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Abstract We propose a novel supervised dimensionality reduction method named
local Tangent Space Discriminant analysis (TSD) which is capable of utilizing the
geometrical information from tangent spaces. The proposed method aims to seek
an embedding space where the local manifold structure of the data belonging to
the same class is preserved as much as possible, and the marginal data points with
different class labels are better separated. Moreover, TSD has an analytic form of
the solution and can be naturally extended to non-linear dimensionality reduction
through the kernel trick. Experimental results on multiple real-world data sets
demonstrate the effectiveness of the proposed method.

Keywords Dimensionality reduction · Supervised learning · Manifold learning ·
Tangent space

1 Introduction

Dimensionality reduction is a learning task that aims to find a low-dimensional rep-
resentation of high-dimensional data, while preserving data information as much as
possible. Processing data in the low-dimensional space can reduce computational
cost and suppress noises. Provided that dimensionality reduction is performed
appropriately, the discovered low-dimensional representations of data will benefit
subsequent tasks, e.g., classification, clustering, data visualization.
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PCA, as an unsupervised dimensionality reduction method, seeks a set of or-
thogonal projection directions along which the sum of variances of data is max-
imized. Some other popular unsupervised methods are geometrically motivated,
which aim to discover the geometrical structure of the underlying manifold, such
as Laplacian Eigenmaps [2], Hessian Eigenmaps [5], Locally Linear Embedding [9],
Locality Preserving Projections [7], and Local Tangent Space Alignment [17], etc.
Although unsupervised approaches can reveal the underlying data manifold, they
may not be the best choices for some learning scenarios because they are not able
to utilize the discriminative information from data labels.

LDA is a supervised dimensionality reduction method. It finds a subspace in
which data points from different classes are projected far away from each other,
while those belonging to the same class are projected as close as possible. How-
ever, LDA tends to get undesirable results when data are multimodal [6] or are
mainly characterized by their variances. The reason why this happens lies in the
assumption adopted by LDA that data points belonging to each class are gener-
ated from the multivariate Gaussian distributions with the same covariance matrix
but different means. This assumption is invalid in dealing with the data formed
by several separate clusters or those living on an underlying manifold.

To solve this problem, Subclass Discriminant Analysis [18] approximates the
potential distribution of data with a mixture of Gaussian distributions. More
specifically, it first divides each class into a set of subclasses through cluster-
ing and then performs LDA on the divided data. Another way to overcome the
drawback of LDA is preserving the data structure locally. Marginal Fisher Analysis
(MFA) [15] aims to gather the nearby examples of the same class, and separate the
marginal examples belonging to different classes. Locality Sensitive Discriminant
Analysis (LSDA) [3] maps data points into a subspace where the examples with
the same label at each local area are close, while the nearby examples from differ-
ent classes are apart from each other. Local Fisher Discriminant Analysis (LFDA)
[12] also focuses on discovering the local data structure. It is equivalent to operate
LDA in the local scope around each example. In fact, these local structure ori-
ented methods actually fall into the same graph Laplacian based framework. All
of them employ the Laplacian matrix to preserve the local geometry of the data
manifold. However, this framework fails to discover the local manifold information
from tangent spaces which could be very useful and can enhance the performance
of dimensionality reduction in some situations [11,13].

In this paper, we present a novel supervised dimensionality reduction method
named local Tangent Space Discriminant analysis (TSD). Unlike previous ap-
proaches using the graph Laplacian to discover the data manifold, our method
uses the first-order Taylor expansion to represent the geometry of the local area
around each data point. This strategy provides us with a natural way to utilize the
information from tangent spaces. Then we seek a linear transformation to preserve
the local manifold structure of the data belonging to the same class as much as
possible, while maximizing the marginal data points with different class labels. As
a result, the geometrical information from tangent spaces can be readily incor-
porated into the proposed method to improve the performance of dimensionality
reduction. Moreover, the objective function of our method can be optimized ana-
lytically by solving a generalized eigenvalue problem. This also leads to a natural
extension for non-linear dimensionality reduction through the kernel trick.
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The rest of this paper is organized as follows. We briefly review some related
work including MFA, LSDA and LFDA, and show how these methods can be
considered in the same framework in Section 2. Then the local Tangent Space
Discriminant analysis (TSD) along with its kernelization are introduced in Section
3. Section 4 discusses the connection and difference between the proposed method
and related work. In Section 5, experimental results are presented. Finally, we give
concluding remarks and discuss some future work in Section 6.

2 Related Work

Many dimensionality reduction methods have been proposed in recent years. Al-
though they have different names and are derived from various motivations, a large
portion of them fall into an unified graph Laplacian based framework. For exam-
ple, Yan et al. [15] proposed a dimensionality reduction framework called Graph
Embedding which can group together many popular dimensionality reduction ap-
proaches into a general formulation. In this section, we first introduce the Graph
Embedding framework, and then briefly review some related work and show how
they fall into the same framework. Finally, we provide a brief summary to discuss
the strength and weakness of this framework.

2.1 Graph Embedding

Given a data set X consisting of n examples and labels, {(xi, yi)}ni=1, where xi ∈
Rd denotes a d-dimensional example, yi ∈ {1, 2, . . . , C} denotes the class label
corresponding to xi, and C is the total number of classes. The relationship between
each example can be easily characterized by a undirected weighted graph G =
{X,W}, where each example is served as the vertex of G and a symmetric weight
matrix W ∈ Rn×n records the weight on the edge of each pair of vertices. W
measures the similarity between each example, and its characteristic varies as the
criterion of similarity changes. Generally, if two examples xi and xj are “close”,
the corresponding weight Wij is large, whereas if they are “far away”, then the
Wij is small. Provided a certain W , the intrinsic geometry of graph G can be
represented by the Laplacian matrix [4], which is defined as

L = D −W, (1)

whereD is a diagonal matrix with the i-th diagonal element beingDii =
∑
j 6=iWij .

The Laplacian matrix is capable of representing certain geometry of data according
to a specific weight matrix, and thus can be used for dimensionality reduction.

To find a good low-dimensional embedding b = (bx1 , bx2 , . . . , bxn)> from high-
dimensional data, we have to preserve the intrinsic geometry of the original data
as much as possible. Therefore, it is natural to seek the embedding preserving the
most information from G in each dimension. This graph-preserving criterion can
be formulated as follows [15]:

b∗ = arg min
b>Lbb=a

∑
i6=j

Wij‖bi − bj‖2

= arg min
b>Lpb=a

b>Lb, (2)
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where L is the Laplacian matrix of G defined in (1), Lp is the penalty constraint
matrix, and a is a constant defined to avoid a trivial solution of the objective
function. Note that Lp can have multiple forms, which is usually a diagonal matrix
or the Laplacian matrix of a penalty graph Gp = {X,W p} constructed by the same
vertices X yet a different weight matrix W p.

In this paper, we mainly focus on the linear dimensionality reduction, and the
embedding of each example xi is computed as bxi = t>xi where t is a projection
vector. In this case, (2) becomes:

t∗ = arg min
t>XLpX>t=a

= t>XLX>t. (3)

The objective function (3) can be converted to a generalized eigenvalue problem:

XLX>t = λXLpX>t. (4)

whose solution can be easily given by the eigenvector with respect to the smallest
eigenvalue.

Given the above results, many local structure oriented dimensionality reduction
approaches, which closely related to our proposed method, can be grouped into the
unified framework. Next, we mainly discuss three of them including MFA, LSDA
and LFDA.

2.2 Marginal Fisher Analysis

Marginal Fisher Analysis (MFA) is a dimensionality reduction approach that is
directly derived from the Graph Embedding framework [15]. The main idea of
MFA is to preserve the intraclass compactness represented by an intrinsic graph
under the constraint that the interclass separability characterized by a penalty
graph should be kept. For this purpose, each example is connected to its k1-nearest
neighbors belonging to the same class in the intrinsic graph, and the penalty graph
is built by connecting k2-nearest pairs of the marginal point in different classes.

For each example, let Nk1
(i) be the set of the k1-nearest neighbors of xi in

the same class, and Pk2
(i) indicates the set of the k2-nearest pairs among the set

{(i, j), yi 6= yj}. The intraclass compactness is formulated by a local within-class
scatter matrix S̄w:

S̄w =
∑
i

∑
i∈Nk1

(j) or j∈Nk1
(i)

(xi − xj)(xi − xj)>

=2X(D̄ − W̄ )X>

=2XL̄X>,

where L̄ = D̄ − W̄ is the Laplacian matrix, D̄ is a diagonal matrix with the i-th
diagonal element being D̄ii =

∑
j 6=i W̄ij , and the weight matrix W̄ is defined as

follows:

W̄ij =

{
1 if i ∈ Nk1

(j) or j ∈ Nk1
(i)

0 else.
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Similarly, the interclass separability can be characterized by a local between-class
scatter matrix S̄b:

S̄b =
∑
i

∑
(i,j)∈Pk2

(i) or (i,j)∈Pk2
(j)

(xi − xj)(xi − xj)>

=2X(D̄p − W̄ p)X>

=2XL̄pX>,

where L̄p = D̄p − W̄ p is the Laplacian matrix, D̄p is a diagonal matrix with the
i-th diagonal element being D̄pii =

∑
j 6=i W̄

p
ij and the weight matrix W̄ p is defined

as follows:

W̄ p
ij =

{
1 if (i, j) ∈ Pk2

(i) or (i, j) ∈ Pk2
(j)

0 else.

Following the graph-preserving criterion presented in (2), the objective function
of MFA can be written as follows:

tMFA = arg min
t>S̄bt=a

t>S̄wt

= arg min
t>XL̄pX>t=a

= t>XL̄X>t. (5)

2.3 Locality Sensitive Discriminant Analysis

Another related method is Locality Sensitive Discriminant Analysis (LSDA) [3]
which assumes that data live on or close to a manifold. It aims to preserve the
local geometrical structure of the manifold while maximizing the local margin
between different classes.

LSDA seeks a linear projection t optimizing

min
∑
ij

W̄w
ij (t>xi − t>xj)2,

max
∑
ij

W̄ b
ij(t
>xi − t>xj)2

under the constraint that t>XD̄wX>t = 1. Let Nw(i) be the set of the k-nearest
neighbors of xi sharing the same label yi, and Nb(i) be the set of the k-nearest
neighbors of xi having the labels different from yi. Then the weight matrices W̄w

and W̄ b are defined as:

W̄w
ij =

{
1 if i ∈ Nw(j) or j ∈ Nw(i)
0 else,

W̄ b
ij =

{
1 if i ∈ Nb(j) or j ∈ Nb(i)
0 else.

The objective function of LSDA described above can be formulated as follows:

tLSDA = arg max
t>XD̄wX>t=1

t>X(αL̄b + (1− α)W̄w)X>t

= arg min
t>XD̄wX>t=1

t>X((α− 1)W̄w − αL̄b)X>t, (6)
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where α is a trade-off parameter, L̄b is the Laplacian matrix constructed by W̄ b,
and D̄w is a diagonal matrix with the i-th diagonal element being D̄wii =

∑
j 6=i W̄

w
ij .

LSDA follows the framework defined in (3) and the solution tLSDA s given by (4)
with L = (α− 1)W̄w − αL̄b and Lp = D̄w.

2.4 Local Fisher Discriminant Analysis

Local Fisher Discriminant Analysis (LFDA) [12] combines the ideas of LDA and
LPP [7] to overcome the problem that LDA [6] can not appropriately handle the
data with multimodality. More specifically, it evaluates the levels of the between-
class scatter and the within-class scatter in a local manner, and tries to attain the
local between-class separation and the local within-class structure preservation at
the same time [12].

Let S̃w and S̃b be the local within-class scatter matrix and the local between-
class scatter matrix defined by

S̃w =
1

2

∑
ij

W̃w
ij (xi − xj)(xi − xj)> = XL̃wX>,

S̃b =
1

2

∑
ij

W̃ b
ij(xi − xj)(xi − xj)> = XL̃bX>,

where L̃w and L̃b are the Laplacian matrices constructed by the weight matrices
W̃w
ij and W̃ b

ij with

W̃w
ij =

{
Aij/nc if yi = yj

0 if yi 6= yj ,

W̃ b
ij =

{
Aij(1/n− 1/nc) if yi = yj

1/n if yi 6= yj .

nc denotes the number of examples from the c-th class, and Aij is a weight that
indicates the similarity between xi and xj , whose definition is given as follows:

Aij =

{
exp(−‖xi−xj‖2

σiσj
) if i ∈ Nk(j) or j ∈ Nk(i)

0 else,

where σi is set to be the distance between xi and its k-th nearest neighbor.
LFDA seeks a linear projection so that S̃w is minimized and S̃b is maximized.

Essentially, this strategy is equivalent to find a projection which fits the Fisher
criterion in the local area around each example. The optimization problem of
LFDA is given as follows:

tLFDA = arg max
t

t>S̃bt

t>S̃wt
= arg max

t

t>XL̃wX>t

t>XL̃bX>t

= arg min
t>XL̃bX>t=1

= t>XL̃X>t. (7)

According to (7), it is easy to find that LFDA also falls into the Graph Embedding
framework defined in (3) with L = L̃w, Lp = L̃b and a = 1.
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2.5 A Brief Summary

With the above results, it is easy to find that all methods mentioned above can be
considered in the same graph Laplacian based framework and the main difference
among them only lies in the different graphs adopted by each method. For different
methods, such graphs are constructed by certain weight matrices to incorporate
specific neighborhood information of the data set. One important merit of this
framework is that it not only takes advantage of the facility of the Laplacian
matrix to preserve the local geometry of the data manifold, but also benefits from
the elegant formulation which can be easily optimized through the generalized
eigenvalue decomposition.

Although the graph Laplacian provides us with a powerful and flexible tool
to discover the underlying data manifold, it fails to discover the local geometrical
structure from tangent spaces, and thus may lose much useful information whose
effectiveness has been shown in many applications especially in the handwritten
digit recognition [11]. Moreover, the graph Laplacian may fail to capture meaning-
ful manifold structures, when data are sparsely distributed in the original space.
In this case, the graph Laplacian constructed by sparsely distributed data in the
high-dimensional space may not be able to discover the correct underlying man-
ifold, since it can hardly connect sparse data points into a smooth manifold. On
the other hand, the tangent spaces of the underlying manifold, which are low-
dimensional in nature, can reflect the manifold structure in each local area. This
implies that tangent spaces are very useful for learning the data manifold. Then
how to develop a dimensionality reduction algorithm which is capable of combin-
ing the flexibility of the graph Laplacian with the utility of tangent spaces? To
solve this problem, we present our algorithm which can readily use the structural
information from tangent spaces for supervised dimensionality reduction.

3 Local Tangent Space Discriminant Analysis

In this section, we present the local Tangent Space Discriminant analysis (TSD)
algorithm and its non-linear extension. As a supervised dimensionality reduction
method, TSD aims to seek an embedding space where the local manifold structure
of the data belonging to the same class is preserved as much as possible, and the
marginal data points with different class labels are better separated. Compared
with the methods discussed in Section 2, the key advantage of our algorithm is
that it is capable of capturing the local manifold structure from tangent spaces
without losing the analytic form of the solution.

3.1 Preliminaries

To begin with, we briefly introduce the concepts of the tangent space and tangent
vector. In differential geometry, one can attach to every point x of a differen-
tiable manifoldM a tangent space TxM in which every vector tangentially passes
through x. The elements of the tangent space are called tangent vectors at x,
which is a vector that is tangent to a curve or surface at x (see Fig. 1 for the



8 Yang Zhou, Shiliang Sun

Fig. 1 The tangent space TxM and a tangent vector v ∈ TxM, along a curve travelling
through x ∈M.

illustration). All the tangent spaces of a connected manifold have the same dimen-
sion, equal to the dimension of the manifold. In practice, if the manifold is smooth
enough, the subspace constructed by performing PCA on the neighborhood of x
can be a good approximation of the tangent space at x [14], since the nearby data
points of x can be viewed as approximately lying in a subspace which is tangent
to the data manifold. Once tangent spaces and tangent vectors have been intro-
duced, they can serve to characterize a differentiable curve on the manifold whose
derivative at any point is equal to the tangent vector attached to that point. This
is a crucial property that plays a key role in deriving our TSD algorithm.

In recent years, some tangent space based dimensionality reduction methods
have been proposed by using the above property. They learn the data manifold by
estimating a function whose value can serve as a low-dimensional representation
of the manifold. Tangent Space Intrinsic Manifold Regularization (TSIMR) [13]
estimates a local linear function on the manifold which has constant manifold
derivatives. Parallel Vector Field Embedding (PFE) [8] represents a function along
the manifold from the perspective of vector fields and requires the vector field at
each data point to be as parallel as possible. Although they are effective to preserve
the manifold geometry, these tangent space based methods are unsupervised in
nature, which have no ability to utilize the discriminant information of class labels.
Therefore, they are not optimal for the supervised case. To solve this problem, we
propose the TSD algorithm which partly shares the same spirit with TSIMR and
PFE but is optimal for supervised dimensionality reduction.
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3.2 The Algorithm

Suppose that data are sampled from an m-dimensional smooth manifold M in
a d-dimensional space. Let TzM denotes the tangent space attached to z, where
z ∈ M is a fixed data point on the M. Motivated by Tangent Space Intrinsic
Manifold Regularization (TSIMR) [13], we represent the local manifold structure
of data by means of tangent spaces. According to the first-order Taylor expansion
at z, any function f defined on the manifold M can be expressed as:

f(x) = f(z) +wz
>uz(x) +O(‖x− z‖2),

where x ∈ Rd is a d-dimensional data point and uz(x) = T>z (x − z) is an m-
dimensional tangent vector which gives the m-dimensional representation of x in
TzM. Tz is a d×m matrix formed by the orthonormal bases of TzM, which can be
estimated through local PCA, i.e., performing standard PCA on the neighborhood
of z. And wz is an m-dimensional vector representing the directional derivative of
f at z with respect to uz(x) on the manifold M.

In the scenario of dimensionality reduction, f(x) denotes a one-dimensional
embedding of x. If there are two data points z and z′ have a small Euclidean
distance, by using the first-order Taylor expansion at z′, the embedding f(z) can
be represented as:

f(z) = f(z′) +w>z′T>z′ (z − z′) +O(‖z − z′‖2). (8)

Suppose that the data can be well characterized by a linear function on the under-
lying manifold M. Then we can omit the remainders in (8) because the second-
order derivatives of f vanishes. Therefore, provided z and z′ are close enough, any
embedding f(z) can be well approximated by a linear function as follows:

f(z) ≈ f(z′) +w>z′T>z′ (z − z′). (9)

Based on the above results, we know that every data point in a local area should
satisfies (9), which leads to a natural criterion of preserving the local manifold
structure of data. Suppose that the training data include n examples {(xi, yi)}ni=1

belonging to C classes where xi ∈ Rd is a d-dimensional example, and yi ∈
{1, 2, . . . , C} is the class label associated with the example xi. Consider a linear
projection t ∈ Rd which maps the data to a one-dimensional embedding. Then the
embedding of x can be expressed as f(x) = t>x. We aim to find a projection t
to minimize the difference between the l.h.s and the r.h.s of (9) for every example
and its neighbors belonging to the same class, and to better separate the marginal
data points in different classes.

In order to minimize the difference between the l.h.s and the r.h.s of (9) for
nearby intraclass data, we need to construct the within-class graph Gw. For the
within-class graph Gw, if xi is among the k1-nearest neighbors of xj with yi = yj ,
an edge is added between xi and xj , and the elements of the weight matrix Ww

are set to Ww
ij = Ww

ji = 1. Then we can formulate a within-class objective function
as follows:

min
∑
ij

Ww
ij (t>xi − t>xj −w>xj

T>xj
(xi − xj))2, (10)

Ww
ij =

{
1 if i ∈ Nk1

(j) or j ∈ Nk1
(i)

0 else,
(11)
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where Nk1
(i) denotes the set of the k-nearest neighbors of xi sharing the same

label yi, and the orthonormal base matrix Txi of the tangent space TxiM at each
data point xi are computed by performing PCA on the k1-nearest neighborhood
of xi.

To separate the marginal data points in different classes, we need to maximize
and the distances of the embeddings of nearby interclass data points. To this end,
we need to construct the between-class graph Gb. For the between-class graph Gb,
if the pair (i, j) is among the k2-shortest pairs in the set {(i, j), yi 6= yj}, an edge
is added between xi and xj , and the elements of the weight matrix W b are set
to W b

ij = 1. Similar to the above objective function, we can write a between-class
objective function as follows:

max
∑
ij

W b
ij(t
>xi − t>xj)2, (12)

W b
ij =

{
1 if (i, j) ∈ Pk2

(i) or (i, j) ∈ Pk2
(j)

0 else,
(13)

where Pk2
(i) indicates the set of the k2-nearest pairs among the set {(i, j), yi 6= yj}.

Note that the terms w>xj
T>xj

(xi − xj) (i, j = 1, . . . , n) in (10) distinguish our
strategy of preserving the local data structure from the graph Laplacian based one,
where wxj is a coefficient vector and should be optimized with t simultaneously.
These terms characterize how well two different examples xi and xj fit into the
local linear approximation of f , which leads to an appropriate way to preserve
the local intraclass geometry along the manifold M. Therefore, our strategy can
extract more geometrical information from the data than the graph Laplacian
based one. Moreover, any valid weight matrix Ww, such as the one used in LFDA,
can be used to preserve specific geometrical structure of the data manifold. This
free-form property of the weight matrix is of great importance when we want to
apply dimensionality reduction to various types of data.

The objective function (10) can be reformulated as a canonical matrix quadratic
form as follows: ∑

ij

Ww
ij (t>xi − t>xj −w>xj

T>xj
(xi − xj))2

=

(
t
w

)> (
XS1X

> XS2

S2
>X> S3

)(
t
w

)
=

(
t
w

)>
S

(
t
w

)
, (14)

where we have defined w = (w>x1
,w>x2

, . . . ,w>xn
)>, X = (x1, . . . ,xn) is the data

matrix, and S is a (d+mn)× (d+mn) positive semi-definite matrix constructed
by four blocks, i.e., XS1X

>, XS2, S>2 X
> and S3. For simplicity, we omit the

detailed derivation of S here, which is available in the Appendix A.
Recall that wxi is the directional derivative of f at xi. Note that the linear

projection vector t is under the influences of both the direction and the length
of each wxi . To make within-class examples further compacted, we hope that the
projection t is more effected by wxi ’s direction than its length. Therefore, it makes
sense to regularize the length of wxi (i = 1, . . . , n). This can be achieved by adding
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a regularizer ‖t‖2 +
∑
i ‖wxi‖2 to (14). Define f = (t>,w>)>, the optimization

function turns out to be:

f>Sf + γ(‖t‖2 +
∑
i

‖wxi‖
2)

=f>Sf + γ‖f‖2 = f>(S + γI)f , (15)

where γ > 0 is a trade-off parameter. In fact, the extra term γ‖f‖2 often refers
to as the Tikhonov regularizer, which is commonly used with a small γ to keep
matrices from being singular. However, the value of γ is crucial for our method,
because it also controls the influence of w’s length on the projection t.

With simple algebraic formulation, the objective function (12) becomes∑
ij

W b
ij(t
>xi − t>xj)2

=2t>X(Db −W b)X>t = 2t>XLbX>t

=

(
t
w

)> (
2XLbX> 0

0 0

)(
t
w

)
=

(
t
w

)>
Sb

(
t
w

)
, (16)

where Lb = Db −W b is the Laplacian matrix, and Db is a diagonal matrix with
the i-th diagonal element being Dbii =

∑
j 6=iW

b
ij .

Finally, by integrating (15) and (16), the objective function of TSD can be
written as follows:

f∗ = arg max
f

f>Sbf

f>(S + γI)f
. (17)

The optimization of (17) can be achieved by solving a generalized eigenvalue prob-
lem:

Sbf = λ(S + γI)f (18)

whose solution can be easily given by the eigenvector with respect to the largest
eigenvalue. In order to obtain a one-dimensional embedding of an example x, we
just use the first part of f∗ = (t∗>,w∗>)> and compute b = t∗>x. Suppose that we
want to project d-dimensional data into an r-dimensional subspace. Let f1, . . . , fr
be the solutions of (17) corresponding to the r largest eigenvalues λ1 > . . . > λr.
Then the r-dimensional embedding b of x is computed as follows:

b = T>x, T = (t1, . . . , tr).

Algorithm 1 gives the pseudo-code for TSD. It is worth noting that although
w∗ seems not to be used in computing the low-dimensional embeddings, as the
parameter which is simultaneously optimized with t∗, it exerts a crucial influence
on the resultant transformation matrix T . This is means that both t∗ and w∗

determine the final results of TSD.
The main computational cost of TSD lies in building tangent spaces for n

data points and solving the generalized eigenvalue problem (18). Our algorithm
has a time complexity of O((d2m + m2d) × n) for the construction of n tangent
spaces and O(r2 × (d + mn)) for finding r eigenvectors with respect to the r
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Algorithm 1 TSD

Input: Labeled examples {{xi, yi}|xi ∈ Rd, yi ∈ {1, 2, . . . , C}}ni=1;
Dimensionality of embedding space m (1 ≤ m ≤ d);
Trade-off parameters γ (γ > 0).

Output: d× r transformation matrix T .

Construct the within-class graph Gw and the between-class graph Gb;
Calculate the weight matrices Ww and W b with (11) and (13);
for i = 1 to n do

Construct Txi by performing PCA on the intraclass neighborhood of xi;
end for
Compute the eigenvectors f1, f2, . . . , fr of (18) with respect to the top r eigenvalues;
T = (t1, t2, . . . , tr).

largest eigenvalues. For comparison, we also give the time complexities of some
classical and related methods. The time complexity of PCA is O(n2d) and that
of LDA is also O(n2d) [16]. As we have discussed in Section 2, MFA, LSDA,
LFDA fall into the same framework with different graphs, which implies that they
have the same computational cost. Since LDA also falls into the graph Laplacian
based framework [15], their time complexities turn out to be O(n2d). The above
analysis suggests that TSD is more time consuming compared with other methods.
However, since local tangent spaces are estimated by local PCA, we can obtain
at most k1 + 1 meaningful orthonormal bases for each tangent space1, where k1

is the size of within-class neighborhood. This implies that the dimensionality m
of the directional derivative wxi (i = 1, . . . , n) is always less than k1 + 1. In
practice, k1 is usually small to ensure the locality. This makes sure that m is
actually a small constant. To conclude, the overall time complexity of TSD is
O((d2m + m2d) × n + r2 × (d + mn)). Since m is usually small, TSD has an
acceptable computational cost.

3.3 Kernel TSD

TSD is a linear dimensionality reduction method. In this section, we propose Ker-
nel TSD which can be performed in a Reproducing Kernel Hilbert Space (RKHS)
for non-linear dimensionality reduction.

Consider a feature space F induced by a non-linear mapping φ : X → F , where
X is an input domain. We can construct an RKHS HK by defining a kernel function
K(·, ·) using the inner product operation 〈·, ·〉, such that K(x,y) = 〈φ(x), φ(y)〉.
Given a data set {xi ∈ X}ni=1, we can define the data matrix in the feature
space F as Φ = (φ(x1), . . . , φ(xn)). Then one can use the orthogonal projection to
decompose any projection vector t ∈ HK into a sum of two functions: one lying in
the span{φ(x1), . . . , φ(xn)}, and the other lying in the orthogonal complementary
space. Therefore, there exist a set of coefficients αi (i = 1, 2, . . . , n) satisfying

t =
n∑
i=1

αiφ(xi) + v = Φα+ v, (19)

1 That’s because there are only k1 + 1 examples as the inputs of local PCA.
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where α = (α1, α2, . . . , αn)> and 〈v, φ(xi)〉 = 0 for all i. Note that although we
set f = (t>,w>)> and optimize t and w together, we should estimate tangent
spaces in F through local Kernel PCA [10] rather than reparametrize w like t.

Let Tφxi be the matrix formed by the orthonormal bases of the tangent space
attached to φ(xi). By replacing Txi with Tφxi (i = 1, 2, . . . , n) and substituting
(19) into (15), the objective function (15) turns out to be:(

t
w

)> (
XS1X

> XS2

S2
>X> S3

)(
t
w

)
+ γ

(
t
w

)> (
t
w

)
=

(
α
w

)> (
KS1K KS2

S>2 K S3

)(
α
w

)
+ γ

(
α
w

)>(
K 0
0 Ī

)(
α
w

)
=

(
α
w

)> (
KS1K + γK KS2

S>2 K S3 + γĪ

)(
α
w

)
=

(
α
w

)>
Sφ
(
α
w

)
,

where K is a kernel matrix with Kij = K(xi,xj) and Ī is an identity matrix sized
mn×mn. Similarly, the objective function (16) becomes(

t
w

)> (
2XLbX> 0

0 0

)(
t
w

)
=

(
α
w

)> (
2KLbK 0

0 0

)(
α
w

)
=

(
α
w

)>
Sφb

(
α
w

)
.

Note that due to 〈v, φ(xi)〉 = 0 for all i, every term of v vanishes from the above
formulations. Finally, Kernel TSD can be converted to a generalized eigenvalue
problem as follows:

Sφb ϕ = λSφϕ, (20)

where we have defined ϕ = (α>,w>)>.
Given the eigenvectors ϕ1, . . . ,ϕr with respect to the r largest eigenvalues of

(20), the resultant transformation matrix can be written as Γ = (α1, . . . ,αr).
Then, the embedding b of an original example x is computed as:

b = Γ>Φ>φ(x) = Γ>(K(x1,x), . . . ,K(xn,x))>.

4 Discussion

For developing a good graph-based dimensionality reduction method, one of the
most important problems is how to construct a good graph so that the preferred
data structure can be preserved. As we have discussed in Section 2, many existing
methods such as MFA, LSDA and LFDA aim to design specific graphs to enhance
the local compactness of the data in the same class and separate the data points
with different class labels. However, none of them breaks the graph Laplacian based
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framework. Our method mainly focuses on developing a new strategy to extract
more information of the data manifold from a given graph. More specifically, we
use the first-order Taylor expansion to incorporate the structural information from
tangent spaces, i.e., the terms w>xj

T>xj
(xi−xj))2 (i, j = 1, . . . , n) in (10), into the

scatter matrix S. Moreover, it is worth noting that although we specify a certain
weight matrix (11) to construct the within-class graph Gw, our method is flexible
enough to utilize the information from any valid graphs such as the one used in
LFDA.

Local Tangent Space Alignment (LTSA) [17] is a popular dimensionality re-
duction method which also use the information from tangent spaces. The main
idea of LTSA is to align every local tangent space to construct global coordinates.
Although both TSD and LTSA utilize local tangent spaces, there are mainly two
differences between them: 1) they actually solve different problems in essence. TSD
is a linear supervised dimensionality reduction method, while LTSA is a non-linear
unsupervised one. As a result, our method not only considers the class labels to
make use of discriminant information, but can obtain an explicit transformation
matrix to compute the mappings for out-of-sample data. 2) TSD is a graph-based
method which can adopt any valid graph for training, whereas LTSA is not. This
property provides TSD with much more flexibility to handle various types of data
for different applications.

Our method shares the same spirit with TSIMR [13], and both of them employ
tangent spaces to discover the geometrical structure of the data manifold. How-
ever, our approach and TSIMR differ in two key aspects: 1) Like LTSA, TSIMR
is a non-linear unsupervised method, and thus has no ability to capture the dis-
criminant information or give an explicit transformation matrix. 2) They have
totally different objective functions. It should be noted that TSD employs (10) to
construct the scatter matrix S, while the objective function of TSIMR has other
terms ‖wxi−T>xi

Txjwxj‖22 (i, j = 1, . . . , n). And we find these terms are not much
beneficial for discriminant analysis.

The effect of the Tikhonov regularizer γ‖f‖2 = γ(‖t‖2 +
∑
i ‖wxi‖2) in (15)

should be highlighted, since it plays a key role in our method. Generally, Tikhonov
regularization is a common technique employed by many dimensionality reduction
methods to deal with the singularity problem of the matrix, where the parameter
γ is always set to a very small value. However, our method needs an appropriate
large γ to penalize large ‖wxi‖ (i = 1, . . . , n) so that the within-class compactness
can be enhanced.

5 Experiments

To evaluate the proposed method, related dimensionality reduction methods in-
cluding PCA, LDA, MFA, LSDA and LFDA are compared with TSD on multiple
real-world data sets from the UCI Machine Learning Repository [1], the Protein
Sequence data set2 from glycosylation database Uniprot (v8.0), and the USPS
data set. Specifically, we first perform dimensionality reduction to map all exam-
ples into a subspace, and then carry out classification using the nearest neighbor
classifier (1-NN) in the subspace. This experimental setting is the same as the one

2 This Protein Sequence data set is available at http://www.ebi.ac.uk/uniprot.

http://www.ebi.ac.uk/uniprot
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Table 1 List of the classification data sets used in our experiments.

Data Set Dimensionality # of examples # of classes Rates of training

Satellite 36 6435 2 10%
Theorem Prove 51 3059 2 10%
Breast Cancer 9 263 2 50%
Column2C 6 310 2 50%
Image 18 2086 2 10%
Ionosphere 34 351 2 50%
Protein Sequence 420 2000 2 20%
Semeion Handwritten 256 1593 10 20%
USPS 256 2007 10 20%

adopted in [12]. Moreover, we also compare the baseline method that just em-
ploys the 1-NN classifier in the original space without performing dimensionality
reduction.

Seven UCI data sets (Satellite, Theorem Prove, Breast Cancer, Column2C
Image, Ionosphere, Semeion Handwritten), the Protein Sequence data set, and the
USPS data set are used to conduct our experiments. Originally, the Theorem Prove
and USPS data sets are divided into a training set and a test set. For simplicity, we
just use their test sets to carry on the experiments. For the Protein Sequence data
set, we use a subset of the Uniprot database which contains only 99 mammalian
protein entries. For each data set, we randomly split certain rates of the data
as the training set and the rest as the test set. Furthermore, all the parameters
for MFA, LSDA, LFDA and TSD are selected by three-fold cross-validation. The
configuration of each data set is shown in Table 1.

The performance of PCA and graph-based dimensionality methods including
MFA, LSDA, LFDA and TSD depend on the dimensionality of the discovered
embedding subspace. Thus we show the best results obtained by those methods.
Every experimental result is obtained from the average over 20 splits. We give
the mean values and standard deviations of the error rates (%) on the employed
data sets, where the best method is highlighted in bold font and the best and
comparable ones based on the t-test with the significance level 5% are marked
with ‘M’.

The experimental results on the Satellite, Theorem Prove, Breast Cancer and
Column2C data sets are shown in Table 2. In most cases, classification with di-
mensionality reduction is statistically better than the baseline. However, LDA
perform well on none of the four data sets, probably because the implicit assump-
tion adopted by LDA mismatches the distributions of these data sets. On the
other hand, all the graph-based methods get reasonable well results, because they
aim to preserve the local structure of data. PCA also works well for the purpose
of separating data from different classes. Although it does not attain the best
performance, our method achieves comparable good results.

Table 3 describes the classification performance of each method on the Image,
Ionosphere, Protein Sequence, Semeion Handwritten and USPS data sets. Again,
LDA gets worse results. Surprisingly, the counterparts of TSD including MFA,
LSDA, LFDA, fail to perform well for the Protein Sequence and the Semeion
Handwritten data sets. In the case of Semeion Handwritten data set, these methods
are even worse than the baseline. The characteristics of the feature vectors in the
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Table 2 Mean values and standard deviations of the error rates (%) on the Satellite, Theorem
Prove, Breast Cancer and Column2C data sets. The best method is highlighted by bold font.
The best and comparable ones based on the t-test with the significance level 5% are marked
with ‘M’.

Methods Satellite Theorem Prove Breast Cancer Column2C

Baseline 13.31±0.72 30.86±1.66 24.73±4.08 18.77±2.70
PCA 12.97±0.62M 30.35±1.51M 30.88±3.15M 18.10±2.26M
LDA 17.56±0.45 37.60±1.10 35.80±4.01 24.35±3.70
MFA 14.34±0.62 29.90±1.22 M 31.15±2.52 23.23±3.69
LSDA 13.27±0.48 31.79±1.42 32.33±2.70 22.26±3.74
LFDA 13.13±0.52M 30.19±1.52 M 31.15±2.98M 17.84±2.52 M
TSD 13.29±0.90M 30.14±1.55 M 31.30±3.03M 18.55±2.74 M

two data sets probably explain why this happens. Every example in the two data
sets has a sparse and binary feature vector with high dimensionality in which
only a small number of elements are one, and the rest are zero. For instance, the
Semeion Handwritten data set contains 1593 binary images of handwritten digits
consisting 16 × 16 pixels. In this case, the graph Laplacian based methods may
not be able to capture the meaningful local geometry of the data manifold any
more. On the other hand, TSD achieves the best results probably because it can
capture extra geometrical information from tangent spaces. This suggests that
our proposed method makes good use of the information from tangent spaces and
thus can correctly discover the data structure. In addition, the limitation inherited
from the graph Laplacian based framework rather than the choice of graphs in each
graph-based method should be responsible for the undesirable results, since the
adopted graph in TSD is similar to those in MFA, LSDA and LFDA. Moreover,
even when the feature vectors are no longer sparse and binary, TSD can also get the
lowest error rates compared with the other methods with high level of statistical
significance in the Image and Ionosphere data sets. This demonstrates that due
to utilizing the structural information from tangent spaces, TSD can not only
improve the performance of dimensionality reduction, but be applied to the data
sets on which the graph Laplacian based counterparts fail to perform effectively.

Table 4 gives the time consumptions of different methods. As can be seen,
TSD is relatively less efficient than its counterparts, because it has to estimate
the tangent space and tangent vector at each data point. In fact, this is also
the weakness of other tangent space based methods [8,13]. Therefore, proposing a
strategy to make tangent space based methods more scalable can be an interesting
research direction.

6 Conclusion

In this paper, we have proposed a novel supervised dimensionality reduction method
named local Tangent Space Discriminant analysis (TSD), which differs from the
methods based on the graph Laplacian framework. By introducing tangent spaces
and using the first-order Taylor expansion, we develop a new strategy to utilize
the information from tangent spaces, which leads to a natural way of preserving
the geometrical structure of the data manifold. The proposed method aims to seek
an embedding space where the local manifold structure of the data belonging to
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Table 3 Mean values and standard deviations of the error rates (%) on the Image, Ionosphere,
Protein Sequence, Semeion Handwritten and USPS data sets. The best method is highlighted
by bold font. The best and comparable ones based on the t-test with the significance level 5%
are marked with ‘M’.

Methods Image Ionosphere Protein Sequence Semeion USPS

Baseline 9.25±1.00 14.00±1.98 33.17±1.05 15.98±1.16 12.07±0.72
PCA 9.09±1.00 10.77±1.98 22.43±0.83 M 13.03±1.09 M 11.62±0.64
LDA 25.99±2.31 16.94±2.86 38.97±2.99 42.94±2.15 20.26±1.47
MFA 7.57±1.03 10.66±2.16 30.21±3.20 44.95±2.26 19.46±1.23
LSDA 8.58±1.44 10.71±2.86 30.76±2.24 65.36±3.82 71.23±1.81
LFDA 7.77±0.98 13.94±1.75 40.51±6.91 45.27±2.47 12.07±1.57
TSD 6.73±0.95M 9.34±1.37 M 22.06±1.19 M 12.78±1.04M 10.94±0.66M

Table 4 Computation time (in seconds) of each method for dimensionality reduction.

Methods PCA LDA MFA LSDA LFDA TSD

Satellite 0.0014 0.0021 0.1198 0.0971 0.0191 5.4878
Theorem Prove 0.0015 0.0028 0.0457 0.0265 0.0098 3.8428
Breast Cancer 0.0002 0.0005 0.0039 0.0043 0.0022 0.4427
Column2C 0.0002 0.0004 0.0051 0.0043 0.0024 0.5647
Image 0.0004 0.0006 0.0232 0.0080 0.0037 1.0081
Ionosphere 0.0006 0.0010 0.0080 0.0071 0.0035 1.0006
Protein Sequence 0.1376 0.2093 0.2789 0.3219 0.2559 47.901
Semeion Handwritten 0.0400 0.0470 0.1152 0.0931 0.0914 17.103
USPS 0.0571 0.0555 0.1131 0.0974 0.1123 24.704

the same class is preserved as much as possible, while the marginal data points
with different class labels are better separated. Moreover, TSD has the analytic
solution by solving a generalized eigenvalue problem and can be easily extended
to non-linear dimensionality reduction through the kernel trick.

The effectiveness of the proposed method has been demonstrated by comparing
with related work on multiple real-world data sets including the UCI data sets and
the Protein Sequence data set. The experimental results show that TSD works
well on the data sets which can hardly be well handled by its counterparts, and
attains better performance of classification due to utilizing the extra information
from tangent spaces. Future work directions include extending our method to
different learning scenarios such as semi-supervised learning and developing the
sparse algorithm of TSD for large-scale learning tasks.

Acknowledgements This work is supported by the National Natural Science Foundation
of China under Projects 61370175 and 61075005, and Shanghai Knowledge Service Platform
Project (No.ZF1213).

References

1. K. Bache and M. Lichman. UCI machine learning repository, 2013.
2. M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data

representation. Neural Computation, 15(6):1373–1396, 2003.
3. D. Cai, X. He, K. Zhou, J. Han, and H. Bao. Locality sensitive discriminant analysis. In

Proceedings of the 20rd International Joint Conference on Artificial Intelligence (IJCAI),
pages 708–713, 2007.



18 Yang Zhou, Shiliang Sun

4. F. R. K. Chung. Spectral Graph Theory. American Mathematical Society, Rhode Island,
1997.

5. D. L. Donoho and C. Grimes. Hessian eigenmaps: Locally linear embedding techniques for
high-dimensional data. Proceedings of the National Academy of Sciences, 100(10):5591–
5596, 2003.

6. K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press, 2nd edition,
1990.

7. X. He and P. Niyogi. Locality preserving projections. In S. Thrun, L. Saul, and
B. Schölkopf, editors, Advances in Neural Information Processing Systems 16, pages 1–8.
MIT Press, Cambridge, MA, 2004.

8. B. Lin, X. He, C. Zhang, and M. Ji. Parallel vector field embedding. Journal of Machine
Learning Research, 14(1):2945–2977, 2013.

9. S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embed-
ding. Science, 290(5500):2323–2326, 2000.

10. B. Schölkopf, A. Smola, and K. R. Müller. Nonlinear component analysis as a kernel
eigenvalue problem. Neural Computation, 10(5):1299–1319, 1998.

11. P. Simard, Y. LeCun, and J. S. Denker. Efficient pattern recognition using a new transfor-
mation distance. In S.J. Hanson, J.D. Cowan, and C.L. Giles, editors, Advances in Neural
Information Processing Systems 5, pages 50–58. Morgan-Kaufmann, 1993.

12. M. Sugiyama. Dimensionality reduction of multimodal labeled data by local Fisher dis-
criminant analysis. Journal of Machine Learning Research, 8:1027–1061, 2007.

13. S. Sun. Tangent space intrinsic manifold regularization for data representation. In Proceed-
ings of the IEEE China Summit and International Conference on Signal and Information
Processing (ChinaSIP), pages 179–183, 2013.

14. H. Tyagi, E. Vural, and P. Frossard. Tangent space estimation for smooth embeddings of
riemannian manifolds. Information and Inference, 2(1):69–114, 2013.

15. S. Yan, D. Xu, B. Zhang, H. Zhang, Q. Yang, and S. Lin. Graph embedding and extensions:
a general framework for dimensionality reduction. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 29(1):40–51, 2007.

16. J. Ye and Q. Li. A two-stage linear discriminant analysis via QR-decomposition. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 27(6):929–941, 2005.

17. Z. Zhang and H. Zha. Principal manifolds and nonlinear dimension reduction via local
tangent space alignment. SIAM Journal on Scientific Computing, 26(1):313–338, 2004.

18. M. Zhu and A. M. Martinez. Subclass discriminant analysis. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 28(8):1274–1286, 2006.

Appendix A. Detailed Derivation of S

In order to fix S, we decompose (10) into three additive terms as follows:

f>Sf =
n∑

i,j=1

Ww
ij ((xi − xj)>t)2

︸ ︷︷ ︸
term one

+

n∑
i,j=1

Ww
ij

(
w>xj

T>xj
(xi − xj)

)2
︸ ︷︷ ︸

term two

+

n∑
i,j=1

Ww
ij

[
− 2((xi − xj)>t)w>xj

T>xj
(xi − xj)

]
︸ ︷︷ ︸

term three

,

and then examine their separate contributions to the whole S.
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Term One
n∑

i,j=1

Ww
ij ((xi − xj)>t)2

=2t>X(Dw −Ww)X>t = 2t>XLwX>t,

where Dw is a diagonal weight matrix with Dwii =
∑n
j=1W

w
ij , and Lw = Dw−Ww

is the Laplacian matrix. Then we have S1 = 2(Dw −Ww) = 2Lw. And term one
contributes to XS1X

> in (14).

Term Two Define Bji = T>xj
(xi − xj), then

n∑
i,j=1

Ww
ij

(
w>xj

T>xj
(xi − xj)

)2
=

n∑
i,j=1

Ww
ij (w>xj

Bji)
2

=
n∑

i,j=1

Ww
ijw
>
xj
BjiB

>
jiwxj

=
n∑
j=1

w>xj

( n∑
i=1

Ww
ijBjiB

>
ji

)
wxj =

n∑
i=1

w>xi
Hiwxi ,

where we have defined matrices {Hj}nj=1 with Hj =
∑n
i=1W

w
ijBjiB

>
ji.

Now suppose we define a block diagonal matrix S3 sized mn×mn with block
size m×m. Set the (i, i)-th block (i = 1, . . . , n) of S3 to be Hi. Then the resultant
S3 is the contribution of term two for S in (14).

Term Three Define vectors {Fj}nj=1 with Fj =
∑n
i=1W

w
ijBji, then term three can

be rewritten as:
n∑

i,j=1

Ww
ij

[
− 2((xi − xj)>t)w>xj

T>xj
(xi − xj)

]
=

n∑
i,j=1

2Ww
ij

[
((xj − xi)>t)w>xj

Bji
]

=
n∑

i,j=1

Ww
ij (−t>xiB>jiwxj ) +

n∑
i=1

t>xiF
>
i wxi +

n∑
i,j=1

Ww
ij (−w>xj

Bjix
>
i t) +

n∑
i=1

w>xi
Fix
>
i t.

From this expression, we can give the formulation of S2. Then the S>2 in (14),
which is its transpose, is ready to get.

Suppose we define two block matrices S1
2 and S2

2 sized n × mn each where
the block size is 1×m, and S2

2 is a block diagonal matrix. Set the (i, j)-th block
(i, j = 1, . . . , n) of S1

2 to be −Ww
ijB
>
ji, and the (i, i)-th block (i = 1, . . . , n) of S2

2 to

be F>i . Then, term three can be rewritten as: t>X(S1
2 +S2

2)w+w>(S1
2 +S2

2)>X>t.
It is clear that S2 = S1

2 + S2
2 .




