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Abstract Twin support vector machines are a recently proposed learning method for

pattern classification. They learn two hyperplanes rather than one as in usual support

vector machines and often bring performance improvements. Semi-supervised learning

has attracted great attention in machine learning in the last decade. Laplacian support

vector machines and Laplacian twin support vector machines have been proposed in

the semi-supervised learning framework. In this paper, inspired by the recent success

of multi-view learning we propose multi-view Laplacian twin support vector machines,

whose dual optimization problems are quadratic programming problems. We further

extend them to kernel multi-view Laplacian twin support vector machines. Experimen-

tal results demonstrate that our proposed methods are effective.
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1 Introduction

Support vector machines (SVMs) are a state-of-the-art tool for pattern classification

and regression problems [1–3], which originate from the idea of structural risk miniza-

tion in statistical learning theory. SVMs can learn a nonlinear decision function which

is linear in a potentially high-dimensional feature space [4] with the aid of the ker-

nel trick. In practice, SVMs have been applied to a variety of domains such as object

detection, text categorization, bioinformatics and image classification, etc.

In order to reduce the computational cost of SVMs, proximal support vector ma-

chines (PSVMs) [5] have been proposed. Compared with SVMs, PSVMs solve a linear

equation with time complexity O(d3) (d is the dimension of the examples) while SVMs

solve the convex optimization problem. In essence, PSVMs classify the examples by

a hyperplane on the premise of guaranteeing the maximum margin. Mangasarian and

Wild [6] proposed generalized eigenvalue proximal SVMs (GEPSVMs) which are an

extension of PSVMs for binary classification. Instead of finding a single hyperplane as

in PSVMs, GEPSVMs find two nonparallel hyperplanes such that each hyperplane is

as close as possible to examples from one class and as far as possible to examples from

the other class. The two hyperplanes are obtained by eigenvectors corresponding to

the smallest eigenvalues of two related generalized eigenvalue problems. Jayadeva et

al. [7] proposed another nonparallel hyperplane classifier called twin SVMs (TSVMs),

which aim to generate two nonparallel hyperplanes such that one of the hyperplanes

is closer to one class and has a certain distance to the other class. The formulation of

TSVMs is different from that of GEPSVMs and is similar to SVMs. TSVMs solve a

pair of quadratic programming problems (QPPs), whereas SVMs solve a single QPP.

This strategy of solving two smaller sized QPPs rather than one large QPP makes

TSVMs work faster than standard SVMs [7]. Experimental results [8] show that non-

parallel hyperplane classifiers given by TSVMs can indeed improve the performance of

conventional SVMs [9–14].

In many machine learning tasks [15–18], labeled examples are often difficult and

expensive to obtain, while unlabeled examples may be relatively easy to collect. Semi-

supervised learning has attracted a great deal of attention in the last decade to deal

with this situation. It can be superior to the performance of the counterpart supervised

learning approaches if the unlabeled data are properly used. Some extensions of SVMs

and TSVMs from supervised learning to semi-supervised learning have been proposed,

e.g., transductive SVMs, semi-supervised support vector machines, Laplacian support

vector machines (LapSVMs), Laplacian twin support vector machines (LapTSVMs)

[19–24]. LapTSVMs [24] are a successful combination of semi-supervised learning and

TSVMs, which are a generalized framework of twin support vector machines for learning

from labeled and unlabeled data. By choosing appropriate parameters, LapTSVMs

can degenerate to TSVMs [25,26]. Experimental results showed that LapTSVMs are

superior to LapSVMs and TSVMs in classification accuracy and the training time is

more economical than LapSVMs and TSVMs.

In many real-world applications, multi-modal data are very common because of the

use of different measuring methods (e.g., infrared and visual cameras), or of different

media (e.g., text, video and audio) [27]. For example, web pages can be represented

by a vector for the words in the web page text and another vector for the words in

the anchor text of a hyper-link. In content-based web-image retrieval, an image can

be simultaneously described by visual features and the text surrounding the image.

Multi-view learning (MVL) is an emerging direction which aims to improve classifiers
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by leveraging the complementarity and consistency among distinct views [28–30]. The

theories on MVL can be classified to four categories which are canonical correlation

analysis, effectiveness of co-training, generalization error analysis for co-training and

generalization error analysis for other MVL approaches [27].

SVM-2K is a successful combination of MVL and SVMs which combines the maxi-

mum margin and multi-view regularization principles to leverage two views to improve

classification performance [31]. Farquhar et al. [31] have provided a theoretical anal-

ysis to illuminate the effectiveness of SVM-2K, showing a significant reduction in the

Rademacher complexity of the corresponding function class. Sun and Shawe-Taylor

characterized the generalization error of multi-view sparse SVMs [32] and multi-view

LapSVMs (MvLapSVMs) [33] in terms of the margin bound and derived the empirical

Rademacher complexity of the considered function classes [34]. MvLapSVMs integrate

three regularization terms respectively on function norm, manifold and multi-view

regularization in the objective function. However, there is no existing multi-view ex-

tension for LapTSVMs although LapTSVMs are superior to LapSVMs. In this paper,

we extend LapTSVMs to our new frameworks named by multi-view Laplacian twin

support vector machines (MvLapTSVMs) which combine two views by introducing

the constraint of similarity between two one-dimensional projections identifying two

distinct TSVMs from two feature spaces. Compared to MvLapSVMs, there are two

main differences. First, LapSVMs and LapTSVMs are different in the principle though

they commonly use the manifold regularization term for semi-supervised learning.

MvLapSVMs are based on LapSVMs while MvLapTSVMs are based on LapTSVMs.

Second, MvLapTSVMs combine two views in the constraints rather than in the objec-

tive function. Experimental results validate that our proposed methods are effective.

The remainder of this paper proceeds as follows. Section 2 briefly reviews related

work including SVMs, TSVMs, LapSVMs, LapTSVMs and SVM-2K. Section 3 intro-

duces our proposed linear MvLapTSVMs and kernel MvLapTSVMs. After reporting

experimental results in Section 4, we give conclusions in Section 5.

2 Related work

In this section, we briefly review SVMs, TSVMs, LapSVMs, LapTSVMs and SVM-2K.

They constitute the foundation of our subsequent proposed methods.

2.1 SVMs and TSVMs

Suppose there are l examples represented by matrix A with the ith row Ai (i =

1, 2, · · · , l) being the ith example. Let yi ∈ {1,−1} denote the class to which the

ith example belongs. For simplicity, here we only review the linearly separable case [1].

Then, we need to determine w ∈ Rd and b ∈ R such that

yi(Aiw + b) ≥ 1. (1)

The hyperplane described by w⊤x + b = 0 lies midway between the bounding hyper-

planes given by w⊤x + b = 1 and w⊤x + b = −1. The margin of separation between

the two classes is given by 2
∥w∥ , where ∥w∥ denotes the ℓ2 norm of w. Support vectors
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are those training examples lying on the above two hyperplanes. The standard SVMs

[1] are obtained by solving the following problem

min
w,b

1

2
w⊤w

s.t. ∀i : yi(Aiw + b) ≥ 1.

(2)

The decision function is

f(x) = sign(w⊤x+ b). (3)

Then we introduce TSVMs [7]. Suppose examples belonging to classes 1 and −1

are represented by matrices A+ and B−, and the size of A+ and B− are (l1 × d) and

(l2×d), respectively. We define two matrices A, B and four vectors v1, v2, e1, e2, where

e1 and e2 are vectors of ones of appropriate dimensions and

A = (A+, e1), B = (B−, e2), v1 =

(
w1

b1

)
, v2 =

(
w2

b2

)
. (4)

TSVMs obtain two nonparallel hyperplanes

w⊤
1 x+ b1 = 0 and w⊤

2 x+ b2 = 0 (5)

around which the examples of the corresponding class get clustered. The classifier is

given by solving the following QPPs separately

(TSVM1)

min
v1,q1

1

2
(Av1)

⊤(Av1) + c1e
⊤
2 q1

s.t. −Bv1 + q1 ≽ e2, q1 ≽ 0,

(6)

(TSVM2)

min
v2,q2

1

2
(Bv2)

⊤(Bv2) + c2e
⊤
1 q2

s.t. Av2 + q2 ≽ e1, q2 ≽ 0,

(7)

where c1, c2 are nonnegative parameters and q1, q2 are slack vectors of appropriate

dimensions. The label of a new example x is determined by the minimum of |x⊤wr+br|
(r = 1, 2) which are the perpendicular distances of x to the two hyperplanes given in

(5).

2.2 LapSVMs

LapSVMs combine manifold regularization and SVMs [22]. Suppose x1, · · · , xl+u ∈ Rd

represent a set of examples including l labeled examples and u unlabeled examples.

W(l+u)×(l+u) represents the similarity of every pair of examples

Wij = exp(− ∥ xi − xj ∥2 /2σ2), (8)
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where σ is a scale parameter. The manifold regularization can be written as

Reg(f) =
1

2

l+u∑
i,j=1

Wij(f(xi)− f(xj))
2

=

l+u∑
i=1

(

l+u∑
j=1

Wij)f
2(xi)−

l+u∑
i,j=1

Wijf(xi)f(xj)

= f⊤(V −W)f = f⊤Lf ,

(9)

where function f : Rd → R and f=[f(x1), · · · , f(xl+u)]. The matrix V is diagonal with

the ith diagonal entry Vii =
∑l+u

j=1 Wij . The matrix L = V − W and L is the graph

Laplacian of W . LapSVMs have the following optimization problem

min
f∈H

1

l

l∑
i=1

(1− yif(xi))+ + γA∥f∥2

+
γI

(u+ l)2

l+u∑
i,j=1

Wij(f(xi)− f(xj))
2,

(10)

where H is the RKHS induced by a kernel. γA and γI are respectively ambient and

intrinsic regularization coefficients.

2.3 LapTSVMs

The square loss function and hinge loss function are used for TSVMs from supervised

learning to semi-supervised learning. LapTSVMs [24] are similar to LapSVMs in the

sense of manifold regularization. The optimization problems of LapTSVMs can be

written as

min
w1,b1,ξ

1

2
∥A+w1 + e1b1∥2 + c1e

⊤
2 ξ +

1

2
c2(∥w1∥2 + b21)

+
1

2
c3(w

⊤
1 M⊤ + e⊤b1)L(Mw1 + eb1)

s.t. − (B−w1 + e2b1) + ξ ≽ e2, ξ ≽ 0,

(11)

min
w2,b2,η

1

2
∥B−w2 + e2b2∥2 + c1e

⊤
1 η +

1

2
c2(∥w2∥2 + b22)

+
1

2
c3(w

⊤
2 M⊤ + e⊤b2)L(Mw2 + eb2)

s.t. − (A+w2 + e1b2) + η ≽ e1, η ≽ 0,

(12)

where M includes all of labeled data and unlabeled data. L is the graph Laplacian.

e1, e2 and e are vectors of ones of appropriate dimensions. w1, b1, w2, b2 are classifier

parameters. c1, c2 and c3 are nonnegative parameters. ξ and η are slack vectors of

appropriate dimensions. The dual problem of (11) and (12) respectively can be written

as

max
α

e⊤2 α− 1

2
α⊤G(H⊤H + c2I + c3J

⊤LJ)−1G⊤α

s.t. 0 ≼ α ≼ c1e2,
(13)
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max
β

e⊤1 β − 1

2
β⊤H(G⊤G+ c2I + c3J

⊤LJ)−1H⊤β

s.t. 0 ≼ β ≼ c1e1,

(14)

where

v1 =

(
w1

b1

)
, v2 =

(
w2

b2

)
,

H = (A+, e1), J = (M, e), G = (B−, e2).

(15)

α and β are the vectors of nonnegative Lagrange multipliers. I is an identity matrix of

appropriate dimensions. v1, v2 can be obtained simultaneously

v1 = −(H⊤H + c2I + c3J
⊤LJ)−1G⊤α, (16)

v2 = −(G⊤G+ c2I + c3J
⊤LJ)−1H⊤β. (17)

According to matrix theory, it can be easily proved that H⊤H + c2I + c3J
⊤LJ is a

positive definite matrix. LapTSVMs obtain two nonparallel hyperplanes

w⊤
1 x+ b1 = 0 and w⊤

2 x+ b2 = 0. (18)

The label of a new example x is determined by the minimum of |x⊤wr + br| (r = 1, 2)

which are the perpendicular distances of x to the two hyperplanes given in (18).

2.4 SVM-2K

Suppose that we are given two views of the same data, view 1 is represented by a feature

projection ϕA with the corresponding kernel function kA and view 2 is represented by

a feature projection ϕB with the corresponding kernel function kB . Then the two-

view data are given by a set S = {(ϕA(x1), ϕB(x1)), · · · , (ϕA(xn), ϕB(xn))}. SVM-2K

[31] combines the two views by introducing the constraint of similarity between two

one-dimensional projections identifying two distinct SVMs from the two feature spaces:

|⟨wA, ϕA(xi)⟩+ bA − ⟨wB , ϕB(xi)⟩ − bB | ≤ ηi + ϵ (19)

where wA, bA, wB , bB are the weight and threshold of the first (second) SVMs. The

SVM-2K method has the following optimization for classifier parameters wA, bA, wB ,

bB

min
wA,wB ,q1i,q2i,ηi

1

2
∥wA∥2 +

1

2
∥wB∥2 + c1

n∑
i=1

q1i + c2

n∑
i=1

q2i +D

n∑
i=1

ηi

s.t. |⟨wA, ϕA(xi)⟩+ bA − ⟨wB , ϕB(xi)⟩ − bB | ≤ ηi + ϵ,

yi(⟨wA, ϕA(xi)⟩+ bA) ≥ 1− q1i,

yi(⟨wB , ϕB(xi)⟩+ bB) ≥ 1− q2i,

q1i ≥ 0, q2i ≥ 0, ηi ≥ 0, all for 1 ≤ i ≤ n,

(20)

where D, c1, c2, ϵ are nonnegative parameters and q1i, q2i, ηi are slack vectors of ap-

propriate dimensions. Let ŵA, ŵB , b̂A, b̂B be the solution to this optimization problem.
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The final SVM-2K decision function is f(x) = 1
2 (⟨ŵA, ϕA(x)⟩+ b̂A+⟨ŵB , ϕB(x)⟩+ b̂B).

The dual formulation of the above optimization problem can be written as

min
ξAi ,ξAj ,ξBi ,ξBj ,αA

i ,αB
i

1

2

n∑
i,j=1

(ξAi ξAj kA(xi, xj) + ξBi ξBj kB(xi, xj))−
n∑

i=1

(αA
i + αB

i )

s.t. ξAi = αA
i yi − β+

i + β−
i ,

ξBi = αB
i yi + β+

i − β−
i ,

n∑
i=1

ξAi =

n∑
i=1

ξBi = 0,

0 ≤ β+
i , β−

i , β+
i + β−

i ≤ D,

0 ≤ α
A/B
i ≤ c1/2,

(21)

where αA
i , αB

i , β+
i , β−

i are the vectors of nonnegative Lagrange multipliers and we

have taken ϵ = 0. The prediction function for each view is given by

fA/B(x) =

n∑
i=1

ξ
A/B
i kA/B(xi, x) + bA/B . (22)

3 Our proposed methods

3.1 Linear MvLapTSVMs

In this part, we extend LapTSVMs to multi-view learning. Here on view 1, positive

examples are represented by A
′

1 and negative examples are represented by B
′

1. On view

2, positive examples are represented by A
′

2 and negative examples are represented by

B
′

2. The optimization problems of linear MvLapTSVMs can be written as

min
w1,w2,b1,b2,q1,q2,η

1

2
∥A

′

1w1 + e1b1∥2 +
1

2
∥A

′

2w2 + e1b2∥2 + c1e
⊤
2 q1 + c2e

⊤
2 q2

+
1

2
c3(∥w1∥2 + b21 + ∥w2∥2 + b22)

+
1

2
c4[(w

⊤
1 M

′⊤
1 + e⊤b1)L1(M

′

1w1 + eb1)

+ (w⊤
2 M

′⊤
2 + e⊤b2)L2(M

′

2w2 + eb2)] +De⊤1 η

s.t. |A
′

1w1 + e1b1 −A
′

2w2 − e1b2| ≼ η,

−B
′

1w1 − e2b1 + q1 ≽ e2,

−B
′

2w2 − e2b2 + q2 ≽ e2,

q1 ≽ 0, q2 ≽ 0,

η ≽ 0,

(23)
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min
w3,w4,b3,b4,q3,q4,ζ

1

2
∥B

′

1w3 + e2b3∥2 +
1

2
∥B

′

2w4 + e2b4∥2 + c1e
⊤
1 q3 + c2e

⊤
1 q4

+
1

2
c3(∥w3∥2 + b23 + ∥w4∥2 + b24)

+
1

2
c4[(w

⊤
3 M

′⊤
1 + e⊤b3)L1(M

′

1w3 + eb3)

+ (w⊤
4 M

′⊤
2 + e⊤b4)L2(M

′

2w4 + eb4)] +He⊤2 ζ

s.t. |B
′

1w3 + e2b3 −B
′

2w4 − e2b4| ≼ ζ,

−A
′

1w3 − e1b3 + q3 ≽ e1,

−A
′

2w4 − e1b4 + q4 ≽ e1,

q3 ≽ 0, q4 ≽ 0,

ζ ≽ 0,

(24)

where M
′

1 includes all of labeled data and unlabeled data from view 1. M
′

2 includes all

of labeled data and unlabeled data from view 2. L1 is the graph Laplacian of view 1

and L2 is the graph Laplacian of view 2. e1, e2 and e are vectors of ones of appropriate

dimensions. w1, b1, w2, b2, w3, b3, w4, b4 are classifier parameters. c1, c2, c3 and c4
are nonnegative parameters. q1, q2, q3, q4, η and ζ are slack vectors of appropriate

dimensions.

The Lagrangian of the optimization problem (23) is given by

L =
1

2
∥A

′

1w1 + e1b1∥2 +
1

2
∥A

′

2w2 + e1b2∥2 + c1e
⊤
2 q1 + c2e

⊤
2 q2 +

1

2
c3(∥w1∥2 + b21

+ ∥w2∥2 + b22) +
1

2
c4[(w

⊤
1 M

′⊤
1 + e⊤b1)L1(M

′

1w1 + eb1) + (w⊤
2 M

′⊤
2 + e⊤b2)

L2(M
′

2w2 + eb2)] +De⊤1 η − β⊤
1 (η −A

′

1w1 − e1b1 +A
′

2w2 + e1b2)

− β⊤
2 (A

′

1w1 + e1b1 −A
′

2w2 − e1b2 + η)− α⊤
1 (−B

′

1w1 − e2b1 + q1 − e2)

− α⊤
2 (−B

′

2w2 − e2b2 + q2 − e2)− λ⊤1 q1 − λ⊤2 q2 − σ⊤η,

(25)

where α1, α2, β1, β2, λ1, λ2 and σ are the vectors of nonnegative Lagrange multipliers.

We take partial derivatives of the above equation and let them be zero

∂L

∂w1
= A

′⊤
1 (A

′

1w1 + e1b1) + c3w1 + c4M
′⊤
1 L1(M

′

1w1 + eb1)

+A
′⊤
1 β1 −A

′⊤
1 β2 +B

′⊤
1 α1 = 0,

∂L

∂b1
= e⊤1 (A

′

1w1 + e1b1) + c3b1 + c4e
⊤L1(M

′

1w1 + eb1)

+ e⊤1 β1 − e⊤1 β2 + e⊤1 α1 = 0,

∂L

∂w2
= A

′⊤
2 (A

′

2w2 + e1b2) + c3w2 + c4M
′⊤
2 L2(M

′

2w2 + eb2)

−A
′⊤
2 β1 +A

′⊤
2 β2 +B

′⊤
2 α2 = 0,

∂L

∂b2
= e⊤1 (A

′

2w2 + e1b2) + c3b2 + c4e
⊤L2(M

′

2w2 + eb2)

− e⊤1 β1 + e⊤1 β2 + e⊤2 α2 = 0,

(26)
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∂L

∂q1
= c1e2 − α1 − λ1 = 0,

∂L

∂q2
= c2e2 − α2 − λ2 = 0,

∂L

∂η
= De1 − β1 − β2 − σ = 0.

We define

A1 = (A
′

1, e1), A2 = (A
′

2, e1), B1 = (B
′

1, e2), B2 = (B
′

2, e2),

J1 = (M
′

1, e), J2 = (M
′

2, e), v1 =

(
w1

b1

)
, v2 =

(
w2

b2

)
.

(27)

From the above equations, we obtain

A⊤
1 A1v1 + c3v1 + c4J

⊤
1 L1J1v1 +A⊤

1 β1 −A⊤
1 β2 +B⊤

1 α1 = 0, (28)

A⊤
2 A2v2 + c3v2 + c4J

⊤
2 L2J2v2 −A⊤

2 β1 +A⊤
2 β2 +B⊤

2 α2 = 0. (29)

It follows that

v1 = (A⊤
1 A1 + c3I + c4J

⊤
1 L1J1)

−1[A⊤
1 (β2 − β1)−B⊤

1 α1], (30)

v2 = (A⊤
2 A2 + c3I + c4J

⊤
2 L2J2)

−1[A⊤
2 (β1 − β2)−B⊤

2 α2]. (31)

We substitute (30), (31) into (25) and get

L = (α1 + α2)
⊤e2 − 1

2
[(β2 − β1)

⊤A1 − α⊤
1 B1](A

⊤
1 A1 + c3I

+ c4J
⊤
1 L1J1)

−1[A⊤
1 (β2 − β1)−B⊤

1 α1]−
1

2
[(β1 − β2)

⊤A2

− α⊤
2 B2](A

⊤
2 A2 + c3I + c4J

⊤
2 L2J2)

−1[A⊤
2 (β1 − β2)−B⊤

2 α2].

(32)

Therefore, the dual optimization formulation is

min
ξ1,ξ2,α1,α2

1

2
ξ⊤1 (A⊤

1 A1 + c3I + c4J
⊤
1 L1J1)

−1ξ1 +
1

2
ξ⊤2 (A⊤

2 A2 + c3I + c4J
⊤
2 L2J2)

−1ξ2

− (α1 + α2)
⊤e2

s.t. ξ1 = A⊤
1 (β2 − β1)−B⊤

1 α1,

ξ2 = A⊤
2 (β1 − β2)−B⊤

2 α2,

0 ≼ β1, β2, β1 + β2 ≼ De1,

0 ≼ α1/2 ≼ c1/2e2.

(33)

Applying the same techniques to (24), we obtain its corresponding dual optimiza-

tion formulation as

min
ρ1,ρ2,ω1,ω2

1

2
ρ⊤1 (B⊤

1 B1 + c3I + c4J
⊤
1 L1J1)

−1ρ1 +
1

2
ρ⊤2 (B⊤

2 B2 + c3I + c4J
⊤
2 L2J2)

−1ρ2

− (ω1 + ω2)
⊤e1

s.t. ρ1 = B⊤
1 (γ2 − γ1)−A⊤

1 ω1,

ρ2 = B⊤
2 (γ1 − γ2)−A⊤

2 ω2,

0 ≼ γ1, γ2, γ1 + γ2 ≼ He2,

0 ≼ ω1/2 ≼ c1/2e1,

(34)
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where the augmented vectors u1 =

(
w3

b3

)
, u2 =

(
w4

b4

)
are given by

u1 = (B⊤
1 B1 + c3I + c4J

⊤
1 L1J1)

−1[B⊤
1 (γ2 − γ1)−A⊤

1 ω1], (35)

u2 = (B⊤
2 B2 + c3I + c4J

⊤
2 L2J2)

−1[B⊤
2 (γ1 − γ2)−A⊤

2 ω2]. (36)

For an example x with x
′

1 and x
′

2, if
1
2 (|x

⊤
1 v1|+ |x⊤2 v2|) ≤ 1

2 (|x
⊤
1 u1|+ |x⊤2 u2|), where

x1 = (x
′

1, 1) and x2 = (x
′

2, 1), it is classified to class +1, otherwise class −1.

Now we compare SVM-2K and MvLapTSVMs. SVM-2K is a multi-view supervised

learning method for SVMs while MvLapTSVMs are multi-view semi-supervised learn-

ing methods for TSVMs. Suppose the number of samples from either class is equal to

l/2. SVM-2K solves a single QPP and has the computational complexity of O((2l)3),

while MvLapTSVMs solve a pair of QPPs and have the computational complexity of

O(2l3). About hyper-parameter selection, SVM-2K needs three hyper-parameters to se-

lect, and MvLapTSVMs need five hyper-parameters to select. Therefore, MvLapTSVM-

s are more efficient for multi-view learning in computational complexity.

3.2 Kernel MvLapTSVMs

Now we extend the linear MvLapTSVMs to the nonlinear case. The kernel-induced

hyperplanes are:

K{x⊤1 , C⊤
1 }λ1 + b1 = 0, K{x⊤2 , C⊤

2 }λ2 + b2 = 0,

K{x⊤1 , C⊤
1 }λ3 + b3 = 0, K{x⊤2 , C⊤

2 }λ4 + b4 = 0,
(37)

where K is a chosen kernel function which is defined by K{xi, xj} = (Φ(xi), Φ(xj)).

Φ(·) is a nonlinear mapping from a low-dimensional feature space to a high-dimensional

feature space. C1 and C2 denote training examples from view 1 and view 2 respectively,

that is, C1 = (A
′⊤
1 , B

′⊤
1 )⊤, C2 = (A

′⊤
2 , B

′⊤
2 )⊤.

The optimization problems can be written as

min
λ1,λ2,b1,b2,q1,q2,η

1

2
∥K{A

′

1, C
⊤
1 }λ1 + e1b1∥2 +

1

2
∥K{A

′

2, C
⊤
2 }λ2 + e1b2∥2

+ c1e
⊤
2 q1 + c2e

⊤
2 q2 +

1

2
c3(λ

⊤
1 K1λ1 + b21 + λ⊤2 K2λ2 + b22)

+
1

2
c4[(λ

⊤
1 K1 + e⊤b1)L1(K1λ1 + eb1)

+ (λ⊤2 K2 + e⊤b2)L2(K2λ2 + eb2)] +De⊤1 η

s.t. |K{A
′

1, C
⊤
1 }λ1 + e1b1 −K{A

′

2, C
⊤
2 }λ2 − e1b2| ≼ η,

−K{B
′

1, C
⊤
1 }λ1 − e2b1 + q1 ≽ e2,

−K{B
′

2, C
⊤
2 }λ2 − e2b2 + q2 ≽ e2,

q1 ≽ 0, q2 ≽ 0,

η ≽ 0,

(38)
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min
λ3,λ4,b3,b4,q3,q4,ζ

1

2
∥K{B

′

1, C
⊤
1 }λ3 + e2b3∥2 +

1

2
∥K{B

′

2, C
⊤
2 }λ4 + e2b4∥2

+ c1e
⊤
1 q3 + c2e

⊤
1 q4 +

1

2
c3(λ

⊤
3 K1λ3 + b23 + λ⊤4 K2λ4 + b24)

+
1

2
c4[(λ

⊤
3 K1 + e⊤b3)L1(K1λ3 + eb3)

+ (λ⊤4 K2 + e⊤b4)L2(K2λ4 + eb4)] +He⊤2 ζ

s.t. |K{B
′

1, C
⊤
1 }λ3 + e2b3 −K(B

′

2, C
⊤
2 )λ4 − e2b4| ≼ ζ,

−K{A
′

1, C
⊤
1 }λ3 − e1b3 + q3 ≽ e1,

−K{A
′

2, C
⊤
2 }λ4 − e1b4 + q4 ≽ e1,

q3 ≽ 0, q4 ≽ 0,

ζ ≽ 0,

(39)

where K1 represents kernel matrix of view 1 and K2 represents kernel matrix of view

2. L1 is the graph Laplacian of view 1 and L2 is the graph Laplacian of view 2. e1,

e2 and e are vectors of ones of appropriate dimensions. λ1, b1, λ2, b2, λ3, b3, λ4, b4
are classifier parameters. c1, c2, c3 and c4 are nonnegative parameters. q1, q2, q3, q4,

η and ζ are slack vectors of appropriate dimensions.

The Lagrangian of the optimization problem (38) is given by

L =
1

2
∥K{A

′

1, C
⊤
1 }λ1 + e1b1∥2 +

1

2
∥K{A

′

2, C
⊤
2 }λ2 + e1b2∥2 + c1e

⊤
2 q1 + c2e

⊤
2 q2

+
1

2
c3(λ

⊤
1 K1λ1 + b21 + λ⊤2 K2λ2 + b22) +

1

2
c4[(λ

⊤
1 K1 + e⊤b1)L1(K1λ1 + eb1)

+ (λ⊤2 K2 + e⊤b2)L2(K2λ2 + eb2)] +De⊤1 η − β⊤
1 (η −K{A

′

1, C
⊤
1 }λ1

− e1b1 +K{A
′

2, C
⊤
2 }λ2 + e1b2)− β⊤

2 (K{A
′

1, C
⊤
1 }λ1 + e1b1 −K{A

′

2, C
⊤
2 }λ2

− e1b2 + η)− α⊤
1 (−K{B

′

1, C
⊤
1 }λ1 − e2b1 + q1 − e2)− α⊤

2 (−K{B
′

2, C
⊤
2 }λ2

− e2b2 + q2 − e2)− ξ⊤1 q1 − ξ⊤2 q2 − σ⊤η,

(40)

where α1, α2, β1, β2, ξ1, ξ2 and σ are the vectors of nonnegative Lagrange multipliers.

We take partial derivatives of the above equation and let them be zero

∂L

∂λ1
= K{A

′

1, C
⊤
1 }⊤(K{A

′

1, C
⊤
1 }λ1 + e1b1) + c3K1λ1 + c4K1L1(K1λ1 + eb1)

+K{A
′

1, C
⊤
1 }⊤β1 −K{A

′

1, C
⊤
1 }⊤β2 +K{B

′

1, C
⊤
1 }⊤α1 = 0,

∂L

∂b1
= e⊤1 (K{A

′

1, C
⊤
1 }λ1 + e1b1) + c3b1 + c4e

⊤L1(K1λ1 + eb1)

+ e⊤1 β1 − eT1 β2 + e⊤2 α1 = 0,

∂L

∂λ2
= K{A

′

2, C
⊤
2 }⊤(K{A

′

2, C
⊤
2 }λ2 + e1b2) + c3K2λ2 + c4K2L2(K2λ2 + eb2)

−K{A
′

2, C
⊤
2 }⊤β1 +K{A

′

2, C
⊤
2 }⊤β2 +K{B

′

2, C
⊤
2 }⊤α2 = 0,

∂L

∂b2
= e⊤1 {K(A

′

2, C
⊤
2 }λ2 + e1b2) + c3b2 + c4e

⊤L2(K2λ2 + eb2)

− e⊤1 β1 + e⊤1 β2 + e⊤2 α2 = 0,

(41)
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∂L

∂q1
= c1e2 − α1 − ξ1 = 0,

∂L

∂q2
= c2e2 − α2 − ξ2 = 0,

∂L

∂η
= De1 − β1 − β2 − δ = 0.

Let

Hϕ = (K{A
′

1, C
⊤
1 }, e1), Gϕ = (K{B

′

1, C
⊤
1 }, e2), Oϕ =

(
K1 0
0 1

)
,

Jϕ = (K1, e), Qϕ = (K{A
′

2, C
⊤
2 }, e1), Pϕ = (K{B

′

2, C
⊤
2 }, e2),

Uϕ =
(
K2 0
0 1

)
, Fϕ = (K2, e), θ1 =

(
λ1
b1

)
, θ2 =

(
λ2
b2

)
.

(42)

From the above equations, we obtain

H⊤
ϕ Hϕθ1 + c3Oϕθ1 + c4J

⊤
ϕ L1Jϕθ1 +H⊤

ϕ β1 −H⊤
ϕ β2 +G⊤

ϕ α1 = 0, (43)

Q⊤
ϕQϕθ2 + c3Uϕθ2 + c4F

⊤
ϕ L2Fϕθ2 −Q⊤

ϕ β1 +Q⊤
ϕ β2 + P⊤

ϕ α1 = 0. (44)

It follows that

θ1 = (H⊤
ϕ Hϕ + c3Oϕ + c4J

⊤
ϕ L1Jϕ)

−1[H⊤
ϕ (β2 − β1)−G⊤

ϕ α1], (45)

θ2 = (Q⊤
ϕQϕ + c3Uϕ + c4F

⊤
ϕ L2Fϕ)

−1[Q⊤
ϕ (β1 − β2)− P⊤

ϕ α2]. (46)

We substitute (45), (46) into (40) and get

L = (α1 + α2)
⊤e2 − 1

2
[(β2 − β1)

⊤Hϕ − α⊤
1 Gϕ](H

⊤
ϕ Hϕ + c3Oϕ + c4J

⊤
ϕ L1Jϕ)

−1

[H⊤
ϕ (β2 − β1)−G⊤

ϕ α1]−
1

2
[(β1 − β2)

⊤Qϕ − α⊤
2 Fϕ](Q

⊤
ϕQϕ + c3Uϕ

+ c4F
⊤
ϕ L2Fϕ)

−1[Q⊤
ϕ (β1 − β2)− P⊤

ϕ α2].

(47)

Therefore, the dual optimization formulation is

min
ξ1,ξ2,α1,α2

1

2
ξ⊤1 (H⊤

ϕ Hϕ + c3Oϕ + c4J
⊤
ϕ L1Jϕ)

−1ξ1 +
1

2
ξ⊤2 (Q⊤

ϕQϕ + c3Uϕ + c4F
⊤
ϕ L2Fϕ)

−1ξ2

− (α1 + α2)
⊤e2

s.t. ξ1 = H⊤
ϕ (β2 − β1)−G⊤

ϕ α1,

ξ2 = Q⊤
ϕ (β1 − β2)− P⊤

ϕ α2,

0 ≼ β1, β2, β1 + β2 ≼ De1,

0 ≼ α1/2 ≼ c1/2e2.

(48)
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Table 1 Datasets.

Name Attributes Instances Classes

Ionosphere 34 351 2

Handwritten digits 649 2000 10

Advertisement 587/967 3279 2

Correspondingly, the dual optimization formulation for (39) is

min
ρ1,ρ2,ω1,ω2

1

2
ρ⊤1 (G⊤

ϕGϕ + c3Oϕ + c4J
⊤
ϕ L1Jϕ)

−1ρ1 +
1

2
ρ⊤2 (P⊤

ϕ Pϕ + c3Uϕ + c4F
⊤
ϕ L2Fϕ)

−1ρ2

− (ω1 + ω2)
⊤e1

s.t. ρ1 = G⊤
ϕ (γ2 − γ1)−H⊤

ϕ ω1,

ρ2 = P⊤
ϕ (γ1 − γ2)−Q⊤

ϕ ω2,

0 ≼ γ1, γ2, γ1 + γ2 ≼ He2,

0 ≼ ω1/2 ≼ c1/2e1,

(49)

where the augmented vectors π1 =

(
λ3
b3

)
, π2 =

(
λ4
b4

)
are given by

π1 = (G⊤
ϕGϕ + c3Oϕ + c4J

⊤
ϕ L1Jϕ)

−1[G⊤
ϕ (γ2 − γ1)−H⊤

ϕ ω1], (50)

π2 = (P⊤
ϕ Pϕ + c3Uϕ + c4F

⊤
ϕ L2Fϕ)

−1[P⊤
ϕ (γ1 − γ2)−Q⊤

ϕ ω2]. (51)

Suppose an example x has two views x1 and x2. If
1
2 (|K{x⊤1 , C⊤

1 }λ1+b1|+|K{x⊤2 , C⊤
2 }λ2+

b2|) ≤ 1
2 (|K{x⊤1 , C⊤

1 }λ3 + b3|+ |K{x⊤2 , C⊤
2 }λ4 + b4|), it is classified to class +1, oth-

erwise class −1.

4 Experimental results

In this section, we evaluate our proposed MvLapTSVMs on three real-world datasets.

Three datasets are from UCI Machine Learning Repository: ionosphere classification,

handwritten digits classification and advertisement classification. Details about the

three datasets are listed in Table 1.

4.1 Ionosphere

The ionosphere dataset 1 was collected by a system in Goose Bay, Labrador. This sys-

tem consists of a phased array of 16 high-frequency antennas with a total transmitted

power on the order of 6.4 kilowatts. The targets were free electrons in the ionosphere.

“Good” radar returns are those showing evidence of some type of structure in the

ionosphere. “Bad” returns are those that do not and their signals pass through the

1 http://archive.ics.uci.edu/ml/datasets/Ionosphere
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Table 2 Classification accuracies and standard deviations (%) on Ionosphere.

Method l = 70, u = 70 l = 70, u = 140

single-view LapTSVM1 88.17±1.61 88.45±1.84

single-view LapTSVM2 88.17±2.75 88.73±2.64

SVM-2K 83.38±3.78 83.38±3.78

MvTSVMs 87.32±2.23 87.32±2.23

MvLapTSVMs 89.01±1.84 89.29±1.60

ionosphere. It includes 351 instances in total which are divided into 225 “Good” (pos-

itive) instances and 126 “Bad” (negative) instances.

In our experiments, we regard original data as the first view. Then we capture 99%

of the data variance while reducing the dimensionality from 34 to 21 with PCA and

regard the resultant data as the second view. We compare MvLapSVMs with single-

view LapTSVMs (LapTSVM1 means using the LapTSVMs method to deal with one

view data and LapTSVM2 means using the LapTSVMs method to deal with the other

view data), SVM-2K and multi-view TSVMs (MvTSVMs)2. The result of experiment

varies by use of different size of unlabeled data. We select regularization parameters

from the range [2−7, 27] with exponential growth 0.5. The linear kernel is chosen for

the dataset. We select 70 labeled and 70 unlabeled examples as the training set (i.e.,

l = 70, u = 70). The unlabeled examples are randomly selected from both classes. The

size of the test data is 71. The result is in second column in Table 2. Then we select

70 labeled and 140 unlabeled examples as the training set (i.e., l = 70, u = 140). The

unlabeled examples are randomly selected from both classes. The size of the test data

is 71. The result is in third column. Each experiment is repeated five times. Experiment

result is in Table 2.

4.2 Handwritten digits

The handwritten digits dataset 3 consists of features of handwritten digits (0 ∼ 9)

extracted from a collection of Dutch utility maps. It consists of 2000 examples (200

examples per class) with view 1 being the 76 Fourier coefficients, and view 2 being the

64 Karhunen-Loève coefficients of each example image.

In this experiment, we compare MvLapSVMs with single-view LapTSVMs, SVM-

2K and MvTSVMs. Because TSVMs are designed for binary classification while hand-

written digits contains 10 classes, we use three pairs (1, 7), (2, 4) and (3, 9) for binary

classification. We select regularization parameters from the range [2−7, 27] with expo-

nential growth 0.5. We select 160 labeled and 160 unlabeled examples as the training

set (i.e., l = 160, u = 160). Half of the unlabeled data come from one class and the

other half come from the other class. The size of the test data is 80. The Gaussian

kernel is chosen for the dataset. Each experiment is repeated five times. Experiment

result is in Table 3.

2 We do not detail the MvTSVMs here. They are supervised extensions of TSVMs to multi-
view learning.

3 https://archive.ics.uci.edu/ml/datasets/Multiple+Features
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Table 3 Classification accuracies and standard deviations (%) on Handwritten digits.

Method 2 ∼ 4 1 ∼ 7 3 ∼ 9

single-view LapTSVM1 88.75±2.17 91.25±2.50 98.00±1.43

single-view LapTSVM2 81.5±7.78 81.00±4.95 78.00±6.22

SVM-2K 94.00±1.63 93.20±2.26 94.50±3.14

MvTSVMs 94.00±2.71 95.00±0.88 96.00±1.05

MvLapTSVMs 97.75±1.63 98.75±0.88 98.25±1.43

50 100 150 200 250 300 350 400 450 500
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85

90

95

 

 

single−view LapTSVM1
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MvLapTSVMs
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Accuracy

Training Data Size

Fig. 1 Classification accuracies (%) of four methods on Advertisement.

4.3 Advertisement

The advertisement dataset 4 [35] consists of 3279 examples including 459 ads images

(positive examples) and 2820 non-ads images (negative examples). One view describes

the image itself (words in the images URL, alt text and caption), while the other view

contains all other features (words from the URLs of the pages that contain the image

and the image points to).

In this experiment, we randomly select 700 examples therein to form the used

dataset. We select regularization parameters from the range [2−7, 27] with exponential

growth 0.5. The Gaussian kernel is chosen for the dataset. We select u = 100 unla-

beled data. The unlabeled examples are randomly selected from both classes. Each

experiment is repeated five times. Experiment result is in Figure 1.

4 http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements



16

4.4 Analysis of the results

MvLapTSVMs can obtain good performance by combining two views in the constraints

and are better than the corresponding single-view LapTSVMs. The second row, third

row and sixth row in Table 2 show that MvLapTSVMs are superior to single-view

LapTSVMs with the same labeled examples and different unlabeled examples. Simi-

larly, the second row, third row and sixth row in Table 3 show that MvLapTSVMs are

superior to single-view LapTSVMs in different digit pairs classification problems. From

Figure 1 with varying training sizes, we can conclude that our method MvLapTSVMs

are superior to single-view LapTSVMs. MvLapTSVMs can also exploit the usefulness

of unlabeled examples to improve the classification accuracy comparable to supervised

learning such as MvTSVMs and SVM-2K. The fourth row, fifth row and sixth row in

Table 2 show that MvLapTSVMs are superior to MvTSVMs and SVM-2K with the

same labeled examples and different unlabeled examples. Similarly, the fourth row, fifth

row and sixth row in Table 3 show that MvLapTSVMs are superior to MvTSVMs and

SVM-2K in different digit pairs classification problems. From Figure 1 with varying

training sizes, MvLapTSVMs are superior to MvTSVMs and SVM-2K.

5 Conclusion

In this paper, we extended LapTSVMs to multi-view learning and proposed a new

framework called MvLapTSVMs which combine two views by introducing the con-

straint of similarity between two one-dimensional projections identifying two distinct

TSVMs from two feature spaces. MvLapTSVMs construct a decision function by solv-

ing two quadratic programming problems. We provide their dual formulation making

use of Lagrange dual optimization techniques. MvLapTSVMs were further extended

to their kernel version. Experimental results on real datasets indicate that the multi-

view LapTSVMs are better than the corresponding single-view and supervised learning

methods.
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