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Abstract

Generating a low-rank matrix approximation is very important in large-scale machine

learning applications. The standard Nyström method is one of the state-of-the-art tech-

niques to generate such an approximation. It has got rapid developments since being ap-

plied to Gaussian process regression. Several enhanced Nyström methods such as ensem-

ble Nyström, modified Nyström and SS-Nyström have been proposed. In addition, many

sampling methods have been developed. In this paper, we review the Nyström methods for

large-scale machine learning. First, we introduce various Nyström methods. Second, we

review different sampling methods for the Nyström methods and summarize them from the

perspectives of both theoretical analysis and practical performance. Then, we list several

typical machine learning applications that utilize the Nyström methods. Finally, we make

our conclusions after discussing some open machine learning problems related to Nyström

methods.
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1. Introduction

Many large-scale machine learning problems involve generating a low-rank matrix

approximation to reduce high time and space complexities. For example, let n be the

number of data instances. The Gaussian process regression computes the inverse of an

n × n matrix which takes time O(n3) and space O(n2). For the large-scale problems, n can

be in the order of tens of thousands to millions, leading to difficulties in operating on, or

even storing the matrix.

Various methods [1, 2, 3] have been utilized to generate low-rank matrix approxima-

tions. The standard Nyström method is one of the state-of-the-art methods. It selects

a subset of columns of the original matrix to build an approximation. In general, the

standard Nyström method is used to approximate symmetric positive semidefinite (SPSD)

matrices, such as Gram or kernel matrices, or their eigenvalues/eigenvectors. For approx-

imating matrix K, it consists of three steps. 1) Sampling step: it samples a subset of

columns of K to form matrix C; 2) Pseudo-inverse step: it performs pseudo-inverse of the

matrix W formed by the intersection between those sampled columns and the correspond-

ing rows; 3) Multiplication step: it constructs a matrix by using the formulation CW†C> to

approximate the original matrix. For approximating eigenvalues/eigenvectors, it also con-

sists of three steps. 1) Sampling step: it samples a subset of columns of K to form C; 2)

Singular value decomposition (SVD) step: it performs SVD of the matrix W formed by the

intersection between those sampled columns and the corresponding rows to get singular

values and singular vectors, respectively; 3) Extension step: it uses the Nyström extension

to get the approximate eigenvalues/eigenvectors of the original matrix.

The standard Nyström method was first introduced into Gaussian process regression

for reducing the computational complexity [4]. By replacing the original matrix with a

Nyström approximation and subsequently using the Woodbury formula, the matrix inver-
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sion can be easily solved with time complexity O(`2n), where ` columns are sampled.

After that, the standard Nyström method has got rapid developments. Several enhanced

Nyström methods have been developed to provide more accurate matrix approximation

or eigenvector approximation, e.g., density-weighted Nyström (DW-Nyström), ensem-

ble Nyström, modified Nyström and modified Nyström method by spectral shifting (SS-

Nyström). In addition, some techniques are developed to improve the inner procedures of

the Nyström approximation. For the sampling step, various sampling methods [5, 6, 7]

are utilized for the Nyström methods. For the SVD step, recently an approximate SVD

[8] that utilizes randomized SVD algorithms [9] was proposed to accelerate the standard

Nyström method for some extreme large-scale machine learning applications.

One key aspect of the Nyström methods is the sampling step. It influences the sub-

sequent approximation accuracy and thus the performance of the learning methods [10].

Initially, uniform sampling is adopted when the standard Nyström method was applied [4],

and it is also the most widely applied sampling method due to its low time consumption.

After that, various sampling methods [6, 11, 12, 13, 14, 15] that focus on selecting the most

informative columns are proposed. Thus, we call these sampling methods informative-

column sampling. We classify these methods into two classes: 1) fixed sampling; 2)

adaptive sampling. For fixed sampling, it means the matrix is sampled with a fixed, non-

uniform distribution over the columns. The distribution can be defined by a function on

the diagonal entities or the column entities of the original matrix [6, 11]. For adaptive

sampling, it means the matrix is sampled with adaptive techniques [12, 13, 16, 17]. Dif-

ferent from fixed sampling, the sampling distribution will be modified at each iteration.

Empirical results suggest that a tradeoff between efficiency and accuracy exists for uni-

form sampling and informative-column sampling as the latter spends more time in finding

a concise subset of informative columns but can provide an improved approximation ac-

curacy. The tradeoff also exists for fixed sampling and adaptive sampling. In real world
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applications, the tradeoff should be considered carefully before utilizing different sampling

techniques.

The standard Nyström method has been applied to many machine learning applica-

tions, e.g., manifold learning [18, 19, 20], spectral clustering [21, 22, 23, 24], kernel-

based methods such as kernel support vector machine (SVM) [25, 13, 26, 27] and kernel

ridge regression [10, 27], signal processing [28, 29] and statistical learning [30, 31]. Tal-

walkar et al. [18] proved that the standard Nyström method combined with Isomap [32]

is an efficient tool to extract the low-dimensional manifold structure given millions of

high-dimensional face images, and the approximate Isomap tends to perform better than

Laplacian Eigenmaps [33] and is tied to the original Isomap on both clustering and clas-

sification with the labeled CMU-PIE [34] data set. In the work of Fowlkes et al. [22],

spectral clustering with the standard Nyström method outperforms the traditional Lanczos

method [35] where the clustering result is measured by normalized cut [36]. In the work

of Williams et al. [26], kernel-based Gaussian processes have been accelerated using the

Nyström approximation to the kernel matrix, with the time complexity scaled down from

O(n3) to O(`2n).

Nyström methods can be seen as a kind of information fusion methods. They use

the partial data many times to approximate the values that we are interested, such as the

eigenvalues/eigenvectors of a matrix or the inverse of a matrix. When applied to machine

learning problems, Nyström methods will bring improvements in efficiency on the premise

of not reducing performance much.

The remainder of the paper is organized as follows. Section 2 introduces some prelim-

inary knowledge. In Section 3, we introduce the various Nyström methods. In Section 4,

some related low-rank matrix approximation methods are presented to differentiate from

the Nyström methods. In Section 5, several sampling methods for the Nyström methods

including uniform sampling and informative-column sampling are listed, and we subse-
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quently give some comparisons between uniform sampling and informative-column sam-

pling from the perspectives of both theoretical analysis and practical performance. In

Section 6, we provide a summary of typical large-scale machine learning applications of

the Nyström methods. We make our conclusions in section 8 after discussing several open

machine learning problems related to Nyström methods in Section 7.

2. Preliminary Knowledge

2.1. Notations

For an n × n SPSD matrix K = [Ki j], we define K( j), j = 1, ..., n, as the jth column

vector of K, K(i), i = 1, ..., n, as the ith row vector of K. For a vector x ∈ Rn, let ‖x‖ξ,

ξ = 1, 2,∞, denote the 1-norm, Euclidean norm, and ∞-norm, respectively. Let Diag(K)

denote the vector consisting of the diagonal entries of the matrix K and Σ denote the matrix

containing the eigenvalues of K. Then, ‖K‖2 = ‖Diag(Σ)‖∞ denotes the spectral norm of

K; ‖K‖F = ‖Diag(Σ)‖2 denotes the Frobenius norm of K; and ‖K‖⊗ = ‖Diag(Σ)‖1 denotes

the trace norm (or nuclear norm) of K. Clearly,

‖K‖2 ≤ ‖K‖F ≤ ‖K‖⊗ ≤
√

n‖K‖F ≤ n‖K‖2. (1)

2.2. Best Rank-k Approximation

Given a matrix with rank(K)=p, the SVD of K can be written as K = UΣV , where Σ

is diagonal and contains the singular values (λ1 ≥ λ2 ≥ ... ≥ λn) of K, and U and V have

orthogonal columns and contain the left and right singular vectors of K. Let Uk and Vk be

the first k (k < p) columns of U and V , respectively, and Σk be the k× k top sub-block of Σ.

Then, the n×n matrix Kk = UkΣkVk is the best rank-k approximation to K, when measured

with respect to any unitarily-invariant matrix norm, e.g., the spectral, Frobenius, or trace
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norm [37]. We have

‖K − Kk‖2 = λk+1, (2)

‖K − Kk‖F = (
n∑

i=k+1

λ2
i )1/2, (3)

‖K − Kk‖⊗ =

n∑
i=k+1

λi. (4)

2.3. Pseudo-Inverse of a Matrix

Another kind of useful Nyström related knowledge is the pseudo-inverse (Moore-

Penrose inverse). The pseudo-inverse of an m × n matrix A can be expressed from the

SVD of A as follows. Let the SVD of A be

A = U

 S 0

0 0

 V>, (5)

where U,V are both orthogonal matrices, and S is a diagonal matrix containing the (non-

zero) singular values of A on its diagonal. Then the pseudo-inverse of A is an n×m matrix

defined as

A† = V

 S −1 0

0 0

 U>. (6)

Note that A† has the same dimension as the transpose of A. If A is square, invertible, then

its pseudo-inverse is the true inverse, that is, A† = A−1.

2.4. Orthogonal Projection

In linear algebra and functional analysis, a projection is a linear transformation P from

a vector space to itself such that P2 = P. A projection is orthogonal if and only if it is

self-adjoint. One way to construct the projection operator on the range space of A is that

PA = A(A>A)†A> = AA† = HH> = UU>, (7)
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where H represents the orthogonal basis on the range space of A and U represents the left

singular vectors of A corresponding to the non-zero singular values. Given an n× ` matrix

C, the projection of K onto the column space of C is defined as PCK = CC†K.

2.5. Matrix Coherence and Leverage Score

As Nyström related techniques, the leverage score and the matrix coherence that mea-

sure the structural nonuniformity should be introduced. The statistical leverage scores of

a matrix K are the squared row-norms of any matrix whose columns are obtained by or-

thogonalizing the columns of the matrix, and the coherence is closely related to the largest

leverage score [37]. These quantities play an important role in several machine learning

algorithms because they capture the key structural nonuniformity of the matrix. Given

matrix K and a rank parameter k, the statistical leverage scores of K relative to the best

rank-k approximation to K equal the squared Euclidean norms of the rows of the n × k

matrix Uk

` j =
∥∥∥Uk( j)

∥∥∥2

2
.

The matrix coherence of K relative to the best rank-k approximation of K is defined by

µ =
n
k

max
j

∥∥∥Uk( j)

∥∥∥2

2
.

3. Nyström Methods

The standard Nyström method was originally introduced to handle approximation for

numerical integration in integral equations. It can be deemed as quadrature methods for

integral equation approximation. The standard Nyström method can be used for approxi-

mating eigenfunctions. In dealing with matrices, it can be used for approximating SPSD

matrices and their eigenvectors/eigenvalues. Besides the standard Nyström method, some
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extended methods including DW-Nyström, ensemble Nyström, modified Nyström and SS-

Nyström are developed to improve the accuracy of approximation. To illustrate these

Nyström methods, we start from the quadrature rule, and then introduce these Nyström

methods from the perspectives of eigenvectors/eigenvalues approximation and (or) matrix

approximation.

Theoretical analysis and experimental results are two basic ways to evaluate the per-

formance with a specific Nyström method. In most work of the Nyström methods, people

bound the spectral reconstruction errors in two forms: 1) relative-error bound; 2) additive-

error bound. The relative-error bound is in the form of∥∥∥K − K̃k

∥∥∥
ξ
≤ α ‖K − Kk‖ξ , (8)

while the additive-error bound is in the form of∥∥∥K − K̃k

∥∥∥
ξ
≤ ‖K − Kk‖ξ + α. (9)

Here, K̃k represents the rank-k approximation to K by Nyström methods, Kk represents the

best rank-k approximation to K, and α is a constant and ξ represents the spectral norm,

Frobenius norm or trace norm.

3.1. Quadrature Method

We consider the quadrature method of solving eigenfunction problem for the operator

which is expressed as the convolved integral of a kernel function [38]∫
D

κ(x, y)φi(x)dx = λiφi(y), i = 1, ...,N, (10)

where λi represents each eigenvalue and φi(x) represents the corresponding eigenfunction

for the operator. The kernel κ(x, y) is defined as the product of two mapping functions (or

feature functions) and eigenvalues:

κ(x, y) =

N∑
i=1

λiφi(x)φi(y). (11)
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The resulting solution of (10) is first found at the set of quadrature node points, and then

extended to all points in D by means of a special interpolation formula. This method

requires the use of a quadrature rule. Computing the integral occurring in (10) requires

using the quadrature rule ∫
D

y(x)dx =

n∑
j=1

w jy(x j), (12)

where {w j}
n
j=1 are the weights and {x j}

n
j=1 are the quadrature points that are determined by

the particular quadrature rule. Then we get∫
D

κ(x, y)φi(x)dx '
n∑

j=1

w jκ(y, x j)φi(x j) = λiφi(y), i = 1, ...,N. (13)

In order to form the symmetric kernel matrix K, the same samples {xk}
n
k=1 are employed for

approximating different values of y. Then the values of function φi(y) with inputs {xk}
n
k=1

form the vector [φi(x1), φi(x2), ..., φi(xn)]>. This leads to a system of n algebraic equations

n∑
j=1

w jκ(x j, xk)φi(x j) = λiφi(xk), k = 1, ..., n, i = 1, ...,N. (14)

If we write K = [κ(x j, xk)], φi = [φi(x1), φi(x2), ..., φi(xn)]>, U = [φ1,φ2, ...,φn], W =

diag(w1, w2, ...,wn) and Λ = diag(λ1, λ2, ..., λn), then the above equations yield the matrix

eigenvalue problem

KWU = ΛU. (15)

Since KW is probably asymmetric, (15) can be converted to

(W
1
2 KW

1
2 )W

1
2 U = ΛW

1
2 U, (16)

which is eigenvalue decomposition of symmetric matrix (W
1
2 KW

1
2 ). If Λ̃ and Ũ are the

eigenvalues and eigenvectors of (W
1
2 KW

1
2 ), respectively, then

Λ = Λ̃, U = W− 1
2 Ũ. (17)
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Finally, by substituting the entries of U back into (13), we get the approximate eigenfunc-

tion as

φi(y) =
1
λi

n∑
j=1

w jκ(y, x j)φi(x j). (18)

3.2. Standard Nyström Method

In most machine learning problems, it is more likely that there is a probability density

p(x) over the input space which is smoothly varying, rather than being constant within

D and zero outside. In this case the eigenfunction problem is generalized to include the

probability function p(x) as ∫
κ(x, y)p(x)φi(x)dx = λiφi(y). (19)

Given iid samples {x j}
n
j=1 from p(x), this eigenfunction equation is approximated by re-

placing the integral with an empirical average∫
κ(x, y)p(x)φi(x)dx '

1
n

n∑
j=1

κ(x j, y)φi(x j). (20)

It is equivalent to the quadrature method in (13) when w1 = w2 =, ...,wn = 1
n , which yields

the matrix eigenvalue problem

KWU =
1
n

KU = ΛU ⇐⇒ KU = nΛU. (21)

This can be regarded as the eigenvalue decomposition of K, with the eigenvalue Λ̃ =

diag(̃λ1, λ̃2, ..., λ̃n) and eigenvector Ũ. Combining the fact K = ŨΛ̃Ũ> and the kernel

definition (11), we get

Λ =
1
n

Λ̃, U =
√

nŨ, (22)

Given the results, the interpolation method (18) can be used to compute the eigenfunction.

The Nyström approximation to the ith eigenfunction is

φi(y) '
1

nλi

n∑
j=1

κ(y, x j)φi(x j) =

√
n

λ̃i

n∑
j=1

κ(y, x j)Ũ
(i)
( j). (23)
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By using the idea of approximating eigenfunctions, the standard Nyström method can

generate an approximation K̃nys
k of an SPSD matrix K based on a sample of ` of its

columns. Despite sampling methods, we assume that the sample of ` columns is given

to us. Let C denote the n × ` matrix formed by these columns and W be the ` × ` matrix

consisting of the intersection of these ` columns with the corresponding ` rows. Without

loss of generality, the columns and rows can be rearranged to [6]

K =

 W, K>21

K21, K22

 , C =

 W

K21

 . (24)

Since K is SPSD, the submatrix W is also SPSD. Let Wk be the best rank-k approximation

of W and the eigenvalue decomposition of Wk be Wk = UW,kΣW,kU>W,k, the standard Nyström

method [4] approximates eigenvalues (Σk) and eigenvectors (Uk) by using the following

extensions

Σ̃
nys
k = (

n
`

)ΣW,k, Ũnys
k =

√
`

n
CUW,kΣ

†

W,k. (25)

The rank-k approximation K̃nys
k of K generated by the standard Nyström method for k < n

is computed by

K̃nys
k = Ũnys

k Σ̃
nys
k (Ũnys

k )> = CW†

k C>. (26)

Note that when k = `, the standard Nyström approximation of K is CW†C>. Given C, the

time complexity of matrix approximation using the standard Nyström method is O(k`2) +

TMultiply(n`k) where O(k`2) is for the eigenvalue decomposition on W and TMultiply(n`k)

[39, 40] is for the multiplication in (26). The space complexity is O(n`). In this paper, we

present the time complexity in the form of O(∗)+TMultiply(∗) since the matrix multiplication

can be done block-wisely and in parallel.

Regardless of the sampling methods, deterministic error bounds for matrix approxima-

tion using the standard Nyström method are given in the following theorem.
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Theorem 1 (Deterministic Error Bounds for the Standard Nyström Method [41, 37]).

Let K ∈ Rn×n be an arbitrary SPSD matrix K with eigenvalue decomposition K = UΣU>

where U and Σ are partitioned as

U =

(
U1 U2

)
and Σ =

 Σ1

Σ2

 . (27)

Here U1 has k-columns and spans the top k-dimensional eigenspace of K, and Σ1 ∈ R
k×k

is full-rank. We denote the eigenvalues of K with λ1(K) ≥ ... ≥ λn(K). Let S denote the

sketching matrix which is the product of sampling matrix R ∈ Rn×` and scaling matrix

D ∈ R`×` and let

Ω1 = U>1 S and Ω2 = U>2 S (28)

denote the projection of S onto the top and bottom eigenspaces of K, respectively. Then

the deterministic error bounds for the standard Nyström method are obtained as∥∥∥K − K̃nys
k

∥∥∥
2
≤ ‖K − Kk‖2 +

∥∥∥Σ1/2
2 Ω2Ω

†

1

∥∥∥2

2
, (29)∥∥∥K − K̃nys

k

∥∥∥
F
≤ ‖K − Kk‖F +

∥∥∥Σ1/2
2 Ω2Ω

†

1

∥∥∥
2

( √
2Tr(Σ2) +

∥∥∥Σ1/2
2 Ω2Ω

†

1

∥∥∥
F

)
, (30)∥∥∥K − K̃nys

k

∥∥∥
⊗
≤ ‖K − Kk‖⊗ +

∥∥∥Σ1/2
2 Ω2Ω

†

1

∥∥∥2

F
. (31)

Note that the error bounds in Theorem 1 are adapted from [37] by using the facts that

‖Σ2‖2 = ‖K − Kk‖2, ‖Σ2‖F = ‖K − Kk‖F and ‖Σ2‖⊗ = ‖K − Kk‖⊗.

Theorem 2 (Lower Error Bounds for the Standard Nyström Method [42]). Whatever

column sampling algorithm is used, there exists an n × n SPSD matrix K such that the

error incurred by the standard Nyström method obeys:∥∥∥K − K̃nys
k

∥∥∥2

F
≥ 1 +

n2k − `3

`2(n − k)
‖K − Kk‖

2
F , (32)∥∥∥K − K̃nys

k

∥∥∥
2
≥

n
`
‖K − Kk‖2 , (33)∥∥∥K − K̃nys

k

∥∥∥
⊗
≥

n − `
n − k

(1 +
k
`

) ‖K − Kk‖⊗ . (34)
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Here k is an arbitrary target rank, and ` is the number of selected columns.

From the lower error bounds, when the matrix size n is large, the standard Nyström

approximation can be very inaccurate unless a large number of columns are selected.

3.3. DW-Nyström Method

The standard Nyström method assigns equal importance to all the chosen samples.

In the density-weighted Nyström (DW-Nyström) method [15], a density function p(x)

evaluated at the landmark points Z = {z j}
n
j=1 is explicitly introduced. Then the integral

equation can be approximated as∫
κ(x, y)p(x)φi(x)dx '

1
c

n∑
j=1

p(z j)κ(x j, y)φi(x j) = λiφi(y), (35)

where c =
∑n

j=1 p(z j) is the normalization factor. By choosing y at the landmark points and

defining U = [φ1,φ2, ...,φn] with φi = [φi(z1), φi(z2), ..., φi(zn)]> and Λ = diag(λ1, λ2, ..., λn)

as in the standard Nyström method, we have

K̃U = cΛU, (36)

where K̃ ∈ Rn×n is the density-weighted kernel matrix evaluated at the landmark points,

K̃ jk = p(zk)κ(z j, zk), j = 1, ..., n, k = 1, ..., n. (37)

After solving eigenvalue decomposition of K̃, we can get the eigenvectors U and eigenval-

ues cΛ. Different from (23), the approximate eigenfunction by the DW-Nyström method

can be evaluated at an arbitrary point x as

φi(x) ≈
1

cλi

n∑
j=1

p(z j)κ(x, z j)φi(z j). (38)
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In dealing with matrices, the SPSD matrix K is expressed as in (24). Let W̃ = WP and

W̃k be the best rank-k approximation to W̃. Then, the approximate eigenvectors of K are

given by

Ũwny
k =

1
c

EUW̃,kΣ
†

W̃,k
, (39)

where E = CP ∈ Rn×` and P ∈ R`×` is a diagonal matrix such that Pkk = p(zk), (k = 1, ..., `).

UW̃,k and ΣW̃,k are the eigenvectors and eigenvalues of W̃k. The landmark points z′ks are set

by the centers of the data clusters. The size of each cluster is |S k| which is obtained by

the K-means clustering algorithm. In this case, p(zk) = 1
n |S k| and c =

∑`
k=1 p(zk) = 1.

The complexity of computing approximate eigenvectors is O(`3 + `n) including K-means

O(`n). Note that the matrix approximation through spectral reconstruction in the DW-

Nyström method is still an open problem as the approximate eigenvalues are not provided

[15].

3.4. Ensemble Nyström Method

The ensemble Nyström method [7] was proposed as a meta algorithm which combines

the p standard Nyström methods with the mixture weights w(r), (r = 1, ..., p). In particular,

it selects a collection of p samples, each sample C(r) containing `′ columns of K. Then the

ensemble method combines the samples to construct an approximation in the form of

K̃ens
k =

p∑
r=1

w(r)C(r)W (r)
k
†
C(r)> =

p∑
r=1

w(r)K̃nys(r)
k (40)

Typically, the ensemble Nyström method seeks to find out the weights by minimizing

||K − K̃ens
k ||F or ||K − K̃ens

k ||2. A simple but effective strategy is to set the weights as

w(1) = ... = w(p) = 1
p . For computing, the time complexity of the ensemble Nyström

method is O(pk`′2 + Cw) + TMultiply(p`′kn) where Cw is the time for computing w. Kumar

et al. [7] indicated that the ensemble sampling naturally fits within distributed computing

environments. In this age, solving big data problem with distributed computing techniques
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is more and more popular. Not only the sampling procedure could be done in this way, but

also the matrix multiplication in the SVD procedure [8] can be performed in parallel.

3.5. Modified Nyström Method

More recently, the modified Nyström method [42] was proposed by borrowing the

techniques in CUR matrix decomposition. It was motivated by the fact that the lower error

bounds of the standard Nyström method and the ensemble Nyström method are even much

worse than the upper bounds of some existed CUR algorithms. The modified Nyström

method is formed as

K̃mod = CUmodC> = C(C†K(C†)>)C>, (41)

which is the projection of K onto the column space of C and the row space of C>. With the

selected columns at hand, the modified Nyström method needs to go only one pass through

the data. Although more expensive to compute, the modified Nyström method is a more

accurate approximation. Since Umod = C†K(C†)> is the minimizer of the optimization

problem minU

∥∥∥K −CUC>
∥∥∥

F
, the modified Nyström method is in general more accurate

than the standard Nyström method in that
∥∥∥K −CUmodC>

∥∥∥
F
≤ ‖K − Knys‖F . A lower

bound of the modified Nyström Method is established in Theorem 3.

Theorem 3 (The Lower Error Bound for the Modified Nyström Method [40]). What-

ever column sampling algorithm is used, there exists an n×n SPSD matrix K such that the

error incurred by the modified Nyström method obeys

∥∥∥K − K̃mod
∥∥∥2

F
≥

n − `
n − k

(1 +
2k
`

) ‖K − Kk‖
2
F . (42)

From the error bound, one can find that the error doesn’t increase as the matrix size

increases.
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3.6. SS-Nyström Method

When the bottom eigenvalues of a kernel matrix are large, the previous Nyström meth-

ods work poorly. Moreover, the previous Nyström methods cannot be directly used for the

approximation of K−1. An extension of the modified Nyström method, which is called the

modified Nyström method by spectral shifting (SS-Nyström) was proposed by Wang et al.

[40] as

K̃ss = C̄UssC̄> + δssIn. (43)

Here δss ≥ 0 is called the spectral shifting term. It is inspired by the matrix ridge approxi-

mation (MRA) [44]. MRA approximates any SPSD matrix by AA>+δIn where A is an n×`

matrix and δ > 0 is the average of the n − c bottom eigenvalues. The MRA works well no

matter whether the bottom eigenvalues are large or small. However, MRA is solved by an

iterative algorithm, so it is not efficient. SS-Nyström inherits the efficiency of the Nyström

methods and is effective even when the bottom eigenvalues are large.

The SS-Nyström method for matrix approximation is computed in three steps. First,

(approximately) compute the initial spectral shifting term

δ̄ =
1

n − k

tr(K) −
k∑

j=1

σj(K)

 , (44)

and then perform spectral shift K̄ = K − δ̄In, where k ≤ ` is the target rank. Actually,

exactly setting the initial spectral shifting term to be δ̄ is unnecessary because SS-Nyström

has a better upper error bound than the modified Nyström method whenever the initial

spectral shifting term falls in the interval (0, δ̄]. Second, use some column sampling algo-

rithms to select ` columns of K̄ to form C̄. Finally, with C̄ at hand, compute Uss and δss

by

δss =
1

n − rank(C̄)

(
tr(K) − tr(C̄†KC̄)

)
, (45)

Uss = C̄†K(C̄†)> − δss(C̄>C̄)†. (46)
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Analogously, the SS-Nyström finds the minimizer of the optimization problem (Uss, δss) =

argmin
U,δ

∥∥∥K − C̄UC̄> − δIn

∥∥∥
F

to obtain the intersection matrix Uss and the spectral shifting

term δss. However, computing δ̄ according to (44) requires the partial eigenvalue decompo-

sition which costs time O(n2k) and space O(n2). This can be accelerated by computing the

top k eigenvalues approximately using random projection techniques [40]. This method

computes δ̄ in time O(n`2) + Tmultiply(n2`) and space O(n`).

Given the SS-Nyström approximation of K, the matrix inverse (K + αIn)−1 can be

approximately computed. Let Uss = ZΛZ> be the condensed eigenvalue decomposition of

the intersection matrix of SS-Nyström, where Z ∈ R`×r, Λ ∈ Rr×r, and r = rank(Uss) ≤ `.

(K̃ss + αIn)−1 is expanded by the Woodbury formula

(K̃ss + αIn)−1 = τ−1In − τ
−1C̄Z(τΛ−1 + Z>C̄>C̄Z)−1Z>C̄>, (47)

where τ = δss + α. Note that when α = 0, K−1 can be approximately computed.

In addition, the eigenvalue decomposition of K can be computed by using the SVD of

C̄. Let C̄ = UC̄ΣC̄VC̄ and S = ΣC̄VC̄UssV>C̄ Σ>C̄ . Then by performing eigenvalue decomposi-

tion of S as S = US ΛS U>S , one can get the eigenvalue decomposition of K̃ss as

K̃ss = (UC̄US )(ΛS + δIr)(UC̄US )> + U⊥(δssIn)U>⊥ . (48)

Here U⊥ is a column orthogonal complementary matrix of (UC̄US ).

3.7. Discussions on the Nyström methods

We discuss some characteristics of the Nyström methods as follows. The standard

Nyström method was proposed earlier than the others and easy to implement. It is most

widely applied to the machine learning applications. The DW-Nyström method can only

approximate eigenvectors of matrices. The approximation is more accurate than the stan-

dard Nyström method empirically [15, 43]. The ensemble Nyström method is more flexi-

ble and richer than the others, which can lead better approximation in specific cases [16].
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Table 1: Time and space complexities of the Nyström methods on matrix reconstruction.

Methods Time Space

Standard Nyström O(k`2) + TMultiply(k`n) O(n`)

DW-Nyström - -

Ensemble Nyström O(pk`′2 + Cw) + TMultiply(p`′kn) O(n`′)

Modified Nyström O(n`2) + TMultiply(n2`) O(n2)

SS-Nyström O(n`2) + TMultiply(n2`) O(n2)

From the lower bound of the matrix approximation, the modified Nyström method is more

accurate than the standard Nyström method when the matrix becomes larger. However,

the cost is more time and space [40]. The SS-Nyström method is more complex than the

previous ones. It can approximate matrices well even when the bottom eigenvalues are

large and can directly handle the inverse of matrices [40]. In addition, for clarity, we list

the time and space complexities of these Nyström methods on matrix approximation in

Table 1.

4. Related Low-Rank Matrix Approximation Methods

Since large-scale machine learning becomes more and more important, a wide range

of work on low-rank matrix approximation has been proposed. From the recent literature,

it can be summarized as two kinds of methods to approximate matrices, i.e., spectral re-

construction and matrix projection. In particular, given Kk = UkΣkV>k where Uk and Vk

contain the singular vectors of K corresponding to the top k singular values in Σk, UkΣkV>k

is referred to spectral reconstruction since it uses both the singular values and vectors, and

UkU>k K is referred to matrix projection since it uses only singular vectors to compute the

projection of K onto the space spanned by vectors Uk. The standard Nyström method is
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a spectral reconstruction based method while the modified Nyström and the SS-Nyström

are matrix projection based methods. In addition, some related methods such as approxi-

mate SVD [11], column-sampling [45] and CUR [46] are matrix projection based methods

while randomized SVD is based on spectral reconstruction. Further, these related methods

generate approximation of an arbitrary matrix while the Nyström methods generates ap-

proximations only of SPSD matrices. Now, we introduce the characteristics of the related

methods.

4.1. Approximate SVD

Let K be an arbitrary matrix and C be its scaled columns, the main idea of approximate

SVD is to approximate the left singular vectors Ũ and singular values Σ̃ of K by the left

singular vectors and singular values of the matrix C. The low-rank approximate matrix can

be got by matrix projection as ŨŨ>K. There are two kinds of algorithms, LinearTimeSVD

and ConstantTimeSVD [11], to perform the approximate SVD.

The strategy behind the LinearTimeSVD algorithm is to pick ` columns of the matrix

K according to probabilities {pi}
n
i=1, and rescale each K(it) by C(t) = K(it)/

√
`pit to form

a matrix C ∈ Rn×` where it ∈ 1, ..., n means the column number of K corresponding to

the tth column of C, and then compute the singular values and corresponding left singular

vectors of the matrix C. Particularly, the SVD of C>C is performed instead of the SVD of

C. The detailed procedure to get the left singular vectors of C is as follows. First, SVD

decomposition of C>C = VCΣ2
CV>C is performed to get the right singular vectors of C as

VC and the singular values of C as ΣC. If given target rank k, VC,k and ΣC,k are got from VC

and ΣC, respectively. Then the left singular vectors of C are obtained by UC = CVC,kΣ
†

C,k.

The strategy behind the ConstantTimeSVD algorithm is to pick ` columns of the matrix

K, and rescale each by an appropriate factor to form a matrix C ∈ Rn×`, and then compute

approximations to the singular values and left singular vectors of the matrix C using partial
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rows of C, which will then be approximations to the singular values and left singular

vectors of K.

4.2. Randomized SVD

Randomized SVD [9] was proposed for constructing approximate, low-rank matrix

decompositions. In general, it can be used on rectangular matrices. In order to compare

with Nyström methods, we give the procedures of randomized SVD on a symmetric matrix

K. There are three computational stages in randomized SVD. First, forming an n × `

matrix by Y = KΩ, where Ω ∈ Rn×` is a Gaussian random matrix. Then, constructing

an orthonormal matrix Q ∈ Rn×` whose columns are orthonormal bases for the range of

Y . Finally, performing SVD of B = Q>WQ resulting in B = VΛV>. Here, B can be

obtained by solving B(Q>Ω) = Q>Y . Given above, the SVD of K can be approximated

as W = UΛU>, where U = QV . The randomized SVD algorithm can be used on the

intersection W of the standard Nyström method to accelerate the approximation for some

extreme large-scale machine learning problems.

4.3. Column-Sampling

Column-sampling [45] is a special case of the LinearTimeSVD when it use uniform

sampling, i.e., pi = 1
n . In this case, C represents the selected columns of the matrix K

without scaling. The approximate left singular vectors Ũ are obtained by the left singular

vectors of C and the approximate singular values Σ̃ are obtained by rescaling the singular

values of C as Σ̃ =
√ n

`
ΣC,k. Column-sampling has a higher time complexity than the

standard Nyström method. Kumar et al. [45] proved that the standard Nyström method is

better than column-sampling at spectral reconstruction, while the reconstruction accuracy

of eigenvectors of column-sampling is higher.
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4.4. CUR

The CUR algorithm [3, 46] seeks to find ` columns of K to form a matrix C, r rows to

form a matrix R, and an intersection matrix U to approximate an arbitrary matrix K with

the matrix multiplication of the above three matrices. Since the CUR algorithm has to

select both informative columns and rows while the standard Nyström method needs only

informative columns, the sampling step of CUR is harder than that of the standard Nyström

method. However, the error bounds of the standard Nyström methods are much weaker

than those of the existed CUR algorithms, especially the relative-error bounds. Wang

and Zhang [42] borrowed the techniques in the CUR algorithm to improve the standard

Nyström method.

4.5. Power Method

Given a unified formulation for the low-rank approximation as Ã = CW†C>, one

can obtain the optimal rank-k approximation to A by forming an SPSD sketch where the

sketching matrix S is an orthonormal basis for the range of Ak, because with such a choice

[37],

CW†C> = AS (S >AS )†S >A = A(S S >AS S >)A = A(PAk APAk)
†A = AA†kA = Ak. (49)

The power method can be used to obtain the sketching matrices S q by taking S q = AqS 0

where q is a positive integer and S 0 ∈ R
n×`. One can reasonably expect that the sketching

matrix S q produces SPSD sketches of A with a lower additional error. Then the sketching

model can be expressed as C = AqS and W = S >A2q−1S . When q = 1, it is the standard

Nyström method. When q = 2, it is the SPSD sketch proposed by Halko et al. [9] in

the form of A(PAS APAS )†A which is proved empirically more effective than the form of

PAS APAS . PAS APAS is the modified Nyström method. However, the power method needs

to compute AqS 0, which costs much more time. Thus, it is applicable when A is such that

one can compute the AqS 0 fast.
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5. Sampling Methods for the Nyström Methods

Plenty of sampling methods exist for the Nyström methods. We classify most of

these methods to uniform sampling and informative-column sampling. Uniform sam-

pling aims at extracting a subset of columns with the same probability while informative-

column sampling aims at extracting a subset of columns that have majority information

among all the columns. According to the extracting measure, we classify these sampling

methods to fixed sampling and adaptive sampling. Specially, fixed sampling methods

include diagonal sampling, column-norm sampling, leverage-score sampling and determi-

nant sampling while adaptive sampling methods include sparse matrix greedy approxima-

tion (SMGA) sampling, incomplete Cholesky decomposition (ICL) sampling, K-means

sampling, adaptive-full sampling and adaptive-partial sampling. In addition to these sam-

pling methods, there is one kind of deterministic sampling method and two compound

sampling methods including near-optimal+adaptive sampling and uniform+adaptive2 sam-

pling. Here, the symbol 2 means using adaptive sampling twice. Considering for approx-

imating SPSD matrix K with K̃k, various sampling methods differ in the scaling matrix

D ∈ R`×` and the probabilities {pi}
n
i=1 to select columns. As in Theorem 1, let S ∈ Rn×`

be the sketching matrix and R ∈ Rn×` represent the sampling matrix, i.e., Ri j = 1 if the

ith column of K is the jth selected column. C and W used in the Nyström methods are

computed by

C = KS , W = S >KS , S = RD. (50)

Now we give concrete descriptions and analysis for these sampling methods which are

used to form C.

5.1. Uniform Sampling

Uniform sampling assumes a uniform distribution, so that each column is sampled

with the same probability, i.e., pi = 1
n . The diagonal elements of the scaling matrix D
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are all ones. It is straightforward to show that uniform sampling ignores the structural

nonuniformity, which means that there are no special columns or there is no need to find

such special columns which probably contain more information. There are two kinds of

uniform sampling methods, i.e., sampling with replacement [45] or without replacement

[4]. They differ in that columns would be replaced or not after they are selected. We

give the error bounds of matrix reconstruction using the standard Nyström method with

uniform sampling (with or without replacement) as follows.

Theorem 4 (Error Bounds for the Standard Nyström Method with Uniform Sampling

[37]). Let K be an n×n SPSD matrix and µ denote the coherence of the top k-dimensional

eigenspace of K. Fix a failure probability δ ∈ (0, 1) and accuracy factor ε ∈ (0, 1). If

` ≥ 2µ(1 − ε)2 ln(k/δ), then the corresponding low-rank SPSD approximation satisfies∥∥∥K − K̃nys
k

∥∥∥
2
≤

(
1 +

n
ε`

)
‖K − Kk‖2 , (51)∥∥∥K − K̃nys

k

∥∥∥
F
≤ ‖K − Kk‖F +

 √2
δ
√
ε

+
1
εδ2

 ‖K − Kk‖⊗ , (52)

∥∥∥K − K̃nys
k

∥∥∥
⊗
≤

(
1 +

1
δ2ε

)
‖K − Kk‖⊗ , (53)

with probability at least 1 − 3δ.

Besides Theorem 4, error bounds of matrix reconstruction by the standard Nyström

method with uniform sampling without replacement are presented in terms of spectral

norm and Frobenius norm in Theorem 5.

Theorem 5 (Error Bounds for the Standard Nyström Method with Uniform Sampling

Without Replacement [16]). Let K be an n × n SPSD matrix. With probability at least

1 − δ, the following inequalities hold for any sample of size `:∥∥∥K − K̃nys
∥∥∥

2
≤ ‖K − Kk‖2 +

2n
√
`

KmaxBnys, (54)∥∥∥K − K̃nys
∥∥∥

F
≤ ‖K − Kk‖F + [

64k
`

]
1
4 nKmaxB

1
2
nys, (55)
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where Bnys =

[
1 +

√
n−`

n−1/2
1

β(`,n) log 1
δ
dK

max/K
1
2
max

]
, β(`, n) = 1 − 1

2 max{`,n−`} , Kmax = maxi Kii

and dK
max = maxi j

√
Kii + K j j − 2Ki j.

Uniform sampling is widely used for its convenience and low time consumption. How-

ever, there are several drawbacks of uniform sampling. Intuitively, since uniform sampling

ignores the matrix information, it would not fit for those data sets with some columns more

informative. See the error bounds in Theorem 4, the reconstruction error of the standard

Nyström method with uniform sampling is related to the coherence of the original matrix.

If some columns are more informative, sampling columns with this method is not accurate

enough.

As observed in previous studies [47] together with our analysis, the coherence of ma-

trix µ plays an important role in measuring the approximation performance of the standard

Nyström method using uniform sampling. In order to obtain an exact reconstruction of

a low-rank matrix via the standard Nyström method, the number of columns needed to

sample from K is related to the coherence defined by Talwalkar and Rostamizadeh [47].

In order to exploit the compressive sensing theory [48], [47] defined the coherence of the

matrix K, which is adapted from [48], as

µ′ =
√

N max
1≤i, j≤n

|U ( j)
k(i)|, (56)

where U = (u1, ..., un) is the eigenvector matrix of K. Intuitively, the coherence measures

the degree to which the eigenvectors in U are correlated with the canonical bases. As

discussed in the work of Candès and Recht [49], highly coherent matrices are difficult

(even impossible) to be randomly recovered via matrix completion algorithms, and this

same logic extends to the standard Nyström method with uniform sampling [47].

Theorem 6 (Performance of the Standard Nyström Method with Uniform Sampling

[47]). Let K ∈ Rn×n be rank-k SPSD matrix and assume k ∈ O(1/δ), then it suffices to
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sample ` ≥ O(rµ′2 log(δ−1) columns to have with probability at least 1 − δ,

∥∥∥K − K̃nys
k

∥∥∥ = 0. (57)

When the uniform sampling without replacement is applied in the ensemble Nyström

method, we can get the error bounds as follows.

Theorem 7 (Error Bounds for the Ensemble Nyström Method with Uniform Sam-

pling [16]). Let S be a sample of p`′ columns drawn uniformly at random without re-

placement from K, decomposed into p subsamples of size `′, S 1, ..., S p. For r = 1, ..., p, let

K̃nys(r)
k denote the rank-k standard Nyström approximation of K based on the sample S r.

Then the following inequalities hold for any sample S of size p`′ and for any w in the unit

simplex with probability at least 1 − δ:

∥∥∥K − K̃ens
k

∥∥∥
2
≤ ‖K − Kk‖2 +

2n
√
`′

KmaxBens, (58)∥∥∥K − K̃ens
k

∥∥∥
F
≤ ‖K − Kk‖F + [

64k
`′

]
1
4 nKmaxB

1
2
ens, (59)

where Bens = [1+wmax p
1
2

√
n−p`′

n−1/2
1

β(p`′,n) log 1
δ
dK

max/K
1
2
max], β(p`′, n) = 1− 1

2 max{p`′,n−p`′} , Kmax =

maxi Kii and dK
max = maxi j

√
Kii + K j j − 2Ki j.

5.2. Diagonal Sampling

Diagonal sampling [6] samples ` columns of K to form the matrix C with probabilities

{p j}
n
j=1, where

p j =
K2

j j∑n
j=1 K2

j j

. (60)

The diagonal elements of the scaling matrix depend on the probabilities as D j j = 1/
√
`Pi

if Ri j = 1. Error bounds of matrix reconstruction by the standard Nyström method with

diagonal sampling are given below.
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Theorem 8 (Error Bounds for the Standard Nyström Method with Diagonal Sam-

pling [6]). Let η = 1 +
√

8 ∗ log(1/δ) and fix a failure probability δ ∈ (0, 1] and approxi-

mation factor ε ∈ (0, 1]. If ` ≥ 64kη2/ε4, with 1 − δ probability∥∥∥K − K̃nys
k

∥∥∥
F
≤ |K − Kk‖F + ε

n∑
i=1

K2
ii. (61)

If ` ≥ 4η2/ε2, with 1 − δ probability∥∥∥K − K̃nys
k

∥∥∥
2
≤ |K − Kk‖2 + ε

n∑
i=1

K2
ii. (62)

On the theoretical side, this is the first rigorous bound for the standard Nyström method.

5.3. Column-Norm Sampling

Column-norm sampling [11] uses the distribution with the probabilities {pi}
n
i=1 to choose

` columns to form the matrix C, where

p j =

∣∣∣K( j)
∣∣∣2
2

‖K‖2F
. (63)

The diagonal elements of the scaling matrix depend on the probabilities as D j j = 1/
√
`Pi

if Ri j = 1. This sampling method has been combined with SVD approximation algorithms

to bound the reconstruction error. Let η = 1 +
√

8 log(1/δ). Then, with probability at least

1 − δ,
∥∥∥KK> −CC>

∥∥∥
F
≤

η
√

c ‖K‖
2
F . Moreover, it has been used in the CUR decomposition

with the reconstruction error bound. As a corollary of a CUR decomposition for a general

m × n matrix A with error bounds of ‖K −CUR‖ξ ≤ ‖K − Kk‖ξ + ε ‖K‖F , the standard

Nyström method with column-norm sampling leads the error bounds as follows.

Theorem 9 (Error Bounds for the Standard Nyström Method with Column-Norm

Sampling [6]). Fix a failure probability δ ∈ (0, 1] and approximation factor ε ∈ (0, 1]. If

` ≥ 64kη2/ε4, with 1 − δ probability∥∥∥K − K̃nys
k

∥∥∥
F
≤ |K − Kk‖F + ε ‖K‖F . (64)
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If ` ≥ 4η2/ε2, with 1 − δ probability

∥∥∥K − K̃nys
k

∥∥∥
2
≤ |K − Kk‖2 + ε ‖K‖F . (65)

5.4. Leverage-Score Sampling

Recall that the leverage scores relative to the best rank-k approximation to K are the

squared Euclidean norms of the rows of the n × k matrix Uk and ` j =
∥∥∥Uk( j)

∥∥∥2

2
. It follows

from the orthonormality of Uk that
∑

j(` j/k) = 1, and the leverage scores can thus be

interpreted as a probability distribution over the columns of K. The scaling matrix D

satisfies D j j = 1/
√
`Pi if Ri j = 1. This kind of sampling was first used in the work of

Drineas et al. [46] for general matrices. Since computing the exact leverage scores requires

performing SVD of the matrix, the general time complexity of leverage-score sampling is

O(n2k). Some techniques to compute approximate leverage scores [50, 51] can relieve the

burden on computing. The standard Nyström approximation with leverage-score sampling

provides improved spectral and Frobenius norm bounds relative to diagonal sampling.

Theorem 10 (Error Bounds for the Standard Nyström Method with Leverage-Score

Sampling [37]). Fix a failure probability δ ∈ (0, 1] and approximation factor ε ∈ (0, 1].

If ` ≥ 3200(ε2)−1k ln(4k/(δ)), the corresponding standard Nyström approximation with

leverage-score sampling satisfies

∥∥∥K − K̃nys
k

∥∥∥
2
≤ ‖K − Kk‖2 +

(
ε2 ‖K − Kk‖⊗

)
, (66)∥∥∥K − K̃nys

k

∥∥∥
F
≤ ‖K − Kk‖F +

(√
2ε + ε2

)
‖K − Kk‖⊗ , (67)∥∥∥K − K̃nys

k

∥∥∥
⊗
≤ (1 + ε2) ‖K − Kk‖⊗ , (68)

simultaneously with probability at least 1 − 6δ − 0.6.
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5.5. Determinant Sampling

Determinant sampling [23] samples ` columns together to form C with the probabilities

{p(I)} where I represents the multi-index satisfying |I| = `. In particular, p(I) is defined by

p(I) = Z−1 det(KI), (69)

where Z =
∑

I,|I|=` det(KI) is a normalization constant. It is important to point out that

the determinant sampling is usually computationally expensive as it requires computing

the determinant of the submatrix for the selected columns/rows. Furthermore, computing

the probability distribution p(I) ∝ det(GI) will cost a lot of time since the support of the

distribution has cardinality
(

n
`

)
. The time and space complexities of this sampling method

are O(
(

n
`

)
`3) and O(

(
n
`

)
), respectively. For the general case where rank(K)≥ k, we have the

following error bound in expectation.

Theorem 11 (The Expectation Error Bound for the Standard Nyström Method with

Determinant Sampling [23]). Let K be a real, n × n, positive quadratic form with eigen-

values λ1 ≥ ... ≥ λn. Let K̃nys
k be the standard Nyström approximation to K corresponding

to multi-index I and ` = k. Then

E
∥∥∥K − K̃nys

k

∥∥∥
F
≤ (k + 1)

n∑
i=k+1

λi = (k + 1) ‖K − Kk‖⊗ . (70)

5.6. Sparse Matrix Greedy Approximation (SMGA) Sampling

Sparse Matrix Greedy Approximation (SMGA) [52] provides a low-rank kernel matrix

approximation by using a greedy column selection algorithm. It operates by iteratively

choosing one sample from a random subset of m � n samples. The sampling scheme

of SMGA can be used in conjunction with the Nyström methods, which is referred to as

SMGA sampling. The time complexity of sampling ` columns of K to form C is O(m`2n).

However, there is no error bound for the Nyström approximation with SMGA sampling.
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5.7. Incomplete Cholesky Decomposition (ICL) Sampling

Incomplete Cholesky decomposition (ICL) [53] is a variant of Cholesky decomposition

which yields a low-rank approximation of K in the form of K̃icl = X̃X̃>, X̃ ∈ Rn×`. ICL is

performed by a greedy selection process which skips columns below a certain threshold.

The strategy of selecting columns in ICL is referred to as ICL sampling. Moreover, the

Nyström approximation generated from the ` columns of K associated with the columns

selected by ICL is identical to K̃icl when k = ` [16]. The runtime of ICL is O(`2n).

5.8. K-means Sampling

Zhang et al. [13] proposed a technique to generate informative columns using centroids

resulting from K-means clustering. They analyzed that the approximation accuracy of the

standard Nyström method is determined by the remarkable points, and subsequently the

error bound depends on the distance between the original data and the approximate data.

Thus, the adaptive scheme in K-means is feasible for the Nyström methods. Recent ad-

vances in speeding up the K-means algorithm [54, 55] also make it particularly suitable for

large-scale problems. They proved that the error of the standard Nyström approximation

is bounded by ∥∥∥K − K̃nys
k

∥∥∥
F
≤ 4T

√
`Ck

xeT + `Ck
xTe

∥∥∥W−1
∥∥∥

F
, (71)

where T = maxk |S k|, S k is the kth cluster of the data set, ` is the number of clusters, Ck
x is

a constant depending on k and the data set, and e =
n∑

i=1

∥∥∥xi − zc(i)

∥∥∥
2

2
is the total quantization

error of coding each sample xi with the closest landmark point zc(i). It is necessary to

mention that this error bound is neither an additive-error bound nor a relative-error bound.

5.9. Adaptive-Full Sampling

Instead of sampling all ` columns of K from a fixed distribution, adaptive-full sampling

[5] alternates between selecting a set of columns and updating the distribution over all
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the columns. The sampling procedure is without replacement. Starting with an initial

distribution over the columns, s columns (s < l) are chosen to form a submatrix C′. The

probabilities are then updated as a function of previously chosen columns, and s new

columns are sampled and incorporated in C′. This process is repeated until ` columns

have been selected. That is, the iteration number is `
s . The probability pi in the distribution

is updated according to the reconstruction error for each row of K based on the current C′.

The reconstruction is based on matrix projection as UC′U>C′K where UC′ is the eigenvector

matrix of K. The bigger the error of the rows is, the higher probability the column should

be selected with. Note that the sampling steps require a full pass over K at each step, and

hence need O(n2) time and space.

5.10. Adaptive-Partial Sampling

Kumar et al. [16] extended the method adaptive-full to adaptive-partial, which is also

sampling without replacement. At each iterative step, the reconstruction error for each row

of C′ is measured. The sampling probability of the corresponding column is updated in

proportion to this error. The reconstructed C̃′k′ is obtained by the standard Nyström method

with k′-rank. Unlike [5], the reconstruction error for C′ is computed as E = C′ − C̃′k′ ,

which is much smaller than K, thus avoiding the O(n2) computation. Each iteration in this

sampling procedure requires O(n`k′ + `3) time and at most the storage of ` columns of K.

5.11. Deterministic Sampling

Deterministic sampling [23] is to choose the columns which contain the largest k di-

agonal elements of K. The deterministic algorithm requires finding the largest k diagonal

elements of K, which can be done in O(n log k) steps. The worst-case error of the Nyström

approximation with deterministic sampling is bounded in Theorem 12.
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Theorem 12 (The Error Bound for the Standard Nyström Method with Determinis-

tic Sampling [23]). Let K be a real positive-definite kernel, I contain the indices of its k

largest diagonal elements, and Knys
k be the corresponding standard Nyström approxima-

tion. Then the reconstruction error satisfies∥∥∥K − K̃nys
k

∥∥∥
F
≤

∑
i<I

Kii. (72)

5.12. Near-Optimal+Adaptive Sampling

The near-optimal+adaptive sampling [42] was proposed for the modified Nyström

method by combining the near-optimal column sampling [56] and the adaptive sampling

[5]. This sampling algorithm consists of three steps: the approximate SVD via random

projection [56, 9], the dual-set sparsification algorithm [56], and the adaptive sampling

algorithm [5]. The algorithm costs O(n`2ε2 + nk3ε−2/3) + TMultiply(n2`ε) time and O(n`)

space in computing C. Theorem 13 gives the reconstruction error bound of the modified

Nyström method with near-optimal+adaptive sampling.

Theorem 13 (The Error Bound for the Modified Nyström Method with Near-Op-

timal +Adaptive Sampling [40]). Given an SPSD matrix K ∈ Rn×n and a target rank

k, the algorithm samples ` = O(kε−2) columns of K to form C. We run the algorithm

t ≥ (2ε−1 + 1) ln(1/δ) times (independently in parallel) and choose the sample that mini-

mizes
∥∥∥K − K̃mod

∥∥∥
F
, then the inequality∥∥∥K − K̃mod

∥∥∥
F
≤ (1 + ε) ‖K − Kk‖F (73)

holds with probability at least 1 − δ.

The near-optimal+adaptive algorithm can also be used for the SS-Nyström method. If

the columns of K̄ are selected by this sampling algorithm, the error bound incurred by the

SS-Nyström method is given in the following theorem.
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Theorem 14 (The Error Bound for the SS-Nyström Method with Near-Optimal +

Adaptive Sampling [40]). Given an SPSD matrix K ∈ Rn×n and a target rank k, the

algorithm samples ` = O(kε−2) columns of K̄ to form C̄. We run the algorithm t ≥

(2ε−1 + 1) ln(1/δ) times (independently in parallel) and choose the sample that minimizes∥∥∥K̄ − C̄(C̄†K̄(C̄†)>)C̄>
∥∥∥

F
, then the inequality

∥∥∥K − K̃ss
k

∥∥∥2

F
≤ (1 + ε)

(
‖K − Kk‖

2
F −

[
∑n

i=k+1 λi(K)]2

n − k

)
(74)

holds with probability at least 1 − δ.

5.13. Uniform+Adaptive2 Sampling

Uniform+adaptive2 sampling is a compound sampling algorithm which is composed

of three steps [40]. In each step, partial columns of C ∈ Rn×` are sampled. Given SPSD

matrix K, target rank k, error factor ε and matrix coherence µ, the detailed algorithm

is described as follows. Firstly, uniformly sample `1 = 8.7µk log(
√

5k) columns of K

without replacement to construct C1. Then, sample `2 = 10kε−1 columns to construct

C2 using adaptive-full sampling according to the residual K − PC1 K. Finally, sample

`3 = 2ε−1(`1 + `2) columns to construct C2 using adaptive-full sampling according to the

residual K − P[C1,C2]K. Thus, C = [C1,C2,C3] with ` = `1 + `2 + `3. This algorithm costs

O(n`2ε2) + TMultiply(n2`ε) time and O(n`) space to construct C. Note that the parameter µ

is often set to a constant (say 1) since computing the matrix coherence takes lots of time

and the exact matrix coherence does not certainly result in the highest accuracy. The error

bound for the modified Nyström method with the uniform+adaptive2 sampling is given by

Theorem 15.

Theorem 15 (The Error Bound for the modified Nyström method with Uniform +

Adaptive2 Sampling [40]). If we sample ` = O(kε−2) + µkε
−1k log k columns of K and

run the algorithm t ≥ (20ε−1 + 18) log(1/p) times to choose the sample that minimizes
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∥∥∥K − K̃mod
∥∥∥

F
, we can get the error bound of the matrix reconstruction by the modified

Nyström method ∥∥∥K − K̃mod
∥∥∥

F
≤ (1 + ε) ‖K − Kk‖F (75)

with probability at least 1 − p.

5.14. Discussions on the Sampling Methods

There exists a tradeoff between efficiency and accuracy for uniform sampling and

informative-column sampling as well as for fixed sampling and adaptive sampling. One

should consider the tradeoff before applying the Nyström methods to specific applications.

Intuitively, uniform sampling is more efficient since it does not need to retrieve the

whole data set before sampling. It is based on the idea that the original data set is uni-

formly informative. So there is no extra procedure needed to extract the more informative

columns. Alternatively, informative-column sampling methods are more accurate since

they retrieve the whole data set to measure the information of each column. Adaptive

sampling is more accurate and less efficient than fixed sampling, as they regard the infor-

mation to be changing with each column selected. So they have to retrieve the whole data

set for several times. Gittens [41] suggested that uniform sampling should be adopted if

the structural nonuniformity of the specific application is low such as for image process-

ing. However, informative-column sampling is also recommended since real data sets of

various machine learning applications [3, 57, 58, 59] are with great structural nonunifor-

mity.

From the perspective of reconstruction error bounds, informative-column sampling is

more tight. Bounds of various sampling methods have been listed. We can find that the

bounds with the uniform sampling are not as tight as the informative-column sampling.

This proves theoretically that informative-column sampling is more accurate.
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From the perspective of practical performance, different sampling methods were com-

pared in the literature. Several experiments with sampling methods including uniform,

diagonal and column-norm sampling were conducted in the work of Kumar et al. [17],

which show that uniform sampling is more powerful and unform sampling without re-

placement outperforms that with replacement. Further, it has been proved that the stan-

dard Nyström method with uniform sampling is more suitable when the coherence and

the rank are low [47]. Note that low coherence indicates low structural nonuniformity, so

no columns are very informative. In addition, some adaptive sampling methods are com-

pared experimentally on the standard Nyström approximation [16]. Among the compared

methods (uniform, ICL, SMGA, K-means, adaptive-full and adaptive-partial), K-means

sampling performs best. When comparing uniform sampling with leverage-score sam-

pling, it is found that the approximation accuracy depends on the characteristics of the

matrix [37]. In particular, uniform sampling does quite well in the cases where matrices

are constructed by linear kernels or less dense RBF kernels1 with a large scale parameter.

In these cases, the matrices have relatively low rank and uniform leverage scores. For

matrices constructed by dense RBF kernels with smaller scale parameter or sparse RBF

kernels, leverage-score sampling tends to perform much better. In addition, the time and

space complexities for constructing C with different sampling methods are presented in

Table 2. The table is made for providing a clear exhibition for all the introduced sampling

methods.

1Here, the dense kernel is opposed to the sparse kernel. The degree of dense/sparse is measured by the

percentage of nonzero entries in the constructed matrix [37].
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Table 2: Time and space complexities for constructing C with different sampling methods.

Category Sampling Methods Time Space

uniform Uniform O(n) O(n)

fixed Diagonal O(n) O(n)

fixed Column-Norm O(n2) O(n)

fixed Determinant O(
(
n
`

)
`3) O(

(
n
`

)
)

fixed Leverage-Score O(n2k) O(n2)

adaptive SMGA O(m`2n) O(n2)

adaptive ICL O(n`2) O(n2)

adaptive K-means O(n`L) O(`)

adaptive Adaptive-Full O(n2) O(n2)

adaptive Adaptive-Partial O(`3) + TMultiply(n`2) O(n`)

deterministic Deterministic O(n log k) O(n)

compound Near-Optimal+Adaptive O(n`2ε2 + nk3ε−2/3) + TMultiply(n2`ε) O(n`)

compound Uniform+Adaptive2 O(n`2ε2) + TMultiply(n2`ε) O(n`)

6. The Nyström Methods for Large-Scale Machine Learning

We discuss in this section how to speedup matrix inverse and eigenvalue decomposition

using the Nyström methods. Many kernel methods will become scalable if the matrix

inverse and eigenvalue decomposition can be efficiently solved.

Many methods such as Gaussian process regression, kernel SVM, and kernel ridge

regression all require solving this kind of linear system (K + αIn)b = y, which amounts to

the matrix inverse problem b = (K + αIn)−1y. Here α is a constant. Given the low-rank

approximation K̃k = LL>, with L = CW− 1
2

k (an example in the standard Nyström method),
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one can efficiently solve this linear system by utilizing the Woodbury formula

(K + σI)−1 =
1
σ

(I − L(σI + L>L)−1L>). (76)

Particularly, when α = 0, one can use K̃†k = (C†)>WkC† to approximate K−1 or use SS-

Nyström approximation to get K̃ss
k = C̄UssC̄> + δssIn and then use Woodbury formula as in

(47).

There are also some other methods such as spectral clustering, kernel PCA, and mani-

fold learning in need of eigenvalue decomposition. In practice, there are two ways to ob-

tain approximate eigenvalues/eigenvectors of the kernel matrix by Nyström methods. The

first is to directly use the standard Nyström extension, which simply computes C and W. It

performs the eigenvalue decomposition of W and then extends its eigenvalues/eigenvectors

to that of the complete kernel matrix. The SS-Nyström method also provides approximate

eigenvectors/eigenvalues as in (48). However, the resultant eigenvectors are not guaran-

teed to be orthogonal. Thus orthogonalization is needed such as QR decomposition. The

second approach first performs a low-rank approximation of K̃k = LL>, and then applies

an additional process [14] to obtain an orthogonal set of approximate eigenvectors. In par-

ticular, the top k eigenvectors Uk = [u1, ...,uk] (first k columns of U) of K can be obtained

as U = LVΛ−
1
2 , where V,Λ ∈ R`×` are from the eigenvalue decomposition of the ` × `

matrix L>L = VΛV>. Now we introduce some large-scale machine learning applications

using Nyström methods in detail.

6.1. Manifold Learning

Manifold learning is a hot research topic in the machine learning area. It aims at ex-

tracting low-dimensional structure from high-dimensional data [60, 61]. Instead of assum-

ing global linearity, manifold learning methods make a weaker local-linearity assumption,

that is, for nearby points in high-dimensional input space, L2 distance is assumed to be
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a good measure of geodesic along the manifold. However, when data are so large that

some calculation is inefficient, some approximations are needed. One typical application

is the use of the Nyström approximation to scale up Isomap [18]. Talwalkar et al. [18]

showed that the Isomap coupled with Nyström approximation can effectively extract low-

dimensional structure from datasets containing millions of images.

Isomap is a representative method in manifold learning. It aims to extract a low-

dimensional data representation that best preserves all pairwise distances between input

points. It involves three steps. 1) Construct the undirected adjacency graph with k′-nearest-

neighbor rule (we use k′ to differentiate it from the latter k); 2) Compute approximate

geodesic distances and build a similarity matrix K; 3) Calculate the final embedding of the

form Y = (Σk)1/2U>k where Σk contains the top k largest eigenvalues of K and U>k are the

eigenvectors corresponding to these eigenvalues.

It is easy to identify that Isomap needs eigenvalue decomposition. For those data

sets with a large size, directly performing SVD is prohibited. Using the approximate

eigenvectors and eigenvalues as in (25), the Nyström low-dimensional embeddings are

obtained by

Ỹnys = Σ̃
1/2
nys,kŨ

>
nys,k = ((ΣW,k)1/2)†U>W,kC

>.

6.2. Spectral Clustering

Spectral clustering is a clustering method based on the graph theory. It uses the eigen-

vectors got by eigenvalue decomposition of the similarity matrix to perform clustering. It

involves three steps. 1) Calculate the similarity matrix with proper similarity function; 2)

Calculate the eigenvalues and eigenvectors of the similarity matrix; 3) Choose a proper k

and use the largest k eigenvectors as the input to perform K-means clustering.

Normalized cut [36] is one of the representative methods to implement the spectral

clustering. The standard Nyström method is utilized to scale up spectral clustering with
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normalized cut in the work of Fowlkes et al. [22], in which the high-resolution image

segmentation can be solved efficiently. With approximate eigenvectors produced by the

standard Nyström method, the required blocks could be calculated. Experimental results

show that the standard Nyström method outperforms the famous Lanczos technique [35].

6.3. Gaussian Process and Other Kernel Methods

Gaussian process [4, 62] is a powerful and popular Bayesian technique. It suffers the

cubic scale problem due to the inverse of kernel matrix. With Nyström approximation,

Williams and Seeger [4] built spectral reconstruction of the original matrix and subse-

quently performed Woodbury formula to handle the matrix inversion. This procedure

successfully scales Gaussian processes down from O(n3) to O(`2n), which allows a very

significant speed-up for the handwritten digit recognition without sacrificing accuracy. As

the first area in machine learning that involving the Nyström approximation, the signifi-

cant result inspires other researchers to apply the Nyström methods to other kernel-based

methods.

Kernel-based methods [25, 63] are widely spread in machine learning. Kernel SVM,

kernel PCA and kernel ridge regression are famous applications [64, 65]. In order to deal

with large-scale cases, Fine and Scheinberg [2] utilized the ICL to approximate SVM.

However, SVM coupled with the Nyström method could be a feasible direction. Cortes

et al. [10] applied the standard Nyström method to several kernel-based methods and ana-

lyzed the impact of the approximation on these methods.

7. Open Problems

Now we give some open problems on the Nyström methods for large-scale machine

learning applications.
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7.1. Multiple-Kernel Learning

In recent years, several methods have been proposed to combine multiple kernels in-

stead of using a single one [66]. These different kernels may correspond to using different

notions of similarity or using different features from sources. Consider the simple linear

combination K =
∑p

i=1 µiKi of the multiple kernels. One way to approximate this matrix

is to use the ensemble Nyström method in which the standard Nyström method is applied

to each candidate kernel matrix Ki to get matrix K̃nys
i [67]. The parameter µ corresponding

to w in the ensemble Nyström method is defined using the approximation error between

Ki and K̃nys
i . Thus, K̃nys =

∑p
i=1 wiK̃

nys
i . Since the different candidate kernel matrices have

different properties such as dense or sparse, linear or nonlinear, sampling methods should

be chosen carefully for the multiple Nyström approximations. Moreover, new methods to

determine the parameter µ are expected.

7.2. Multi-task Learning

Multi-task learning is the machine learning branch that learns a task together with

other related tasks at the same time. It has received a lot of attentions over the past ten

years [68, 69, 70]. Consider a simple situation in which the correlations between tasks and

between inputs are modeled by K = K f ⊗ Kx. Here, K f specifies the inter-task similarities

and Kx is the covariance matrix over inputs. There are different methods to form the

matrix K f . Multi-task Gaussian process proposed by Bonilla et al. [71] uses a free-form

covariance matrix K f over tasks. Some other multi-task methods construct K f using kernel

function κ f (t, t′) over the task-descriptor features t. It is an issue to deal with large-scale

cases with large numbers of inputs and tasks. Using the standard Nyström method to

approximate the large matrix Kx is a natural idea which is adopted in the work of Bonilla

et al. [71]. For approximating large matrix K f , the similarities between tasks can be taken

into consideration. K-means sampling is advised to be employed when K f is constructed
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by kernel function. When K f is in free-form, it is an open problem to approximate K f .

Jointly approximating K f and Kx is also worth considering.

7.3. Multiple-Output Model

Multiple-output models such as multiple-output Gaussian processes [72, 62] use a

multiple-output kernel function to construct the covariance matrix. For large-scale ma-

chine learning, the covariance matrix is very large with the size of ND × ND, where N

denotes the number of data points and D denotes the dimension number of outputs. A

general method to construct the covariance matrix is to use a convolution process. In this

case the covariance can not be expressed in a form of Kronecker product of two matrix. It

requires to use some methods such as Nyström methods to approximate the large matrix.

Considering the above construction method for the matrix, we recommend to divide the

matrix into D × D blocks averagely and use the Nyström method for each block. More

precisely, we advise to sample `/(D × D) columns of each submatrix instead of sample `

columns of the whole matrix. However, when D is very large, this method is inefficient.

More appropriate strategies for approximation should be further developed.

7.4. Cascade Nyström Approximation

In large-scale machine learning, we often encounter the situation to handle operators

involving multiple large matrices, where a series of Nyström approximations are needed.

For example, we may need to calculate (K1 + K2)−1, where K1 and K2 are both large matri-

ces. Intuitively, it can be solved according to the idea of the ensemble Nyström methods.

In order to get higher accuracy, we suggest using the cascade Nyström approximation with

adaptive sampling. In particular, we first use K̃nys
1 to approximate K1. Then we approxi-

mate K2 by using the adaptive-full (or adaptive-partial) sampling according to the residual

K1 − K̃nys
1 + K2 −UC′UC′K2. We believe that this strategy has advantages and experimental

verification is the future work.
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8. Conclusions

In this paper, we review different kinds of Nyström methods for large-scale machine

learning. Various sampling methods for the Nyström methods have been listed. We give

illustrative comparisons for these methods from the perspectives of both theoretical anal-

ysis and practical performance. Then, we show some representative machine learning

areas coupled with the Nyström methods, in which manifold learning, spectral clustering

and kernel-based methods are highlighted. After that, we propose several open machine

learning problems that could be further developed.
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