
PAC-Bayes Bounds for Twin Support Vector Machines

Xijiong Xie, Shiliang Sun∗

Department of Computer Science and Technology, East China Normal University,
500 Dongchuan Road, Shanghai 200241, P.R. China

Abstract

Twin support vector machines are regarded as a milestone in the develop-

ment of support vector machines. Compared to standard support vector

machines, they learn two nonparallel hyperplanes rather than one as in stan-

dard support vector machines for binary classification, and work faster and

sometimes perform better than support vector machines. One of the reasons

that support vector machines are widely used is that they are supported by

strong statistical learning theory. However, relatively little is known about

the theoretical analysis of twin support vector machines. As recent tightest

bounds for practical applications, PAC-Bayes bound and prior PAC-Bayes

bound are based on a prior and posterior over the distribution of classifier-

s. In this paper, we study twin support vector machines from a theoretical

perspective and use the PAC-Bayes bound and prior PAC-Bayes bound to

measure the generalization error bound of twin support vector machines. Ex-

perimental results on real-world datasets show better predictive capabilities

of the PAC-Bayes bound and prior PAC-Bayes bound for twin support vec-
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tor machines compared to the PAC-Bayes bound and the prior PAC-Bayes

bound for support vector machines.

Key words: Twin support vector machine, Support vector machine,

PAC-Bayes bounds, Prior PAC-Bayes bounds

1. Introduction

Support vector machines (SVMs) [1, 2] have been developed into a pow-

erful tool for pattern classification and regression in machine learning. They

have been applied to a variety of practical problems such as object detection,

text categorization, bioinformatics and image classification. In order to ob-

tain the best generalization ability, they find the best tradeoff between the

model complexity and the learning ability according to the limited example

information. They originate from the idea of structural risk minimization

in statistical learning theory and output an optimal hyperplane which is ob-

tained by maximizing the margin between two parallel hyperplanes, whose

optimization involves the minimization of a quadratic programming (QP)

problem. SVMs can also handle the nonlinear problem using the kernel

method [3].

Recently, the research of nonparallel hyperplane classifiers has been a

new hot spot. At first Mangasarian and Wild [4] proposed a nonparallel hy-

perplane classifier called generalized eigenvalue proximal SVMs (GEPSVMs)

for binary classification. GEPSVMs aim to find two nonparallel hyperplanes

such that each hyperplane is as close as possible to examples from one class

and as far as possible to examples from the other class. The two hyperplanes

2



are obtained by eigenvectors corresponding to the smallest eigenvalues of two

related generalized eigenvalue problems. Then Jayadeva et al. [5] proposed

another nonparallel hyperplane classifier called twin support vector machines

(TSVMs), which aim to generate two nonparallel hyperplanes such that one

of the hyperplanes is closer to one class and has a certain distance to the

other class. Experimental results [5] showed that the performance of TSVMs

is better than the performance of GEPSVMs. In SVMs, the QP has all ex-

amples in constraints while TSVMs solve a pair of QP problems for which

examples of one class give the constraints of the other QP and vice versa,

so that its time complexity is about 1
4

of standard SVMs [6]. Experimental

results [5] validate that nonparallel hyperplane classifier TSVMs can indeed

improve the performance of traditional SVMs.

For the classification problem, a good classifier c is expected to minimize

the generalization error which is also called the true risk or the expected

loss (cD ≡ Pr(x,y)∼D(c(x) 6= y), defined as the probability of misclassifying a

pair pattern-label (x, y) selected at random from D). The VC bounds [2] are

generally very loose despite their enormous influence on our understanding

of learning. Simultaneously, they only consider that their data-dependencies

come through the training error of the classifiers. In fact, there exist VC

lower bounds that are asymptotically identical to the corresponding upper

bounds [17]. This suggests that significantly tighter bounds can only come

through extra data-dependent properties such as the distribution of margins

achieved by a classifier on the training dataset.

Early bounds are based on covering number computations [17], while
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later bounds have considered Rademacher complexity [7]. Among the data-

dependent bounds, the tightest bounds appear to be the PAC-Bayes bound

[8]. The PAC-Bayes bound is a basic and very general method for data-

dependent analysis in machine learning [9, 10, 11, 12, 13, 14, 15, 16, 17]. By

now, it has been applied in such diverse areas as supervised learning, unsu-

pervised learning and reinforcement learning, leading to state-of-the-art al-

gorithms and accompanying generalization bounds. The original PAC-Bayes

bound uses a Gaussian prior centered at the origin in the weight space. Then

the PAC-Bayes bound uses part of the training dataset to compute a more

informative prior and compute the bound on the remainder of the examples

relative to this prior. This bound is called prior PAC-Bayes bound. Later

expectation-prior PAC-Bayes bound [18] was proposed which didn’t require

the existence of separate dataset. The PAC-Bayes bounds are present for

many famous classification methods like SVMs [8], maximum entropy clas-

sifiers [19], Gaussian process classification [20] and so on. Although twin

support vector machines are a famous classification method and widely ap-

plied in practical problems, by now, theoretical analysis on twin support

vector machines has not been studied. To justify TSVMs from the perspec-

tive of theory, we use the PAC-Bayes bound to analyze the generalization

error bound of twin support vector machines. This can also probably moti-

vate new algorithms along the line of TSVMs. Part of this research has been

reported in a short conference paper [21]. The PAC-Bayes bound for TSVMs

has exactly the same form as the PAC-Bayes bound for SVMs. Except for

the above work, we also proposed prior PAC-Bayes bound for twin support
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vector machines in this paper.

These bounds can also be applied to other classifiers in the family of

TSVMs. The structure of the paper is as follows. After reviewing background

knowledge in Section 2, we introduce the PAC-Bayes bound and prior PAC-

Bayes bound for twin support vector machines in Section 3. After reporting

experimental results in Section 4, we give conclusions and future work in

Section 5.

2. Background

In this section, we give a brief review of SVMs, TSVMs and PAC-Bayes

bound.

2.1. Support vector machines

SVMs have been introduced in the framework of structural risk minimiza-

tion and are based on the theory of VC bounds [1, 2]. Consider the following

binary classification problem: suppose there are m examples represented by

T = {(x1, y1), ..., (xm, ym)}. Let xi denote the ith example and yi ∈ {1,−1}

denote class to which the ith example belongs. First we review the linear-

ly separable case. Classifier parameters w ∈ Rd and b ∈ R need to satisfy

yi(w
>xi + b) ≥ 1. The hyperplane described by w>x + b = 0 lies midway

between the bounding hyperplanes given by w>x+ b = 1 and w>x+ b = −1.

The margin of separation between the two classes is given by 2
‖w‖2 , where

‖w‖2 denotes the L2 norm of w. Support vectors are those training examples

lying on the above two hyperplanes. The standard SVMs are obtained by
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solving the following optimization problem

min
w,b

1

2
w>w

s.t. ∀i : yi(w
>xi + b) ≥ 1.

(1)

The decision function is f(x) = sign(w>x + b), where the sign function

represents an indicator function equal to 1 if the argument is nonnegative

and equal to −1 if the argument is negative. When the two classes are

not strictly linearly separable, classifier parameters w and b need to satisfy

yi(w
>xi + b) ≥ 1− ξi. The optimization problem of (1) can be modified to

min
w,b

1

2
w>w + c

m∑
i=1

ξi

s.t. ∀i : yi(w
>xi + b) ≥ 1− ξi, ξi ≥ 0,

(2)

where c is a penalty parameter and ξi are the slack variables. The dual

optimization problem of (2) can be expressed as

min
α

1

2

m∑
i=1

m∑
j=1

yiyj(xi · xj)αiαj −
m∑
i=1

αi

s.t.
m∑
i=1

yiαi = 0,

0 ≤ αi ≤ c, i = 1, · · · ,m,

(3)

where αi are Lagrangian multipliers. The optimal solution is

w =
m∑
i=1

α∗i yixi, b =
1

Nsv

(yj −
Nsv∑
i=1

α∗i yi(xi · xj)), (4)

where α∗ is the solution of the dual optimization problem (3), and Nsv rep-

resents the number of support vectors satisfying 0 < α < c. The decision

function is f(x) = sign(w>x+ b).
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2.2. Twin support vector machines

Since TSVMs were proposed, many researchers proposed some improved

versions of TSVMs such as twin bounded support vector machine (TBSVMs)

[22, 23], CDMTSVMs [24] and sparse TSVMs [25]. The significant advantage

of TBSVMs over TSVMs is that the structural risk minimization principle is

implemented by introducing the regularization term. The CDMTSVMs using

coordinate descent method in TSVMs lead to very fast training. Sparse twin

support vector machine classifier in primal space can improve the sparsity

and robustness of TSVMs. Researchers also proposed some better optimiza-

tion methods of TSVMs in [26, 27, 28]. Moreover, least squares twin support

vector machines [29], weighted least squares twin support vector machines

[30, 31] , knowledge based least squares twin support vector machines [32]

and least squares twin parametric-margin support vector machines [33] have

been proposed, which can lead to simple and fast algorithms through replac-

ing inequality constraints with equality constraints. Some works [34, 35, 36]

commonly attempted to use the centroid of the class to improve TSVMs,

such that the examples of one class are closest to its class centroid while the

examples of different classes are separated as far as possible. Robust twin

support vector machines [37] and centroid twin support vector machines [38]

have been proposed to deal with data with measurement noise. Structural

twin support vector machines [39] have been proposed considering structural

information of data. Probabilistic outputs for twin support vector machines

were also proposed to improve the final classifier [40]. There are some papers

about extensions of TSVMs to other learning frameworks. For examples,
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TSVMs are extended to multitask learning [38], multi-view learning [41],

multiple-instance learning [42] and semi-supervised learning [43]. In large

data processing, online learning algorithm for least squares twin support

vector machines was proposed [44]. TSVMs are also extended to solve re-

gression problem, which are called TSVR [45] and multiclass classification

problem by the one-versus-all method [46].

TSVMs [5, 38] seek two nonparallel hyperplanes instead of a single hyper-

plane as in the case of standard SVMs. The two nonparallel hyperplanes are

obtained by solving two QPs of smaller size compared to a single large QP

solved by standard SVMs. Consider a binary classification problem, suppose

examples belonging to classes 1 and −1 are represented by matrices A+ and

B−, and the size of A+ and B− are (m1×d) and (m2×d), respectively. Each

row of matrice A+(B−) represents one example of d dimension. Define two

matrices A, B and four vectors v1, v2, e1, e2, where e1 and e2 are vectors of

ones of appropriate dimensions and

A = (A+, e1), B = (B−, e2), v1 =

w1

b1

 , v2 =

w2

b2

 .

TSVMs obtain two nonparallel hyperplanes

w>1 x+ b1 = 0 and w>2 x+ b2 = 0 (5)

around which the examples of the corresponding class get clustered. The two

nonparallel hyperplanes is obtained by solving the following two independent

QPs separately
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(TSVM1)

min
v1,q1

1

2
(Av1)>(Av1) + c1e

>
2 q1

s.t. (Bv1) + q1 ≥ e2, q1 ≥ 0,

(6)

(TSVM2)

min
v2,q2

1

2
(Bv2)>(Bv2) + c2e

>
1 q2

s.t. (Av2) + q2 ≥ e1, q2 ≥ 0,

(7)

where c1, c2 are nonnegative parameters and q1, q2 are slack vectors of ap-

propriate dimensions.

The label of a new example x is determined by the minimum of |x>wr+br|

(r = 1, 2) which are the perpendicular distances of x to the two hyperplanes

given in (5).

2.3. PAC-Bayes bound

This section is devoted to a brief review of the PAC-Bayes bound theorem

[9]. We first state the general PAC-Bayes result after giving two relevant

definitions. Then, we introduce the PAC-Bayes bound and prior PAC-Bayes

bound for SVM. Let there be a distribution D defined on a sample space

X. Let x denote a random sample X and y ∈ {−1,+1} be the label of x.

Moreover, let us consider a distribution Q over the classifiers c. For every

classifier c, the following two error measures are defined:

Definition 2.1 (True error). The true error cD of a classifier c is defined
as the probability of misclassifying a pair pattern-label (x, y) selected at ran-
dom from D

cD ≡ Pr(x,y)∼D(c(x) 6= y) (8)
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Definition 2.2 (Empirical error). The empirical error ĉS of a classifier c
on a sample S of size m is defined as the error rate on S

ĉS ≡ Pr(x,y)(c(x) 6= y) =
1

m

m∑
i=1

I(c(xi) 6= yi) (9)

where (x, y) comes from S, I(·) represents an indicator function equal to 1 if

the argument is true and equal to 0 if the argument is false.

Two error measures on the distribution of classifiers are defined as QD ≡

Ec∼QcD (the average true error) which means the probability of misclassifying

an instance x chosen uniformly from D with a classifier c chosen according to

Q and Q̂S ≡ Ec∼QĉS (the average empirical error) which means the probabil-

ity of classifier c chosen according to Q misclassifying an instance x chosen

from a sample S.

For these two quantities, PAC-Bayes bound on the true error of the dis-

tribution of classifiers is given as follows:

Theorem 2.1 (PAC-Bayes bound). For all prior distributions P (c) over
the classifiers c, and for any σ ∈ (0, 1]

PrS∼Dm

(
∀Q(c) : KL+(Q̂S ‖ QD) ≤

KL(Q(c)‖P (c)) + ln(m+1
δ

)

m

)
≥ 1− δ, (10)

where KL(Q(c)‖P (c)) = Ec∼Q ln Q(c)
P (c)

is the Kullback-Leibler divergence, and

KL+(p‖q) = q ln q
p

+ (1− q) ln 1−q
1−p for p > q and 0 otherwise.

The proof of the theorem can be found in [9]. This bound can be general-

ized to the case of linear classifiers. The m training examples define a linear

classifier that can be represented by

cv(x) = sign(v>φ(x)) (11)
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where φ(x) is a nonlinear projection to a certain feature space where the orig-

inal nonlinear problem can be solved by transforming it to a linear problem,

and v is a vector from that feature space that determines the classification

hyperplane.

For any vector w (‖w‖ = 1), a stochastic classifier v is defined in the

following way. Assume the prior P (cv) is a spherical Gaussian with identity

covariance matrix centred on the origin, that is v ∼ N(0, I). Simultaneously,

assume the posterior Q(cv) = Q(cv|w, u) is a spherical Gaussian with identity

covariance matrix centered along the direction pointed by w at a distance u

from the origin, that is v ∼ N(uw, I). The generalization performance of the

classifier in the form of equation (11) can be bounded as

Theorem 2.2 (PAC-Bayes bound for SVMs). For all distributions D,
for all δ ∈ (0, 1], it has

PrS∼Dm

(
∀w, u : KL+(Q̂S(w, u) ‖ QD(w, u)) ≤

u2

2
+ ln(m+1

δ
)

m

)
≥ 1− δ.

(12)

Theorem 2.2 is obtained by plugging in the new definition of KL divergence

into the result of theorem 2.1. It can be easily proved using a standard

expression for the KL divergence between two Gaussians in an N dimensional

space,

KL(N(u0,Σ0) ‖ N(u1,Σ1)) =
1

2

(
ln
(detΣ1

detΣ0

)
+

tr(Σ−1
1 Σ0) + (u1 − u0)>Σ−1

1 (u1 − u0)−N
)
.

(13)

So KL(N(0, I) ‖ N(uw, I)) = u2

2
. It can be shown (see [9]) that

Q̂S(w, u) = Em[F̃ (uγ(x, y))] (14)
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where Em is the average over the m training examples, γ(x, y) is the nor-

malised margin of the training examples

γ(x, y) =
yw>φ(x)

‖φ(x)‖‖w‖
(15)

and F̃ = 1− F , where F is the cumulative normal distribution

F (x) =

∫ x

−∞

1√
2π
e−

x2

2 dx. (16)

It is observed from that SVMs are computed by the means of the kernel

trick. The generalization error of such a classifier can be bounded by at

most twice the average true error QD(w, u) of the corresponding stochastic

classifier in Theorem 2.2. For all u, it has

Pr(x,y)∼D
(
sign(w>φ(x)) 6= y

)
≤ 2QD(w, u). (17)

Then we state the prior PAC-Bayes bound and consider learning a dif-

ferent prior by training an SVM on a subset T of the training set containing

r training examples [18]. With these r examples, it can learn an (unit and

biased) SVM classifier wr, and form a prior P (wr, η) ∼ N(ηwr, I) which is a

Gaussian distribution with identity covariance matrix centered along wr at

a distance η from the origin.

Theorem 2.3 (Prior PAC-Bayes bound for SVMs [18]). Let us con-
sider a prior on the distribution of classifiers consisting of a spherical Gaus-
sian with identity covariance centered along the direction given by wr at a
distance η from the origin. Classifier wr has been learnt from a subset T of r
examples a priori separated from a training set S of m examples. Then, for
all distributions D, for all δ ∈ (0, 1], it has

PrS∼Dm

(
∀wm, u : KL+(Q̂S\T ‖ QD) ≤

‖ηwr−uwm‖2
2

+ ln(m−r+1
δ

)

m− r

)
≥ 1− δ.

(18)
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where Q̂S\T is a stochastic measure of the empirical error of the classifier
on the m − r examples not used to learn the prior. This stochastic error is
computed according to equation (14) but averaged over S\T .

The KL divergence between prior and posterior is computed as follow:

KL(Q(wm, u)‖P (wr, η)) = KL(N(uwm, I)‖N(ηwr, I))

=
‖ηwr − uwm‖2

2
=

1

2
(u2 + η2 − 2uηw>r wm).

(19)

3. PAC-Bayes bounds for twin support vector machines

In this section, we introduce our proposed PAC-Bayes bound for twin

support vector machines and prior PAC-Bayes bound for twin support vector

machines.

3.1. PAC-Bayes bound for twin support vector machines

TSVMs can improve the performance and time complexity compared

to SVMs. However, there does not exist formal theoretical analysis about

TSVMs. In this section, we attempt to analyze the PAC-Bayes generaliza-

tion error bound of TSVMs. At first, we analyze the classifier of TSVMs. In

order to analyze the PAC-Bayes bound of twin support vector machines, we

can rewrite the final decision function of TSVMs as this form

f(x) = sign
(
(
w>2
‖w2‖

sign(w>2 x+ b2)− w>1
‖w1‖

sign(w>1 x+ b1))x

+ (
b2

‖w2‖
sign(w>2 x+ b2)− b1

‖w1‖
sign(w>1 x+ b1))

)
.

(20)

We define w̄ = (
w>

2

‖w2‖sign(w>2 x + b2) − w>
1

‖w1‖sign(w>1 x + b1))> and b̄ =

b2
‖w2‖sign(w>2 x + b2) − b1

‖w1‖sign(w>1 x + b1), then we can get the final linear

13



classifier

f(x) = sign(w̄>x+ b̄). (21)

The classifier can also be written as kernelized form

cv̄(x) = sign(v̄>φ(x)). (22)

Because different test examples may have different classifier parameters

w̄ and b̄ in TSVMs while they have the same classifier parameters in SVMs.

The four decision function forms of TSVMs in details are obtained according

to the different values of indicator functions:

1. For training examples satisfying sign(w>2 x + b2) >= 0 and sign(w>1 x +

b1) >= 0, their decision function is f(x) = sign
(
(
w>

2

‖w2‖−
w>

1

‖w1‖)x+( b2
‖w2‖−

b1
‖w1‖)

)
.

Let p1 denote the percentage of the training examples in the whole training

set.

2. For training examples satisfying sign(w>2 x+b2) >= 0 and sign(w>1 x+b1) <

0, their decision function is f(x) = sign
(
(
w>

2

‖w2‖ +
w>

1

‖w1‖)x+ ( b2
‖w2‖ + b1

‖w1‖)
)
. Let

p2 denote the percentage of the training examples in the whole training set.

3. For training examples satisfying sign(w>2 x+b2) < 0 and sign(w>1 x+b1) < 0,

their decision function is f(x) = sign
(
(− w>

2

‖w2‖ +
w>

1

‖w1‖)x+ (− b2
‖w2‖ + b1

‖w1‖)
)
. Let

p3 denote the percentage of the training examples in the whole training set.

4. For training examples satisfying sign(w>2 x+b2) < 0 and sign(w>1 x+b1) >=

0, their decision function is f(x) = sign
(
(− w>

2

‖w2‖ −
w>

1

‖w1‖)x + (− b2
‖w2‖ −

b1
‖w1‖)

)
.

Let p4 denote the percentage of the training examples in the whole training

set.
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Define a vector set w̃ contains w̃i (‖w̃i‖ = 1) and a vector v̄ has four

forms v̄i, i = 1, 2, 3, 4. Let us consider prior classifier P (cv̄) to be a spherical

Gaussian with identity covariance matrix centred on the origin, that is v̄i ∼

N(0, I), i = 1, 2, 3, 4. We choose four posteriors Q(w̃i, u), i = 1, 2, 3, 4 to

be a spherical Gaussian with identity covariance matrix centered along the

direction pointed by w̃i, i = 1, 2, 3, 4 at a distance u from the origin and

pi, i = 1, 2, 3, 4 as the corresponding partition percents of the train examples.

That is v̄i ∼ N(uw̃i, I), i = 1, 2, 3, 4. Then we present the PAC-Bayes bound

for TSVMs.

Theorem 3.1 (PAC-Bayes bound for TSVMs). For all distributions D,
for all δ ∈ (0, 1], we have

PrS∼Dm

(
∀w̃, u : KL+(Q̂S(w̃, u) ‖ QD(w̃, u)) ≤

u2

2
+ ln(m+1

δ
)

m

)
≥ 1− δ.

(23)

The average KL divergence between prior and posterior is computed as fol-

lows:
4∑
i=1

piKL(Q(w̃i, u)‖P (c)) =
4∑
i=1

piKL(N(w̃i, u)‖N(0, I))

=
1

2

4∑
i=1

pi‖uw̃i‖2 =
u2

2
.

(24)

It can be shown that

Q̂S(w̃, u) = Em[F̃ (uγ(x, y))], (25)

where Em is the average over the m training examples, γ(x, y) is the nor-

malised margin of the training examples

γ(x, y) =
yv̄>φ(x)

‖φ(x)‖‖v̄‖
(26)
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and F̃ = 1− F , where F is the cumulative normal distribution

F (x) =

∫ x

−∞

1√
2π
e−

x2

2 dx. (27)

It is observed from that TSVMs are also computed by the means of the

kernel trick. The generalization error of such a classifier can be bounded by

at most twice the average true error QD(w̃, u) of the corresponding stochastic

classifier in Theorem 3.1. For all u, we have

Pr(x,y)∼D
(
sign(v̄>φ(x)) 6= y

)
≤ 2QD(w̃, u). (28)

The expression of the PAC-Bayes bound for TSVMs is as same as the one

of the prior PAC-Bayes bound for SVMs. Therefore, their main difference is

the average empirical error Q̂S.

3.2. Prior PAC-Bayes bounds for twin support vector machines

Then we analysis the prior PAC-Bayes bound for TSVMs. Let us consider

four priors on the distribution of classifiers consisting of a spherical Gaussian

with identity covariance centered along the direction given by w̃ri, i = 1, 2, 3, 4

at a distance η from the origin. That is v̄i ∼ N(ηw̃ri, I), i = 1, 2, 3, 4. Clas-

sifiers w̃ri, i = 1, 2, 3, 4 has been learnt from a subset T of r examples a

priori separated from a training set S of m examples and pri, i = 1, 2, 3, 4

as the corresponding partition percents of the r train examples. We choose

four posteriors to be a spherical Gaussian with identity covariance matrix

centered along the direction pointed by w̃mi, i = 1, 2, 3, 4 at a distance u

from the origin learnt from the rest m − r examples and pmi, i = 1, 2, 3, 4
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as the corresponding partition percents of the m − r train examples. That

is v̄i ∼ N(uw̃mi, I), i = 1, 2, 3, 4. Then we can obtain the prior PAC-Bayes

bound for TSVMs.

Theorem 3.2 (Prior PAC-Bayes bound for TSVMs). for all distribu-
tions D, for all δ ∈ (0, 1], we have

PrS∼Dm

(
∀w̃m, u : KL+(Q̂S\T ‖ QD) ≤

u2+η2−2µη
∑4

i=1

∑4
j=1 pripmjw̃

>
riw̃mj

2
+ ln(m−r+1

δ
)

m− r

)
≥ 1− δ,

(29)

here Q̂S\T is a stochastic measure of the empirical error of the classifier on
the m − r examples not used to learn the prior. This stochastic error is
computed according to equation (14) but averaged over S\T . The average
KL divergence between prior and posterior is computed as follows:

4∑
i=1

4∑
j=1

pripmjKL(Q(w̃mj, u)‖P (w̃ri, η)) =
1

2

4∑
i=1

4∑
j=1

pripmj‖ηw̃ri − uw̃mj‖2

=
1

2
(u2 + η2 − 2µη

4∑
i=1

4∑
j=1

pripmjw̃
>
riw̃mj).

(30)

The expression of the prior PAC-Bayes bound for TSVMs is quite different

from the one of the prior PAC-Bayes bound for SVMs. Their main differences

are the average empirical error Q̂S and KL divergence term.

4. Experimental Results

4.1. Datasets

In this section, we implement experiments of binary classification prob-

lems using real-world datasets. Details about the five datasets are given as

follows:
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Contraceptive Method Choice (CMC). The dataset comes from UCI Ma-

chine Learning Repository. It contains 1473 examples and has 9 attributes.

Face Detection. The dataset comes from the MIT CBCL repository. It is

a binary classification problem which intends to identify whether a picture is

a human face or not. In this experiment, 2000 face and non-face images are

used, where half of them are faces and each image is a 19× 19 gray picture.

Handwritten Digit Classification. The dataset comes from UCI Machine

Learning Repository. The dataset we used here contains 2400 examples of

digits 3 and 8 chosen from the MNIST digital images, where half of the data

are digit 3 and the image sizes are 28× 28.

Pima. The dataset comes from UCI Machine Learning Repository. The

dataset contains 768 examples and has 8 attributes.

German Credit. The dataset comes from UCI Machine Learning Reposi-

tory. The dataset contains 1000 examples and has 20 attributes.

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

[Table 4 about here.]

[Table 5 about here.]

[Table 6 about here.]

18



4.2. Experimental Setting

For the comparison between the PAC-Bayes bound of SVMs and the PAC-

Bayes bound of TSVMs, we obtain 10 different training/test set partitions

with 80% of the examples forming the training dataset and 20% forming the

test dataset. We then change the training sizes from 20% to 100% of the

formed training datasets. For the comparison between the prior PAC-Bayes

bound of SVMs and TSVMs, we obtain 10 different training/test set parti-

tions with 90% of the examples forming the training dataset. We perform

experiments with Gaussian RBF kernel. The Gaussian kernel can be written

as

K(xi, xj) = exp(−‖xi − xj‖
2
2

2σ2
), (31)

where σ is the width of the Gaussian kernel. The optimal pair (c, σ) of

SVMs is sought by grid search strategy to select best parameters in the

region {10−3, 10−2, 0.1, 1, 10, 100, 1000} through a five-fold cross-validation.

The optimal pair (c1, c2, σ) of TSVMs is also sought by grid search strategy to

select best parameters in the region {10−3, 10−2, 0.1, 1, 10, 100, 1000} through

a five-fold cross-validation. In the experiments, we set δ = 0.01. Parameter

η need to be fixed in region [0.1, 100]. Parameter µ needs to be adjusted in

region [0.1, 100] by binary search.

4.3. Experimental Results and Analysis

We show experimental results which compare the PAC-Bayes bounds

(QD) for TSVMs with the PAC-Bayes bounds for SVMs. The test errors and
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PAC-Bayes bounds for SVMs and TSVMs are averaged for 10 times. We

complete the average with the standard deviation. The results are shown in

Tables 1, 2, 3, 4, 5. “PB-SVM” represents the PAC-Bayes bound for SVMs

and “PB-TSVM” represents the PAC-Bayes bound for TSVMs. We also show

the difference between “PB-TSVMs” and Error for “TSVMs” called “Gap-

TSVM” and the difference between “PB-TSVMs” and “Error for TSVMs”

called “Gap-SVM” in the results. The results of Gap-TSVM are less than

the ones of Gap-SVM in the most cases on the all dataset. The test errors

have little relationship with the PAC-Bayes bounds. They are shown in ex-

periments because we can obtain an important and supplemental conclusion.

From the experimental results, we can find that as the rate of training

dataset increases, the bounds for SVMs and TSVMs are much tighter. In

Table 2, 4, 5, the bounds for TSVMs are almost tighter than the bounds

for SVMs. In Tables 1, 3, the bounds for SVMs and TSVMs are nearly the

same. We can also conclude that when the rate of training dataset is low, the

performance of TSVMs is not better than SVMs. When the rate of training

dataset is high, the performance of TSVMs is better than or close to SVMs.

We speculate that when the rate of training dataset is low, TSVMs need

more parameters to train and cause over-fitting results. When the rate of

training dataset is high, TSVMs are more flexible. The results of Gap-TSVM

are less than the ones of Gap-SVM in the most cases on the all dataset. In

summary, the experimental results verify the good predictive capabilities of

the PAC-Bayes bound for twin support vector machines.

The results of the prior PAC-Bayes bounds is in Tables 6, “PPB-SVM”
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represents the prior PAC-Bayes bound for SVMs and “PPB-TSVM” repre-

sents the prior PAC-Bayes bound for TSVMs. From the results, we can find

the prior PAC-Bayes bounds for TSVMs are almost tighter than the prior

PAC-Bayes bounds for SVMs except in German Credit dataset. The re-

sults show that the good predictive capabilities PAC-Bayes bound and prior

PAC-Bayes bound for TSVMs.

5. Conclusion and Future work

Many practical applications and extended algorithms for twin support

vector machines have been proposed. However, there does not exist theoret-

ical justifications on twin support vector machines. In this paper, we use the

PAC-Bayes bound and prior PAC-Bayes bound to analyze the generalization

error bound of twin support vector machines. Comparative experiments on

real-world datasets verify the better predictive capabilities of the PAC-Bayes

bound and prior PAC-Bayes bound for twin support vector machines. In the

future, we can use other informative priors inspired by [18] to tighten the

bounds.
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Table 1: PAC-Bayes bounds (%) and classification errors (%) on CMC.

Rate PB-SVMs Error for SVMs PB-TSVMs Error for TSVMs Gap-SVM Gap-TSVM
20% 66.01±0.01 35.14±2.35 65.98±0.03 36.00±1.73 30.87 29.98
40% 61.83±0.00 31.55±1.50 61.83±0.01 34.16±2.62 30.28 27.67
60% 59.89±0.00 31.01±1.37 59.89±0.00 29.59±1.43 28.88 30.30
80% 58.69±0.00 28.49±3.79 58.69±0.00 28.98±1.23 30.20 29.71
100% 57.87±0.00 28.52±2.21 57.87±0.00 26.60±1.30 29.35 31.27

29



Table 2: PAC-Bayes bounds (%) and classification errors (%) on face detection.

Rate PB-SVMs Error for SVMs PB-TSVMs Error for TSVMs Gap-SVM Gap-TSVM
20% 62.52±0.01 3.51±1.12 62.35±0.38 4.22±0.42 59.01 58.13
40% 59.21±0.00 1.43±0.42 58.91±0.27 1.85±0.41 57.78 57.06
60% 57.68±0.00 0.64±0.25 57.52±0.18 0.98±0.27 57.04 56.54
80% 56.74±0.00 0.35±0.13 56.51±0.08 0.38±0.19 56.39 56.13
100% 56.09±0.00 0.12±0.12 55.97±0.11 0.15±0.12 55.97 55.82
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Table 3: PAC-Bayes bounds (%) and classification errors (%) on Handwritten Digit Clas-
sification.

Rate PB-SVMs Error for SVMs PB-TSVMs Error for TSVMs Gap-SVM Gap-TSVM
20% 61.55±0.01 3.70±0.38 61.46±0.06 4.06±0.81 57.85 57.40
40% 58.49±0.00 2.21±0.26 58.47±0.01 2.59±0.40 56.28 55.88
60% 57.07±0.00 1.47±0.27 57.07±0.01 1.54±0.25 55.60 55.53
80% 56.21±0.00 0.66±0.25 56.21±0.00 0.84±0.26 55.55 55.37
100% 55.61±0.00 0.62±0.15 55.61±0.00 0.44±0.09 54.99 55.17
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Table 4: PAC-Bayes bounds (%) and classification errors (%) on Pima.

Rate PB-SVMs Error for SVMs PB-TSVMs Error for TSVMs Gap-SVM Gap-TSVM
20% 68.89±0.01 26.87±2.87 68.81±0.08 33.50±2.24 42.02 35.31
40% 64.06±0.00 24.57±2.15 64.05±0.00 26.71±1.53 39.49 37.34
60% 61.79±0.00 23.81±1.02 61.79±0.00 20.59±1.04 37.98 41.20
80% 60.38±0.00 22.69±0.93 60.38±0.00 15.05±1.23 37.69 45.33
100% 59.40±0.00 22.77±0.70 59.39±0.00 11.68±2.38 36.63 47.71

32



Table 5: PAC-Bayes bounds (%) and classification errors (%) on German.

Rate PB-SVMs Error for SVMs PB-TSVMs Error for TSVMs Gap-SVM Gap-TSVM
20% 66.91±0.00 26.46±1.68 66.87±0.07 29.59±2.57 40.45 37.28
40% 62.54±0.00 24.21±2.29 62.52±0.04 25.74±1.75 38.33 36.78
60% 60.49±0.00 22.06±1.71 60.47±0.03 21.75±2.53 38.43 38.72
80% 59.22±0.00 20.78±0.75 59.22±0.00 18.95±1.65 38.44 40.27
100% 58.35±0.00 19.83±0.62 58.34±0.00 16.66±1.89 38.52 41.68
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Table 6: Prior PAC-Bayes bounds (%).

dataset PB-SVMs PB-TSVMs PPB-SVMs PPB-TSVMs
CMC 57.39±0.04 57.44±0.01 57.49±0.02 57.34±0.85

face detection 41.13±0.20 37.47±8.75 39.28±0.24 38.10±8.53
Handwritten Digit 60.29±3.03 55.33±6.34 59.23±1.23 54.19±5.71

Pima 58.41±0.76 58.28±0.59 59.02±0.13 58.62±0.14
German Credit 57.89±0.00 57.85±0.02 58.03±0.01 58.28±0.59
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