constraint qualification is satisfied by the refined Slater’s condi-
tion. Theorem 6 is suitable to solve the current optimization problem.

The Lagrangian is constructed as

L(w, b,λ) =
1

2
‖w‖2 −

n
∑

i=1

λi

[

yi(w
>xi + b)− 1

]

, λi ≥ 0, (20)

where λ = [λ1, . . . , λn]> are the associated Lagrange multipliers. Using the
superscript star to denote the solutions of the optimization problem, we have

∂wL(w∗, b∗,λ∗) = w∗ −
n
∑

i=1

λ∗
i yixi = 0, (21)

∂bL(w∗, b∗,λ∗) = −
n
∑

i=1

λ∗
i yi = 0. (22)

From (21), the solution w∗ has the form

w∗ =
n
∑

i=1

λ∗
i yixi. (23)

The training examples for which λ∗
i > 0 are called support vectors, because

other examples with λ∗
i = 0 can be omitted from the expression.

Substituting (21) and (22) into the Lagrangian results in

g(λ) =
1

2
‖w‖2 −

n
∑

i=1

λiyiw
>xi +

n
∑

i=1

λi

=
n
∑

i=1

λi +
1

2

n
∑

i=1

n
∑

j=1

λiλjyiyjx
>
i xj −

n
∑

i=1

n
∑

j=1

λiλjyiyjx
>
i xj

=
n
∑

i=1

λi −
1

2

n
∑

i=1

n
∑

j=1

λiλjyiyjx
>
i xj. (24)

Thus the dual optimization problem is
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max
λ

g(λ) = λ>1− 1

2
λ>Dλ

s.t. λ>y = 0,

λ � 0, (25)

where y = [y1, . . . , yn]> and D is a symmetric n × n matrix with entries
Dij = yiyjx

>
i xj [43,52].

The zero KKT-gap requirement (also called the complementary slackness con-
dition) implies that

λ∗
i

[

yi(x
>
i w∗ + b∗)− 1

]

= 0, i = 1, . . . , n. (26)

Therefore, for all support vectors the constraints are active with equality. The
bias b∗ can thus be calculated as

b∗ = yi − x>
i w∗ (27)

using any support vector xi. With λ∗ and b∗ calculated, the SVM decision
function can be represented as

c∗(x) = sign

(

n
∑

i=1

yiλ
∗
i x

>xi + b∗
)

. (28)

3.2 Linear classifier for linearly nonseparable problems

In the case that the data set is not linearly separable but we would still like
to learn a linear classifier, a loss on the violation of the linearly separable
constraints has to be introduced. A common choice is the hinge loss

max
(

0, 1− yi(w
>xi + b)

)

, (29)

which can be represented using a slack variable ξi.

The optimization problem is formulated as

min
w,b,ξ

Φ(w, ξ) =
1

2
‖w‖2 + C

n
∑

i=1

ξi

s.t. yi(w
>xi + b) ≥ 1− ξi, i = 1, . . . , n,

ξi ≥ 0, i = 1, . . . , n, (30)
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where the scalar C controls the balance between the margin and empirical loss.
This problem is also a differentiable convex problem with affine constraints.
The constraint qualification is satisfied by the refined Slater’s condition.

The Lagrangian of problem (30) is

L(w, b, ξ,λ,γ) =
1

2
‖w‖2 + C

n
∑

i=1

ξi −
n
∑

i=1

λi

[

yi(w
>xi + b)− 1 + ξi

]

−
n
∑

i=1

γiξi, λi ≥ 0, γi ≥ 0, (31)

where λ = [λ1, . . . , λn]> and γ = [γ1, . . . , γn]> are the associated Lagrange
multipliers. Making use of Theorem 6, we obtain

∂wL(w∗, b∗, ξ∗,λ∗,γ∗) = w∗ −
n
∑

i=1

λ∗
i yixi = 0, (32)

∂bL(w∗, b∗, ξ∗,λ∗,γ∗) = −
n
∑

i=1

λ∗
i yi = 0, (33)

∂ξi
L(w∗, b∗, ξ∗,λ∗,γ∗) = C − λ∗

i − γ∗
i = 0, i = 1, . . . , n, (34)

where (32) and (33) are respectively identical to (21) and (22) for the separable
case.

The dual optimization problem is derived as

max
λ

g(λ) = λ>1− 1

2
λ>Dλ

s.t. λ>y = 0,

λ � 0,

λ � C1, (35)

where y and D have the same meanings as in problem (25).

The complementary slackness condition requires

λ∗
i

[

yi(x
>
i w∗ + b∗)− 1 + ξ∗i

]

= 0, i = 1, . . . , n,

γ∗
i ξ

∗
i = 0, i = 1, . . . , n. (36)

Combining (34) and (36), we can solve b∗ = yi−x>
i w∗ for any support vector

xi with 0 < λ∗
i < C. The existence of 0 < λ∗

i < C is equivalent to the
assumption that there is at least one support vector with functional output
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yi(x
>
i w∗ + b∗) = 1 [43]. Usually, this is true. If this assumption is violated,

however, other user-defined techniques have to be used to determine the b∗.
Once λ∗ and b∗ are solved, the SVM decision function is given by

c∗(x) = sign

(

n
∑

i=1

yiλ
∗
i x

>xi + b∗
)

. (37)

3.3 Nonlinear classifier with kernels

The use of kernel functions (kernels for short) provides a powerful and prin-
cipled approach to detecting nonlinear relations with a linear method in an
appropriate feature space [52]. The design of kernels and linear methods can be
decoupled, which largely facilitates modularity of machine learning methods
including SVMs.

Definition 7 (Kernel function) A kernel is a function κ that for all x, z
from a space X (which need not be a vector space) satisfies

κ(x, z) = 〈φ(x), φ(z)〉, (38)

where φ is a mapping from the space X to a Hilbert space F that is usually
called the feature space

φ : x ∈X 7→ φ(x) ∈ F. (39)

To verify a function is a kernel, one approach is to construct a feature space
for which the function between two inputs corresponds to first performing an
explicit feature mapping and then computing the inner product between the
images of the inputs. An alternative approach, which is more widely used, is
to investigate the finitely positive semidefinite property [52].

Definition 8 (Finitely positive semidefinite function) A function κ :
X ×X → R satisfies the finitely positive semidefinite property if it is a sym-
metric function for which the kernel matrices K with Kij = κ(xi,xj) formed
by restriction to any finite subset of the space X are positive semidefinite.

The following theorem [52] justifies the use of the above property for charac-
terizing kernels [2,49].

Theorem 9 (Characterization of kernels) A function κ : X ×X → R

which is either continuous or has a countable domain, can be decomposed as
an inner product in a Hilbert space F by a feature map φ applied to both its
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arguments

κ(x, z) = 〈φ(x), φ(z)〉 (40)

if and only if it satisfies the finitely positive semidefinite property.

Normally, a Hilbert space is defined as an inner product space that is complete.
If the separability property is further added to the definition of a Hilbert space,
the ‘kernels are continuous or the input space is countable’ in Theorem 9 is
then necessary to address this issue. The Hilbert space constructed in proving
Theorem 9 is called the reproducing kernel Hilbert space (RKHS) because of
the following reproducing property of the kernel resulting from the defined
inner product

〈fF , κ(x, ·)〉 = fF (x), (41)

where fF is a function in the space F of functions, and function κ(x, ·) is the
mapping φ(x).

Besides the linear kernel κ(x, z) = x>z, other commonly used kernels are the
polynomial kernel

κ(x, z) = (1 + x>z)deg (42)

where deg is the degree of the polynomial, and the Gaussian radial basis
function (RBF) kernel (Gaussian kernel for short)

κ(x, z) = exp

(

−‖x− z‖2
2σ2

)

. (43)

Using the kernel trick, the optimization problem (35) for SVMs becomes

max
λ

g(λ) = λ>1− 1

2
λ>Dλ

s.t. λ>y = 0,

λ � 0,

λ � C1, (44)

where the entries of D are Dij = yiyjκ(xi,xj). The solution for the SVM
classifier is formulated as

c∗(x) = sign

(

n
∑

i=1

yiλ
∗
i κ(xi,x) + b∗

)

. (45)
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4 Optimization methodologies for SVMs

For small and moderately sized problems (say with less than 5, 000 examples),
interior point algorithms are reliable and accurate optimization methods to
choose [49]. For large-scale problems, methods that exploit the sparsity of
the dual variables must be adopted; if further limitation on the storage is
required, compact representation should be considered, for example, using an
approximation for the kernel matrix.

4.1 Interior point algorithms

An interior point is a pair of primal and dual variables which satisfy the pri-
mal and dual constraints, respectively. Below we provide the main procedure
of interior point algorithms for SVM optimization, given the fundamental im-
portance of this optimization technique.

Suppose now we are focusing on solving an equivalent problem of problem (44)

min
λ

1

2
λ>Dλ− λ>1

s.t. λ>y = 0,

λ � C1,

λ � 0. (46)

Introducing Lagrange multipliers h, s and z where s, z � 0 and h is free, we
can get the Lagrangian

1

2
λ>Dλ− λ>1 + s>(λ− C1)− z>λ + hλ>y. (47)

The KKT conditions from Theorem 6 are instantiated as

Dλ− 1 + s− z + hy = 0 (Dual feasibility),

λ>y = 0 (Primal feasibility),

λ � C1 (Primal feasibility),

λ � 0 (Primal feasibility),

s>(λ− C1) = 0 (Zero KKT-gap),

z>λ = 0 (Zero KKT-gap),

s � 0, z � 0. (48)

Usually, the conditions λ � C1 and s>(λ− C1) = 0 are transformed to

13



λ + γ = C1,

s>γ = 0,

γ � 0. (49)

Instead of requiring z>λ = 0 and s>γ = 0, according to the primal-dual
path-following algorithm [59], they are modified as ziλi = µ and siγi = µ
(i = 1, . . . , n) for µ > 0. After solving the variables for a certain µ, we then
decrease µ to 0. The advantage is that this can facilitate the use of a Newton-
type predictor corrector algorithm to update λ,γ, h, s, z [49].

Suppose we already have appropriate initialization for λ,γ, h, s, z, and would
like to calculate their increments. For this purpose, expanding the equalities
in (48) and (49), e.g., substituting λ with λ + ∆λ, yields

D∆λ + ∆s−∆z + y∆h = −Dλ + 1− s + z− hy , ρ1,

y>∆λ = −y>λ,

∆λ + ∆γ = C1− λ− γ = 0,

γ−1
i si∆γi + ∆si = µγ−1

i − si − γ−1
i ∆γi∆si , ρkkt1i

, i = 1, . . . , n,

λ−1
i zi∆λi + ∆zi = µλ−1

i − zi − λ−1
i ∆λi∆zi , ρkkt2i

, i = 1, . . . , n. (50)

As it is clear that

∆si = ρkkt1i
+ γ−1

i si∆λi,

∆zi = ρkkt2i
− λ−1

i zi∆λi,

∆γ = −∆λ, (51)

we only need to further solve for ∆λ and ∆h. Substituting (51) into the first
two equalities of (50), we have







D + diag(γ−1s> + λ−1z>) y

y> 0













∆λ

∆h





 =







ρ1 − ρkkt1 + ρkkt2

−y>λ





 , (52)

where

γ−1 = [1/γ1, . . . , 1/γn]>,

λ−1 = [1/λ1, . . . , 1/λn]>,

ρkkt1 = [ρkkt11
, . . . , ρkkt1n

]>,

ρkkt2 = [ρkkt21
, . . . , ρkkt2n

]>. (53)
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Then, the Newton-type predictor corrector algorithm, which aims to get a
performance similar to higher order methods but without implementing them,
is adopted to solve (52) and other variables.

By the blockwise matrix inversion formula with the Schur complement tech-
nique, the above linear equation can be readily solved if we can invert D +
diag(γ−1s> +λ−1z>). The standard Cholesky decomposition, which is numer-
ically extremely stable, is suitable to solve this problem with computational
complexity n3/6 [45].

Generally, interior point algorithms are a good choice for small and moderately
sized problems with high reliability and precision. Because it involves Cholesky
decomposition for a matrix scaled by the number of training examples, the
computation is expensive for large-scale data. One way to overcome this is to
combine interior point algorithms with sparse greedy matrix approximation
to provide a feasible computation of the matrix inverse [49].

4.2 Chunking, sequential minimal optimization

The chunking algorithm [60] relies on the fact that the value of the quadratic
form in (46) is unchanged if we remove the rows and columns of D that
associate with zero entries of λ. That is, we need only employ support vectors
to represent the final classifier. Thus, the large quadratic program problem
can be divided into a series of smaller subproblems.

Chunking starts with a subset (chunk) of training data and solves a small
quadratic program (QP) subproblem. Then it retains the support vectors and
replace the other data in the chunk with a certain number of data violating
KKT conditions, and solves the second subproblem for a new classifier. Each
subproblem is initialized with the solutions of the previous subproblem. At
the last step, all nonzero entries of λ can be identified.

Osuna et al. [42] gave a theorem on the solution convergence of breaking down
a large QP problem into a series of smaller QP subproblems. As long as at
least one example violating the KKT conditions is added to the examples for
the previous subproblem, each step will decrease the objective function and
has a feasible point satisfying all constraints [44]. According to this theorem,
the chunking algorithm will converge to the globally optimal solution.

The sequential minimal optimization (SMO) algorithm, proposed by Platt [44],
is a special case of chunking, which iteratively solves the smallest possible
optimization problem each time with two examples
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min
λi,λj

1

2

[

λ2
i Dii + 2λiλjDij + λ2

jDjj

]

− λi − λj

s.t. λiyi + λjyj = rij ,

0 ≤ λi ≤ C,

0 ≤ λj ≤ C, (54)

where the scaler rij is computed by fulfilling all the constraints of the full
problem λ>y = 0.

The advantage of SMO is that a QP problem with two example can be solved
analytically, and thus a numerical QP solver is avoided. It can be more than
1000 times faster and exhibit better scaling (up to one order better) in the
training set size than the classical chunking algorithm given in [60]. Conver-
gence is guaranteed as long as at least one of the two selected examples vio-
lates the KKT conditions before solving the subproblem. However, it should
be noted that the SMO algorithm will not converge as quickly if solutions with
a high accuracy are needed [44]. A more recent approach is the LASVM algo-
rithm [6], which optimizes the cost function of SVMs with a reorganization of
the SMO direction searches and can converge to the SVM solution.

There are other decomposition techniques based on the same idea of working
set selection where more than two examples are selected. The fast conver-
gence and inexpensive computational cost during each iteration are two con-
flicting goals. Two widely used decomposition packages are LIBSVM [13] and
SVMlight [22]. LIBSVM is implemented for working sets of two examples, and
exploits the second order information for working set selection. Different from
LIBSVM, SVMlight can exploit working sets of more than two examples (up
to O(103)) and thus needs a QP solver to solve the subproblems. Recently,
following the SVMlight framework, Zanni et al. [62] proposed a parallel SVM
software with gradient projection QP solvers. Experiments on data sets sized
O(106) show that training nonlinear SVMs with O(105) support vectors can
be completed in a few hours with some tens of processors [62].

4.3 Coordinate descent

Coordinate descent is a popular optimization technique that updates one vari-
able at a time by optimizing a subproblem involving only a single variable [21].
It has been discussed and applied to the SVM optimization, e.g., in the work
of [7], [18] and [37]. Here we introduce the coordinate descent method used by
Hsieh et al. [21] for training large-scale linear SVMs in the dual form, though
coordinate descent is surely not confined to linear SVMs.

In some applications where features of examples are high dimensional, SVMs
with the linear kernel or nonlinear kernels have similar performances. Further-
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more, if the linear kernel is used, much larger data sets can be adopted to train
SVMs [21]. Linear SVMs are among the most popular tools to deal with this
kind of applications.

By appending each example with a constant feature 1, Hsieh et al. [21] ab-
sorbed the bias b into the weight vector w

x> = [x>, 1], w> = [w>, b], (55)

and solve the following dual problem

min
λ

f(λ) =
1

2
λ>Dλ− λ>1

s.t. λ � C1,

λ � 0, (56)

where parameters have the same meaning as in (35).

The optimization process begins with an initial value λ0 ∈ R
n and iteratively

updates λ to generate λ0,λ1, . . . ,λ∞. The process from λk to λk+1 is referred
to as an outer iteration. During each outer iteration there are n inner iterations
which sequentially update λ1, . . . , λn. Each outer iteration generates multiplier
vectors λk,i ∈ R

n (i = 1, . . . , n + 1) such that

λk,1 = λk,

λk,n+1 = λk+1,

λk,i = [λk+1
1 , . . . , λk+1

i−1 , λk
i , . . . , λ

k
n]>, i = 2, . . . , n. (57)

When we update λk,i to λk,i+1, the following one-variable subproblem [21] is
solved

min
δ

f(λk,i + δei)

s.t. 0 ≤ λk
i + δ ≤ C, (58)

where the unit vector ei = [0, . . . , 0, 1, 0, . . . , 0]>. The objective function is a
quadratic function of the scalar δ

f(λk,i + δei) =
1

2
Diiδ

2 +∇if(λk,i)δ + const., (59)

where∇if is the ith entry of the gradient vector∇f . For linear SVMs,∇if can
be efficiently calculated and thus speedy convergence of the whole optimization
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process can be expected. It was shown that the above coordinate descent
method is faster than some state-of-the-art solvers for SVM optimization [21].
Note that, form the point of view of coordinate descent, the SMO algorithm
also implements a coordinate descent procedure, though on coordinate pairs.

4.4 Active set methods

Active set methods are among typical approaches to solving QP problems [41].
In active set methods, constraints are divided into the set of active constraints
(the active set) and the set of inactive constraints. The algorithm iteratively
solves the optimization problem, updating the active set accordingly until the
optimal solution is found. For a certain iteration, an appropriate subproblem
is solved for the variables not actively constrained.

Active set methods have also been applied to solve the SVM optimization, e.g.,
by [12], [19], [46], and [47]. In this subsection, we mainly outline the meth-
ods used by the two recent papers [46] and [47], which both have theoretical
guarantees to converge in a finite time.

The active set method adopted by Scheinberg [46] to solve (46) is to fix vari-
ables λi in the active set at their current values (0 or C), and then solve the
reduced subproblem for each iteration

min
λs

1

2
λ>

s Dssλs + λ>
a Dasλs − λ>

s 1

s.t. λ>
s ys = −λ>

a ya,

λs � C1,

λs � 0, (60)

where λa and λs correspond to variables in and not in the active set, respec-
tively, Dss and Das are composed of the associated rows and columns of D,
and the meanings of ya and ys are similarly defined. Note that the cardinality
of the free vector λs is the number of support vectors on the margin with
0 ≺ λs ≺ C1 after the last iteration.

Solving the above reduced subproblem can be expensive if the number of
the above support vectors is large. Scheinberg [46] proposed to make one
step move toward its solution at each iteration. That is, each time either
one variable enters or one leaves the active set. The rank-one update of the
Cholesky factorization of Dss is therefore efficient for this variant.

The active set method used by Shilton et al. [47] is similar but it tries to solve

18



a different objective function, which is a partially dual form

max
b

min
0�λ�C1

1

2







b

λ







> 





0 y>

y D













b

λ





−







b

λ







> 





0

1





 , (61)

where D is the same as in (44). The advantage of using this partially dual
representation is that the constraint λ>y = 0 whose presence complicates the
implementation of the active set approach is eliminated [47].

4.5 Solving the primal with Newton’s method

Although most literature on SVMs deals with the dual optimization prob-
lem, there is also some work concentrating on the optimization of the primal
because primal and dual are indeed two sides of the same coin. For exam-
ple, [27] and [38] studied the primal optimization of linear SVMs, and [14] and
[34] studied the primal optimization of both linear and nonlinear SVMs. These
works mainly use Newton-type methods. Below we introduce the optimization
problem and the approach adopted in [14].

Consider a kernel function κ and an associated reproducing kernel Hilbert
space H. The optimization problem is

min
f∈H

r‖f‖2H +
n
∑

i=1

R(yi, f(xi)), (62)

where r is a regularization coefficient, and R(y, t) is a loss function that is
differentiable with respect to its second argument [14].

Suppose the optimal solution is f ∗. The gradient of the objective function at
f ∗ should vanish. We have

2rf ∗ +
n
∑

i=1

∂R

∂f
(yi, f

∗(xi)) κ(xi, ·) = 0, (63)

where the reproducing property f(xi) = 〈f, κ(xi, ·)〉H is used. This indicates
that the optimal solution can be represented as a linear combination of kernel
functions evaluated at the n training data, which is known as the representer
theorem [29].
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From (63), we can write f(x) in the form

f(x) =
n
∑

i=1

βiκ(xi,x), (64)

and then solve for β = [β1, · · · , βn]>. The entries of β should not be interpreted
as Lagrange multipliers [14].

Recall the definition of the kernel matrix K with Kij = κ(xi,xj). The opti-
mization problem (62) can be rewritten as the following unconstrained opti-
mization problem

min
β

rβ>Kβ +
n
∑

i=1

R(yi, K
>
i β), (65)

where Ki is the ith column of K. As the common hinge loss R(yi, f(xi)) =
max(0, 1−yif(xi)) is not differentiable, Chapelle [14] adopted the Huber loss as
a differentiable approximation of the hinge loss. The Huber loss is formulated
as

R(y, t) =



























0, if yt > 1 + h

(1+h−yt)2

4h
, if |1− yt| ≤ h ,

1− yt, if yt < 1− h

(66)

where parameter h typically varies between 0.01 and 0.5 [14]. The Newton
step of variable update is

β ← β − rstepH
−1∇, (67)

where H and ∇ are the Hessian and gradient of the objective function in (65),
respectively, and step size rstep can be found by line search along the direction
of H−1∇.

The term −H−1∇ is provided by the standard Newton’s method that aims
to find an increment δ to maximize or minimize a function say L(θ + δ). To
show this, setting the derivative of the following second-order Taylor series
approximation

L(θ + δ) = L(θ) + δ>∇(θ) +
1

2
δ>H(θ)δ (68)
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to zero, we obtain

δ = −H−1(θ)∇(θ). (69)

It was shown that primal and dual optimization are equivalent in terms of the
solution and time complexity [14]. However, as primal optimization is more
focused on minimizing the desired objective function, perhaps it is superior
to the dual optimization when people are interested in finding approximate
solutions [14].

Here, we would like to point out an alternative solution approach called the
augmented Lagrangian method [5], which has approximately the same conver-
gence speed as the Newton’s method.

4.6 Stochastic subgradient with projection

The subgradient method is a simple iterative algorithm for minimizing a con-
vex objective function that can be non-differentiable. The method seems very
much like the ordinary gradient method applied to differentiable functions,
but with several subtle differences. For instance, the subgradient method is
not truly a descent method: the function value often increases. Furthermore,
the step lengths in the subgradient method are fixed in advance, instead of
found by a line search as in the gradient method [9].

A subgradient of function f(x) : R
d → R at x is any vector g that satisfies

f(y) ≥ f(x) + g>(y − x) (70)

for all y [53]. When f is differentiable, a very useful choice of g is ∇f(x), and
then the subgradient method uses the same search direction as the gradient
descent method.

Suppose we are minimizing the above function f(x) that is convex. The sub-
gradient method uses the iteration

x(k+1) ← x(k) − akg
(k), (71)

where g(k) is any subgradient of f at x(k), and ak > 0 is the step length.

Recently, there has been a lot of interest in studying gradient methods for
SVM training [30,63]. Shalev-Shwartz et al. [50] proposed an algorithm alter-
nating between stochastic subgradient descent and projection steps to solve
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the primal problem

min
w

r

2
‖w‖2 +

1

n

n
∑

i=1

R (w, (xi, yi)) (72)

where hinge loss R(w, (x, y)) = max{0, 1 − y〈w,x〉} with classifier function
f(w) = 〈w,x〉.

The algorithm receives two parameters as input: T - the total number of
iterations; k - the number of examples used to calculate subgradients. Initially,
weight vector w1 is set to any vector with norm no larger than 1/

√
r. For the

tth iteration, a set At sized k is chosen from the original n training examples
to approximate the objective function as

f(w, At) =
r

2
‖w‖2 +

1

k

∑

(x,y)∈At

R (w, (x, y)) . (73)

In general, At includes k examples sampled i.i.d from the training set. Define
A+

t to be the set of examples in At for which the hinge loss is nonzero. Then,
a two-step update is performed. First, update wt to wt+ 1

2

wt+ 1

2

= wt − ηt∇t, (74)

where step length ηt = 1/(rt), and ∇t = rwt− 1
k

∑

(x,y)∈A+

t
yx is a subgradient

of f(w, At) at wt. Last, wt+ 1

2

is updated to wt+1 by projecting onto the set

{w : ‖w‖ ≤ 1/
√

r}, (75)

which is shown to contain the optimal solution of the SVM. The algorithm
finally outputs wT+1.

If k = 1, the algorithm is a variant of the stochastic gradient method; if
k is equal to the total number of training examples, the algorithm is the
subgradient projection method. Beside simplicity, the algorithm is guaranteed
to obtain a solution of accuracy ε with Õ(1/ε) iterations, where an ε-accurate
solution ŵ is defined as f(ŵ) ≤ minw f(w) + ε [50].

4.7 Cutting plane algorithms

The essence of the cutting plane algorithms is to approximate a risk function
by one or multiple linear under-estimator (the so-called cutting plane) [28].
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Recently, some large-scale SVM solvers using cutting plane algorithms have
been proposed. For example, Joachims [23] solved a solution-equivalent struc-
tural variant of the following problem

min
w

1

2
‖w‖2 +

C

n

n
∑

i=1

R (w, (xi, yi)) (76)

where hinge loss R(w, (x, y)) = max{0, 1 − y〈w,x〉} with classifier function
f(w) = 〈w,x〉. Teo et al. [57] considered a wider range of losses and regulariza-
tion terms applicable to many pattern analysis problems. Franc [17] improved
the cutting plane algorithm used in [23] with line search and monotonicity
techniques to solve problem (76) more efficiently. Below we provide a flavor of
what the basic cutting plane algorithm does in order to solve problem (76).

At iteration t, a reduced problem of (76) is solved for wt

min
w

1

2
‖w‖2 +

C

n

n
∑

i=1

Rt (w, (xi, yi)) , (77)

where Rt is a linear approximation of R. Rt is derived using the following prop-
erty. As a result of convexity, for any (xi, yi) function R can be approximated
at any point wt−1 by a linear under-estimator [17]

R(w) ≥ R(wt−1) + 〈gt−1,w −wt−1〉, ∀w ∈ R
d, (78)

where gt−1 is any subgradient of R at wt−1. Note that (78) resembles (70),
which indicates there can be some similarity between the methods mentioned
here and those in Section 4.6. This inequality can be abbreviated as R(w) ≥
〈gt−1,w〉+bt−1 with bt−1 defined as bt−1 = R(wt−1)−〈gt−1,wt−1〉. The equality
〈gt−1,w〉+ bt−1 = 0 is called a cutting plane.

For SVM optimization, a subgradient of R(w, (xi, yi)) at wt−1 can be given as
gt−1 = −πiyixi where πi = 1 if yi〈wt−1,xi〉 < 1 and πi = 0 otherwise. Conse-
quently, the term Rt (w, (xi, yi)) in (77) can be replaced by a linear relaxation
〈gt−1,w〉+ bt−1, and thus a standard QP is recovered which is straightforward
to solve. To get a better approximation of the original risk function, more than
one cutting planes at different points can be incorporated [17].

5 SVMs for density estimation and regression

In this section, we slightly touch the problem of density estimation and regres-
sion using SVMs. Many optimization methodologies introduced in the last sec-
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tion can be adopted with some adaptation to deal with the density estimation
and regression problems. Thereby, here we do not delve into the optimization
details of these problems.

The one-class SVM, an unsupervised learning machine proposed by Schölkopf
et al. [48] for density estimation, aims to capture the support of a high-
dimensional distribution. It outputs a binary function which is +1 in a region
containing most of the data, and −1 in the remaining region. The correspond-
ing optimization problem, which can be interpreted as separating the data set
from the origin in a feature space, is formulated as

min
w,ξ,ρ

1

2
‖w‖2 +

1

νn

n
∑

i=1

ξi − ρ

s.t. 〈w, φ(xi)〉 ≥ ρ− ξi, i = 1, . . . , n,

ξi ≥ 0, i = 1, . . . , n, (79)

where the scalar ν ∈ (0, 1] is a balance parameter. The decision function is

c(x) = sign (〈w, φ(x)〉 − ρ) . (80)

For support vector regression, the labels in the training data are real num-
bers, that is yi ∈ R (i = 1, . . . , n). In order to introduce a sparse representation
for the decision function, Vapnik [61] devised the following ε-insensitive func-
tion [49]

|y − f(x)|ε = max{0, |y − f(x)| − ε} (81)

with ε ≥ 0, and applied it to support vector regression.

The standard form of support vector regression is to minimize the objective

1

2
‖w‖2 + C

n
∑

i=1

|yi − f(xi)|ε, (82)

where the positive scalar C reflects the trade-off between function complexity
and the empirical loss. An equivalent optimization problem commonly used is
given by

min
w,b,ξ,ξ∗

1

2
‖w‖2 + C

n
∑

i=1

ξi + C
n
∑

i=1

ξ∗i

s.t. 〈w, φ(xi)〉+ b− yi ≤ ε + ξi,

yi − 〈w, φ(xi)〉 − b ≤ ε + ξ∗i ,

ξi, ξ
∗
i ≥ 0, i = 1, . . . , n. (83)
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The decision output for support vector regression is

c(x) = 〈w, φ(x)〉+ b. (84)

6 Optimization methods for kernel learning

SVMs are one of the most famous kernel-based algorithms which encode the
similarity information between examples largely by the chosen kernel function
or kernel matrix. Determining the kernel functions or kernel matrices is essen-
tially a model selection problem. This section introduces several optimization
techniques used for learning kernels in SVM-type applications.

Semidefinite programming is a recent popular class of optimizations with wide
engineering applications including kernel learning for SVMs [32,35]. For solv-
ing semidefinite programming, there exist interior-point algorithms with good
theoretical properties and computational efficiency [58].

A semidefinite program (SDP) is a special convex optimization problem with
a linear objective function, and linear matrix inequality and affine equality
constraints.

Definition 10 (SDP) An SDP is an optimization problem of the form

min
u

c>u

s.t. F j(u) := F j
0 + u1F

j
1 + . . . + uqF

j
q � 0, j = 1, . . . , L,

Au = b, (85)

where u := [u1, . . . , uq]
> ∈ R

q is the decision vector, c is a constant vector
defining the linear objective, F j

i (i = 0, . . . , q) are given symmetric matrices
and F j(u) � 0 means that the symmetric matrix F j(u) is negative semidefi-
nite.

Lanckriet et al. [32] proposed an SDP framework for learning the kernel matrix,
which is readily applicable to induction, transduction and even the multiple
kernel learning cases. The idea is to wrap the original optimization problems
with the following constraints on the symmetric kernel matrix K

K =
m
∑

i=1

µiKi,

K � 0,

trace(K) ≤ c, (86)
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or with constraints

K =
m
∑

i=1

µiKi,

µi ≥ 0, i = 1, . . . ,m,

K � 0,

trace(K) ≤ c, (87)

and then formulate the problem in terms of an SDP which is usually solved
by making use of interior-point methods. The advantages of the second set
of constraints include reducing computational complexity and facilitating the
study of the statistical properties of a class of kernel matrices [32]. In partic-
ular, for the 1-norm soft margin SVM, the SDP for kernel learning reduces to
a quadratically constrained quadratic programming (QCQP) problem. Tools
for second-order cone programming (SOCP) can be applied to efficiently solve
this problem.

Argyriou et al. [1] proposed a DC (difference of convex functions) program-
ming algorithm for supervised kernel learning. An important difference with
other kernel selection methods is that they consider the convex hull of contin-
uously parameterized basic kernels. That is, the number of basic kernels can
be infinite. In their formulation, kernels are selected from the set

K(G) :=
{
∫

G(ω)dp(ω) : p ∈ P(Ω), ω ∈ Ω
}

, (88)

where Ω is the kernel parameter space, G(ω) is a basic kernel, and P(Ω) is
the set of all probability measures on Ω.

Making use of the conjugate function and von Neumann minimax theorem [40],
Argyriou et al. [1] formulated an optimization problem which was then ad-
dressed by a greedy algorithm. As a subroutine of the algorithm involves opti-
mizing a function which is not convex, they converted it to a difference of two
convex functions. With the DC programming techniques [20], the necessary
and sufficient condition for finding a solution is obtained, which is then solved
by a cutting plane algorithm.

7 Conclusion

We have presented a review of optimization techniques used for training SVMs.
The KKT optimality conditions are a milestone in optimization theory. The
optimization of many real problems relies heavily on the application of the

26



conditions. We have shown how to instantiate the KKT conditions for SVMs.
Along with the introduction of the SVM algorithms, the characterization of
effective kernels has also been presented, which would be helpful to understand
the SVMs with nonlinear classifiers.

For the optimization methodologies applied to SVMs, we have reviewed in-
terior point algorithms, chunking and SMO, coordinate descent, active set
methods, Newton’s method for solving the primal, stochastic subgradient with
projection, and cutting plane algorithms. The first four methods focus on the
optimization of dual problems, while the last three directly deal with the op-
timization of the primal. This reflects current developments in SVM training.

Since their invention, SVMs have been extended to multiple variants in order
to solve different applications such as the briefly introduced density estima-
tion and regression problems. For kernel learning in SVM-type applications,
we further introduced SDP and DC programming, which can be very useful
for optimizing problems more complex than the traditional SVMs with fixed
kernels.

We believe the optimization techniques introduced in this paper can be applied
to other SVM-related research as well. Based on these techniques, people can
implement their own solvers for different purposes, such as contributing to
one future line of research for training SVMs by developing fast and accurate
approximation methods for the challenging problem of large-scale applications.
Another direction can be investigating recent promising optimization methods
(e.g., [24] and its references) and applying them to solving variants of SVMs
for certain machine learning applications.
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