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Abstract. Twin support vector machines are a recently proposed learning method
for binary classification. They learn two hyperplanes rather than one as in conven-
tional support vector machines and often bring performance improvements. Multi-
view learning is concerned about learning from multiple distinct feature sets, which
aims to exploit distinct views to improve generalization performance. In this paper,
we propose multi-view twin support vector machines by solving a pair of quadratic
programming problems. This paper gives a detailed derivation of the Lagrange dual
optimization formulation. The linear multi-view twin support vector machines are
further generalized to the nonlinear case by the kernel trick. Experimental results
demonstrate that our proposed methods are effective.
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1. Introduction

Support vector machines (SVMs) are a powerful tool for pattern classification and re-
gression [1,2,3,4], which are based on the principled idea of structural risk minimization
in statistical learning theory. Compared with other machine learning methods such as ar-
tificial neural networks [5], SVMs own a better generalization guarantee. SVMs find the
best tradeoff between the model complexity and the learning ability according to the lim-
ited example information. They can learn a nonlinear decision function which is linear
in a potentially high-dimensional feature space by the use of the kernel trick [6]. So far
SVMs have been successfully applied to a variety of practical problems such as object
detection, text categorization, bioinformatics and image classification, etc.

Recently, Mangasarian and Wild [7] proposed generalized eigenvalue proximal
SVMs (GEPSVMs) for binary classification. Instead of finding a single hyperplane as in
SVMs, GEPSVMs find two nonparallel hyperplanes such that each hyperplane is as close
as possible to examples from one class and as far as possible to examples from the other
class. The two hyperplanes are obtained by eigenvectors corresponding to the smallest
eigenvalues of two related generalized eigenvalue problems. Jayadeva et al. [8] proposed
a refined nonparallel hyperplane classifier called twin SVMs (TSVMs) in the same spirit
of GEPSVMs, which aim to generate two nonparallel hyperplanes such that one of the
hyperplanes is closer to one class and has a certain distance to the other class. TSVMs
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have become a popular method in machine learning because of their high classification
accuracy and low computational complexity [9].

Multi-modal datasets are very common in practice because of the use of different
measuring methods (e.g., infrared and visual cameras), or of different media (e.g., text,
video and audio) [10]. A typical example is given by web pages. Web pages can be
represented by a vector for the words in the web page text, and another vector for the
words in the anchor text of a hyper-link. Multi-view learning (MVL) is an emerging di-
rection which considers learning with multiple feature sets to improve the generalization
performance. The main challenge of MVL is to develop effective algorithms to com-
bine multiple views simultaneously. SVM-2K is a successful combination of MVL and
SVMs, which combines the maximum margin and multi-view regularization principles
to leverage two views to improve the classification accuracy [11]. Farquhar et al. [11]
provided a theoretical analysis to illuminate the source and extent of advantage, showing
a significant reduction in the Rademacher complexity of the corresponding function class
[12]. Sun and Shawe-Taylor [13] proposed sparse multi-view SVMs which use a squared
ε-insensitive loss. Simultaneously, they characterized the generalization error of sparse
multi-view SVMs in terms of the margin bound and derived the empirical Rademacher
complexity of the considered function class [14]. In this paper, we proposed multi-view
twin support vector machines (MvTSVMs) which are the first TSVMs applied to MVL.
MvTSVMs combine two views by introducing the constraint of similarity between two
one-dimensional projections identifying two distinct TSVMs from two feature spaces.

The remainder of this paper proceeds as follows. Section 2 reviews related work
including SVMs, TSVMs and SVM-2K. Section 3 thoroughly introduces our proposed
MvTSVMs. Section 4 extends our method to kernel MvTSVMs. After reporting experi-
mental results in Section 5, we give conclusions and future work in Section 6.

2. Related work

2.1. SVMs and TSVMs

Suppose there are m examples represented by matrix A with the ith row Ai (i =
1,2, · · · ,m) being the ith example. Let yi ∈ {1,−1} denote the class to which the ith ex-
ample belongs. For simplicity, we only review the linearly separable case. Then, w ∈ Rd

and b ∈ R need to satisfy

yi(Aiw+b)≥ 1. (1)

The hyperplane described by w⊤x+ b = 0 lies midway between the bounding hyper-
planes given by w⊤x+b = 1 and w⊤x+b = −1. The margin of separation between the
two classes is given by 2

∥w∥ , where ∥w∥ denotes the ℓ2 norm of w. Support vectors are
those training examples lying on the above two hyperplanes. The standard SVMs [1] are
obtained by solving the following problem

min
w,b

1
2

w⊤w

s.t. ∀i : yi(Aiw+b)≥ 1.
(2)



The decision function is

f (x) = sign(w⊤x+b). (3)

Then we introduce TSVMs [8]. Suppose examples belonging to classes 1 and −1
are represented by matrices A+ and B−, and the size of A+ and B− are (m1 × d) and
(m2×d), respectively. We define two matrices A, B and four vectors v1, v2, e1, e2, where
e1 and e2 are vectors of ones of appropriate dimensions and

A = (A+,e1), B = (B−,e2), v1 =

(
w1
b1

)
, v2 =

(
w2
b2

)
. (4)

TSVMs obtain two nonparallel hyperplanes

w⊤
1 x+b1 = 0 and w⊤

2 x+b2 = 0 (5)

around which the examples of the corresponding class get clustered. The classifier is
given by solving the following QPPs separately
(TSVM1)

min
v1,q1

1
2
(Av1)

⊤(Av1)+ c1e⊤2 q1

s.t. −Bv1 +q1 ≽ e2, q1 ≽ 0,
(6)

(TSVM2)

min
v2,q2

1
2
(Bv2)

⊤(Bv2)+ c2e⊤1 q2

s.t. Av2 +q2 ≽ e1, q2 ≽ 0,
(7)

where c1, c2 are nonnegative parameters and q1, q2 are slack vectors of appropriate di-
mensions. The label of a new example x is determined by the minimum of |x⊤wr + br|
(r = 1,2) which are the perpendicular distances of x to the two hyperplanes given in (5).

2.2. SVM-2K

Suppose we are given two views of the same data. One view is represented by a fea-
ture projection ϕA with the corresponding kernel KA and the other view is represented
by a feature projection ϕB with the corresponding kernel KB. Then the two views’ data
are given by a set S = {(ϕA(x1),ϕB(x1)), · · · ,(ϕA(xn),ϕB(xn))}. SVM-2K [11] combines
the two views by introducing the constraint of similarity between two one-dimensional
projections identifying two distinct SVMs from the two feature spaces:

|⟨wA,ϕA(xi)⟩+bA −⟨wB,ϕB(xi)⟩−bB| ≤ ηi + ε (8)

where wA, bA, (wB,bB) are the weight and threshold of the first (second) SVMs.
The SVM-2K method has the following optimization for classifier parameters wA, bA,
(wB,bB)



min
wA,wB,q1i,q2i,ηi

1
2
∥wA∥2 +

1
2
∥wB∥2 + c1

n

∑
i=1

q1i + c2

n

∑
i=1

q2i +D
n

∑
i=1

ηi

s.t. |⟨wA,ϕA(xi)⟩+bA −⟨wB,ϕB(xi)⟩−bB| ≤ ηi + ε,

yi(⟨wA,ϕA(xi)⟩+bA)≥ 1−q1i,

yi(⟨wB,ϕB(xi)⟩+bB)≥ 1−q2i,

q1i ≥ 0,q2i ≥ 0,ηi ≥ 0,all for 1 ≤ i ≤ n,

(9)

where D, c1, c2, ε are nonnegative parameters and q1i, q2i, ηi are slack vectors of appro-
priate dimensions. Let ŵA, ŵB, b̂A, b̂B be the solution to this optimization problem. The
final SVM-2K decision function is f (x) = 1

2 (⟨ŵA,ϕA(x)⟩+ b̂A + ⟨ŵB,ϕB(x)⟩+ b̂B).
The dual formulation of the above optimization problem can be written as

max
ξ A

i ,ξ A
j ,ξ

B
i ,ξ B

j ,α
A
i ,α

B
i

−1
2

n

∑
i, j=1

(ξ A
i ξ A

j KA(xi,x j)+ξ B
i ξ B

j KB(xi,x j))+
n

∑
i=1

(αA
i +αB

i )

s.t. ξ A
i = αA

i yi −β+
i +β−

i ,

ξ B
i = αB

i yi +β+
i −β−

i ,

n

∑
i=1

ξ A
i =

n

∑
i=1

ξ B
i = 0,

0 ≤ β+
i ,β−

i ,β+
i +β−

i ≤ D,

0 ≤ αA/B
i ≤ c1/2,

(10)

where αA
i , αB

i , β+
i ,β−

i are the vectors of Lagrange multipliers. Here we let ε = 0. The
prediction function for each view is given by

fA/B(x) =
n

∑
i=1

ξ A/B
i KA/B(xi,x)+bA/B. (11)

3. MvTSVMs

Now we extend TSVMs to MvTSVMs. On one view, positive examples are represented
by A

′
1 and negative examples are represented by B

′
1. On the other view, positive exam-

ples are represented by A
′
2 and negative examples are represented by B

′
2. For simplicity,

suppose that all e are vectors of ones of appropriate dimensions and

A1 = (A
′
1,e),B1 = (B

′
1,e),A2 = (A

′
2,e),B2 = (B

′
2,e),

v1 =

(
w1
b1

)
, v2 =

(
w2
b2

)
,u1 =

(
w3
b3

)
, u2 =

(
w4
b4

)
,

(12)

where (w1,b1) and (w2,b2) are classifier parameters of +1 class, and (w3,b3) and
(w4,b4) are classifier parameters of −1 class. The optimization problems for MvTSVMs
are written as



min
v1,v2,q1,q2,η

1
2
∥A1v1∥2 +

1
2
∥A2v2∥2 + c1e⊤2 q1 + c2e⊤2 q2 +De⊤1 η

s.t. |A1v1 −A2v2| ≼ η ,

−B1v1 +q1 ≽ e2,

−B2v2 +q2 ≽ e2,

q1 ≽ 0, q2 ≽ 0,

η ≽ 0,

(13)

min
u1,u2,k1,k2,ζ

1
2
∥B1u1∥2 +

1
2
∥B2u2∥2 +d1e⊤1 k1 +d2e⊤1 k2 +He⊤2 ζ

s.t. |B1u1 −B2u2| ≼ ζ ,

−A1u1 + k1 ≽ e1,

−A2v2 + k2 ≽ e1,

k1 ≽ 0, k2 ≽ 0,

ζ ≽ 0,

(14)

where e1 and e2 are vectors of ones of appropriate dimensions, v1, v2, u1, u2 are classifier
parameters, c1, c2, d1, d2, D, H are nonnegative parameters, and q1, q2, η , ζ , k1, k2 are
slack vectors of appropriate dimensions.

The Lagrangian of the optimization problem (13) is given by

L =
1
2
∥A1v1∥2 +

1
2
∥A2v2∥2 + c1e⊤2 q1 + c2e⊤2 q2 +De⊤1 η −β⊤

1 (η −A1v1 +A2v2)

−β⊤
2 (A1v1 −A2v2 +η)−α⊤

1 (−B1v1 +q1 − e2)−α⊤
2 (−B2v2 +q2 − e2)

−λ⊤
1 q1 −λ⊤

2 q2 −σ⊤η ,

(15)

where α1, α2, β1, β2, λ1, λ2 and σ are the vectors of Lagrange multipliers.
We take partial derivatives of the above equation and let them be zero

∂L
∂v1

= A⊤
1 A1v1 +A⊤

1 β1 −A⊤
1 β2 +B⊤

1 α1 = 0,

∂L
∂v2

= A⊤
2 A2v2 −A⊤

2 β1 +A⊤
2 β2 +B⊤

2 α2 = 0,

∂L
∂q1

= c1e2 −α1 −λ1 = 0,

∂L
∂q2

= c2e2 −α2 −λ2 = 0,

∂L
∂η

= De1 −β1 −β2 −σ = 0.

(16)

From the above equations, we obtain



v1 = (A⊤
1 A1)

−1[A⊤
1 (β2 −β1)−B⊤

1 α1], (17)

v2 = (A⊤
2 A2)

−1[A⊤
2 (β1 −β2)−B⊤

2 α2]. (18)

It follows that

L = (α1 +α2)
⊤e2 −

1
2
[(β2 −β1)

⊤A1 −α⊤
1 B1]

(A⊤
1 A1)

−1[A⊤
1 (β2 −β1)−B⊤

1 α1]−
1
2
[(β1 −β2)

⊤A2

−α⊤
2 B2](A⊤

2 A2)
−1[A⊤

2 (β1 −β2)−B⊤
2 α2].

(19)

Therefore, the dual optimization formulation is

min
ξ1,ξ2,α1,α2

1
2

ξ⊤
1 (A⊤

1 A1)
−1ξ +

1
2

ξ⊤
2 (AT

2 A2)
−1ξ2 − (α1 +α2)

⊤e2

s.t. ξ1 = A⊤
1 (β2 −β1)−B⊤

1 α1,

ξ2 = A⊤
2 (β1 −β2)−B⊤

2 α2,

0 ≼ β1,β2,β1 +β2 ≼ De1,

0 ≼ α1/2 ≼ c1/2e2.

(20)

Similarly, we obtain the other dual problem

min
ρ1,ρ2,λ1,λ2

1
2

ρ⊤
1 (B⊤

1 B1)
−1ρ1 +

1
2

ρ⊤
2 (B⊤

2 B2)
−1ρ2 − (λ1 +λ2)

⊤e1

s.t. ρ1 = B⊤
1 (γ2 − γ1)−A⊤

1 λ1,

ρ2 = B⊤
2 (γ1 − γ2)−A⊤

2 λ2,

0 ≼ γ1,γ2,γ1 + γ2 ≼ He2,

0 ≼ λ1/2 ≼ d1/2e1

(21)

and

u1 = (B⊤
1 B1)

−1[B⊤
1 (γ2 − γ1)−A⊤

1 λ1], (22)

u2 = (B⊤
2 B2)

−1[B⊤
2 (γ1 − γ2)−A⊤

2 α2]. (23)

For an example x with x
′
1 and x

′
2, if 1

2 (|x
⊤
1 v1|+ |x⊤2 v2|) ≤ 1

2 (|x
⊤
1 u1|+ |x⊤2 u2|), where

x1 = (x
′
1,1) and x2 = (x

′
2,1), it is classified to class +1, otherwise class −1. For clarity,

we explicitly state our linear twin support vector machines algorithm in Algorithm 1.

4. Kernel MvTSVMs

In this part, we extend MvTSVMs to the nonlinear case. The kernel-generated hyper-
planes are:



Algorithm 1 Multi-view twin support vector machines

1: Input: A
′
1, A

′
2, B

′
1, B

′
2.

2: Obtain A1, A2, B1, B2 using (12).
3: Select penalty parameters c1, c2, D, d1, d2 and H. Usually these parameters are

selected based on cross-validation.
4: Determine parameters of two decision functions (v1, v2) and (u1, u2) using (17), (18),

(22), (23).
5: Calculate the decision function values 1

2 (|x
⊤
1 v1|+ |x⊤2 v2|) and 1

2 (|x
⊤
1 u1|+ |x⊤2 u2|) for

a new example x with two views x
′
1 and x

′
2, where x1 = (x

′
1,1) and x2 = (x

′
2,1).

6: Assign the example to class +1 or −1 based on the minimum of the decision function
values 1

2 (|x
⊤
1 v1|+ |x⊤2 v2|) and 1

2 (|x
⊤
1 u1|+ |x⊤2 u2|).

K{x⊤1 ,C
⊤
1 }w1 +b1 = 0, K{x⊤2 ,C

⊤
2 }w2 +b2 = 0,

K{x⊤1 ,C
⊤
1 }w3 +b3 = 0, K{x⊤2 ,C

⊤
2 }w4 +b4 = 0,

(24)

where K is a chosen kernel function which is defined by K{xi,x j} = (Φ(xi),Φ(x j)).
Φ(·) is a nonlinear mapping from a low-dimensional feature space to a high-dimensional
feature space. Φ(·) is a nonlinear mapping from a low-dimensional feature space to a
high-dimensional feature space. C1 and C2 denote training examples from view 1 and
training examples from view 2 respectively, that is, C1 = (A

′⊤
1 ,B

′⊤
1 )⊤, C2 = (A

′⊤
2 ,B

′⊤
2 )⊤.

The optimization problems for kernel MvTSVMs are written as

min
w1,w2,b1,b2,q1,q2,η

1
2
∥K{A

′
1,C

⊤
1 }w1 + e1b1∥2 +

1
2
∥K{A

′
2,C

⊤
1 }w2 + e1b2∥2 + c1e⊤2 q1

+ c2e⊤2 q2 +De⊤1 η

s.t. |K{A
′
1,C

⊤
1 }w1 + e1b1 −K{A

′
2,C

⊤
2 }w2 − e1b2| ≼ η ,

−K{B
′
1,C

⊤
1 }w1 − e2b1 +q1 ≽ e2,

−K{B
′
2,C

⊤
2 }w2 − e2b2 +q2 ≽ e2,

q1 ≽ 0, q2 ≽ 0,

η ≽ 0,

(25)

min
w3,w4,b3,b4,k1,k2,ζ

1
2
∥K{B

′
1,C

⊤
1 }w3 + e2b3∥2 +

1
2
∥K{B

′
2,C

⊤
2 }w4 + e2b4∥2 +d1e⊤1 k1

+d2e⊤1 k2 +He⊤2 ζ

s.t. |K{B
′
1,C

⊤
1 }w3 + e2b3 −K{B

′
2,C

⊤
2 }w4 − e2b4| ≼ ζ ,

−K{A
′
1,C

⊤
1 }w3 − e1b3 + k1 ≽ e1,

−K{A
′
2,C

⊤
2 }w4 − e1b4 + k2 ≽ e1,

k1 ≽ 0, k2 ≽ 0,

ζ ≽ 0,

(26)



where e1 and e2 are vectors of ones of appropriate dimensions, w1, w2, w3, w4, b1, b2,
b3, b4 are classifier parameters, c1, c2, d1, d2, D, H are nonnegative parameters, q1, q2,
η , ζ , k1, k2 are slack vectors of appropriate dimensions.

The Lagrangian of the optimization problem (25) is given by

L =
1
2
∥K{A

′
1,C

⊤
1 }w1 + e1b1∥2 +

1
2
∥K{A

′
2,C

⊤
2 }w2 + e1b2∥2 + c1e⊤2 q1 + c2e⊤2 q2

+De⊤1 η −β⊤
1 (η −K{A

′
1,C

⊤
1 }w1 −b1 +K{A

′
2,C

⊤
2 }w2 +b2)

−β⊤
2 (K{A

′
1,C

⊤
1 }w1 + e1b1 −K{A

′
2,C

⊤
2 }w2 − e1b2 +η)

−α⊤
1 (−K{B

′
1,C

⊤
1 }w1 − e2b1 +q1 − e2)

−α⊤
2 (−K{B

′
2,C

⊤
2 }w2 − e2b2 +q2 − e2)

−λ⊤
1 q1 −λ⊤

2 q2 −σ⊤η ,

(27)

where α1, α2, β1, β2, λ1, λ2 and σ are the vectors of Lagrange multipliers.
We take partial derivatives of the above equation and let them be zero

∂L
∂w1

= K{A
′
1,C

⊤
1 }⊤(K{A

′
1,C

⊤
1 }w1 + e1b1)+K{A

′
1,C

⊤
1 }⊤β1

−K{A
′
1,C

⊤
1 }⊤β2 +K{B

′
1,C

⊤
1 }⊤α1 = 0,

∂L
∂b1

= e⊤1 (K{A
′
1,C

⊤
1 }w1 + e1b1)+ e⊤1 β1 − e⊤1 β2 + e⊤2 α1 = 0,

∂L
∂w2

= K{A
′
2,C

⊤
2 }⊤(K{A

′
2,C

⊤
2 }w2 + e1b2)−K{A

′
2,C

⊤
2 }⊤β1

+K{A
′
2,C

⊤
2 }⊤β2 +K{B

′
2,C

⊤
2 }⊤α2 = 0,

∂L
∂b2

= e⊤1 (K{A
′
2,C

⊤
2 }w2 + e1b2)− e⊤1 β1 + e⊤1 β2 + e⊤2 α2 = 0,

∂L
∂q1

= c1e2 −α1 −λ1 = 0,

∂L
∂q2

= c2e2 −α2 −λ2 = 0,

∂L
∂η

= De1 −β1 −β2 −σ = 0.

(28)

Let

E1 = (K{A
′
1,C

⊤
1 },e1),F1 = (K{B

′
1,C

⊤
1 },e2),

E2 = (K{A
′
2,C

⊤
2 },e1),F2 = (K{B

′
2,C

⊤
2 },e2),

v1 =

(
w1
b1

)
, v2 =

(
w2
b2

)
.

(29)

From the above equations, we obtain



v1 = (E⊤
1 E1)

−1[E⊤
1 (β2 −β1)−F⊤

1 α1], (30)

v2 = (E⊤
2 E2)

−1[E⊤
2 (β1 −β2)−F⊤

2 α2]. (31)

It follows that

L = (α1 +α2)
⊤e2 −

1
2
[(β2 −β1)

⊤E1 −α⊤
1 F1]

(E⊤
1 E1)

−1[E⊤
1 (β2 −β1)−F⊤

1 α1]−
1
2
[(β1 −β2)

⊤E2

−α⊤
2 F2](E⊤

2 E2)
−1[E⊤

2 (β1 −β2)−F⊤
2 α2].

(32)

Therefore, the dual optimization formulation is

min
ξ1,ξ2,α1,α2

1
2

ξ⊤
1 (E⊤

1 E1)
−1ξ1 +

1
2

ξ⊤
2 (E⊤

2 E2)
−1ξ2 − (α1 +α2)

⊤e2

s.t. ξ1 = E⊤
1 (β2 −β1)−F⊤

1 α1,

ξ2 = E⊤
2 (β1 −β2)−F⊤

2 α2,

0 ≼ β1,β2,β1 +β2 ≼ De1,

0 ≼ α1/2 ≼ c1/2e2.

(33)

Similarly we obtain the other dual problem

min
ρ1,ρ2,λ1,λ2

1
2

ρ⊤
1 (F⊤

1 F1)
−1ρ1 +

1
2

ρ⊤
2 (F⊤

2 F2)
−1ρ2 − (λ1 +λ2)

⊤e1

s.t. ρ1 = F⊤
1 (γ2 − γ1)−E⊤

1 λ1,

ρ2 = F⊤
2 (γ1 − γ2)−E⊤

2 λ2,

0 ≼ γ1,γ2,γ1 + γ2 ≼ He2,

0 ≼ λ1/2 ≼ d1/2e1

(34)

and the augmented vectors u1 =

(
w3
b3

)
, u2 =

(
w4
b4

)
are given by

u1 = (B⊤
1 B1)

−1[B⊤
1 (γ2 − γ1)−A⊤

1 λ1], (35)

u2 = (B⊤
2 B2)

−1[B⊤
2 (γ1 − γ2)−A⊤

2 λ2]. (36)

Suppose an example x has two views x1 and x2. If 1
2 (|K{x⊤1 ,C

⊤
1 }w1+b1|+|K{x⊤2 ,C

⊤
2 }w2+

b2|) ≤ 1
2 (|K{x⊤1 ,C

⊤
1 }w3 +b3|+ |K{x⊤2 ,C

⊤
2 }w4 +b4|), it is classified to class +1, other-

wise class −1. For clarity, we explicitly state our kernel twin support vector machines
algorithm in Algorithm 2.



Algorithm 2 Kernel multi-view twin support vector machines

1: Input: A
′
1, A

′
2, B

′
1, B

′
2.

2: Choose a kernel function K.
3: Obtain E1, E2, F1, F2 using (29).
4: Select penalty parameters c1, c2, D, d1, d2 and H. Usually these parameters are

selected based on cross-validation.
5: Determine parameters of two decision functions (v1,v2) and (u1,u2) using (30), (31),

(35), (36).
6: Calculate the decision function values 1

2 (|K{x⊤1 ,C
⊤
1 }w1+b1|+ |K{x⊤2 ,C

⊤
2 }w2+b2|)

and 1
2 (|K{x⊤1 ,C

⊤
1 }w3 +b3|+ |K{x⊤2 ,C

⊤
2 }w4 +b4|) for a new example x with x1 and

x2.
7: Assign the example to class +1 or −1 based on the minimum of the decision function

values 1
2 (|K{x⊤1 ,C

⊤
1 }w1 + b1|+ |K{x⊤2 ,C

⊤
2 }w2 + b2|) and 1

2 (|K{x⊤1 ,C
⊤
1 }w3 + b3|+

|K{x⊤2 ,C
⊤
2 }w4 +b4|).

5. Experiments

In this section, we evaluate our proposed MvTSVMs on three real-world datasets. Two
datasets are from UCI Machine Learning Repository: ionosphere classification and hand-
written digits classification. The other dataset is about advertisement classification. De-
tails about the three datasets are listed in Table 1.

Table 1. Datasets.

Name Attributes Instances Classes

Ionosphere 34 351 2

Handwritten digits 649 2000 10

Advertisement 587/967 3279 2

5.1. Ionosphere

The ionosphere dataset was collected by a system in Goose Bay, Labrador. This system
consists of a phased array of 16 high-frequency antennas with a total transmitted power
on the order of 6.4 kilowatts. The targets were free electrons in the ionosphere. “Good”
radar returns are those showing evidence of some type of structure in the ionosphere.
“Bad” returns are those that do not and their signals pass through the ionosphere. It
includes 351 instances in total which are divided into 225 “Good” (positive) instances
and 126 “Bad” (negative) instances.

In our experiments, we regard original data as the first view. Then we capture 99% of
the data variance while reducing the dimensionality from 34 to 21 with PCA and regard
the resultant data as the second view. We use five-fold cross-validation to get the average
classification accuracy rates and use a grid search strategy to select best parameters for
all involved methods in the region [2−7,27] with exponential growth 0.5. Linear kernel
is chosen for the dataset. From the experimental results in Table 2, we can find that our
method MvTSVMs performs better than all the other methods. SVM-2K performs nearly
as well as single-view TSVM2, though still behaves worse than MvTSVMs.



Table 2. Classification accuracies and standard deviations (%) on Ionosphere.

Method single-view TSVM1 single-view TSVM2 SVM-2K MvTSVMs

Accuracy 86.62±2.11 88.88±3.12 88.31±6.02 90.59±4.60

Table 3. Classification accuracies and standard deviations (%) on Handwritten digits.

Method single-view TSVM1 single-view TSVM2 SVM-2K MvTSVMs

Accuracy 78.75±3.64 94.00±4.79 94.75±3.26 96.70±2.22

Table 4. Classification accuracies and standard deviations (%) on Advertisement.

Method single-view TSVM1 single-view TSVM2 SVM-2K MvTSVMs

Accuracy 93.60±1.95 90.20±1.79 92.60±2.88 96.40±1.95

5.2. Handwritten digits

This dataset consists of features of handwritten digits (0 ∼ 9) extracted from a collec-
tion of Dutch utility maps. It consists of 2000 examples (200 examples per class) with
view 1 being the 76 Fourier coefficients and view 2 being the 64 Karhunen-Love coef-
ficients of each example image. Because TSVMs are designed for binary classification
while handwritten digits dataset contains 10 classes. We choose pairs (1,7) for the ex-
periment. Gaussian kernel is chosen for the dataset. The experimental setting is the same
as the above experiment. From the experimental results in Table 3, we can conclude that
MvTSVMs is superior to single-view methods and SVM-2K.

5.3. Advertisement

The dataset consists of 3279 examples including 459 ads images (positive examples)
and 2820 non-ads images (negative examples). The first view describes the image it-
self (words in the images URL, alt text and caption), while the other view contains all
other features (words from the URLs of the pages that contain the image and the im-
age points to). Here, we randomly select 500 examples therein to form the used data
set. Gaussian kernel is chosen for the dataset. The experiment setting is the same as the
above two experiments. From the experimental results in Table 4, we can find that our
method MvTSVMs performs better than all the other methods. SVM-2K performs better
than single-view TSVM2, though still behaves worse than MvTSVMs and single-view
TSVM1.

6. Conclusion and Future Work

In this paper, we have proposed a novel classification method called multi-view twin
support vector machines, which combine two views by introducing the constraint of sim-
ilarity between two one-dimensional projections identifying two distinct TSVMs from
two feature spaces. MvTSVMs construct a decision function by solving two quadratic



programming problems. We provide their dual formulation making use of Lagrange dual
optimization techniques. Experimental results on multiple real-world datasets indicate
that MvTSVMs are superior to single-view TSVMs and SVM-2K in classification perfor-
mance. It would be interesting for future work to extend MvTSVMs to semi-supervised
learning, which considers to use both labeled and unlabeled examples for classification.
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