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Abstract. We propose a new approach, multi-view Laplacian support
vector machines (SVMs), for semi-supervised learning under the multi-
view scenario. It integrates manifold regularization and multi-view regu-
larization into the usual formulation of SVMs and is a natural extension
of SVMs from supervised learning to multi-view semi-supervised learn-
ing. The function optimization problem in a reproducing kernel Hilbert
space is converted to an optimization in a finite-dimensional Euclidean
space. After providing a theoretical bound for the generalization per-
formance of the proposed method, we further give a formulation of the
empirical Rademacher complexity which affects the bound significantly.
From this bound and the empirical Rademacher complexity, we can gain
insights into the roles played by different regularization terms to the
generalization performance. Experimental results on synthetic and real-
world data sets are presented, which validate the effectiveness of the
proposed multi-view Laplacian SVMs approach.

Key words: graph Laplacian, multi-view learning, reproducing kernel
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1 Introduction

Semi-supervised learning or learning from labeled and unlabeled examples has
attracted considerable attention in the last decade [1–3]. This is partially moti-
vated by the fact that for many practical applications collecting a large number
of unlabeled data is much less involved than collecting labeled data considering
the expensive and tedious annotation process. Moreover, as human learning often
occurs in the semi-supervised learning manner (for example, children may hear
some words but do not know their exact meanings), research on semi-supervised
learning also has the potential to uncover insights into mechanisms of human
learning [4].

In some machine learning applications, examples can be described by differ-
ent kinds of information. For example, in television broadcast understanding,
broadcast segments can be simultaneously described by their video signals and
audio signals which can be regarded as information from different properties or
different “views”. Multi-view semi-supervised learning, the focus of this paper,
attempts to perform inductive learning under such circumstances. However, it



should be noted that if there are no natural multiple views, artificially generated
multiple views can still work favorably [5].

In this paper we are particularly interested in multi-view semi-supervised
learning approaches derived from support vector machines (SVMs) [6]. As a
state-of-the-art method in machine learning, SVMs not only are theoretically well
justified but also show very good performance for real applications. The trans-
ductive SVMs [7], S3VMs [8, 9] and Laplacian SVMs [10] have been proposed
as extensions of SVMs from supervised learning to single-view semi-supervised
learning. For multi-view learning, there are also several extensions of SVMs pro-
posed such as the co-Laplacian SVMs [11] and SVM-2K [12].

Regularization theory is an important technique in mathematics and machine
learning [13, 14]. Many methods can be explained from the point of view of
regularization. A close parallel to regularization theory is capacity control of
function classes [15]. Both regularization and capacity control of function classes
can play a central role in alleviating over-fitting of machine learning algorithms.

The new method, multi-view Laplacian SVMs, proposed in this paper can
also be explained by regularization theory and capacity control of function
classes. It integrates three regularization terms respectively on function norm,
manifold and multi-view regularization. As an appropriate integration of them
and thus the effective use of information from labeled and unlabeled data, our
method has the potential to outperform many related counterparts. The differ-
ent roles of these regularization terms on capacity control will be unfolded later
as a result of our empirical Rademacher complexity analysis. Besides giving the
bound on the generalization error, we also report experimental results of the
proposed method on synthetic and real-world data sets.

The layout of this paper is as follows. Section 2 introduces the objective func-
tion of the proposed approach with concerns on different regularization terms,
and its optimization. Theoretical insights on the generalization error and the
empirical Rademacher complexity are covered by Section 3. Then, experimental
results are reported in Section 4. Finally, conclusions are drawn in Section 5.

2 Multi-view Laplacian SVMs (MvLapSVM)

2.1 Manifold Regularization

Let x1, . . . , xl+u ∈ Rd denote a set of inputs including l labeled examples and
u unlabeled ones with label space {+1,−1}. For manifold regularization, a data
adjacency graph W(l+u)×(l+u) is defined whose entries measure the similarity or
closeness of every pair of inputs. We use a typical construction of W : Wij = 0
for most pairs of inputs, and for neighboring xi, xj the corresponding entry is
given by

Wij = exp(−‖xi − xj‖
2/2σ2), (1)

where ‖xi − xj‖ is the Euclidean norm in Rd.



The manifold regularization functional acting on any function f : Rd → R
is defined as follows [16]

Mreg(f) =
1

2

l+u
∑

i,j=1

Wij(f(xi) − f(xj))
2. (2)

It is clear that a smaller Mreg(f) indicates a smoother function f . Define vector
f = (f(x1), . . . , f(xl+u))>. Then

Mreg(f) =

l+u
∑

i=1

(

l+u
∑

j=1

Wij)f
2(xi) −

l+u
∑

i,j=1

Wijf(xi)f(xj)

= f>(V − W )f, (3)

where matrix V is diagonal with the ith diagonal entry Vii =
∑l+u

j=1 Wij . The

matrix L , V − W , which is arguably positive semidefinite, is called the graph
Laplacian of W . In our empirical studies in Section 4, a normalized Laplacian
L̄ = V −1/2LV −1/2 is used because this normalized one often performs as well or
better in practical tasks [10].

2.2 Multi-view Regularization

For multi-view learning, an input x ∈ Rd can be decomposed into components
corresponding to multiple views, such as x = (x1, . . . , xm) for an m-view repre-
sentation. A function fj defined on view j only depends on xj , while ignoring
the other components (x1, . . . , xj−1, xj+1, . . . , xm).

For multi-view semi-supervised learning, there is a commonly acceptable as-
sumption that a good learner can be learned from each view [17]. Consequently,
these good learners in different views should be consistent to a large extent
with respect to their predictions on the same examples. We also adopt this as-
sumption and use the regularization idea to wipe off those inconsistent learners.
Given the l+u examples, the multi-view regularization functional for m functions
f1, . . . , fm can be formulated as

Vreg(f1, . . . , fm) =
m

∑

j>k,k=1

l+u
∑

i=1

[fj(xi) − fk(xi)]
2. (4)

Clearly, a smaller Vreg(f1, . . . , fm) tends to find good learners in each view.

2.3 MvLapSVM

As is usually assumed in multi-view learning, each view is regarded to be suf-
ficient to train a good learner. Therefore, we can write the final prediction as
f = 1

m

∑m
i=1 fi. For MvLapSVM, in this paper we concentrate on the two-view



case, that is m = 2. In this scenario, the objective function for MvLapSVM is
defined as

min
f1∈H1,f2∈H2

1

2l

l
∑

i=1

[(1 − yif1(xi))+ + (1 − yif2(xi))+] +

γ1(‖f1‖
2 + ‖f2‖

2) +
γ2

(l + u)2
(f1

>L1f1 +

f2
>L2f2) +

γ3

(l + u)

l+u
∑

i=1

[f1(xi) − f2(xi)]
2, (5)

where H1,H2 are the reproducing kernel Hilbert spaces [18, 19] in which f1, f2

are defined, nonnegative scalars γ1, γ2, γ3 are respectively norm regularization,
manifold regularization and multi-view regularization coefficients, and vector
f1 = (f1(x1), ..., f1(xl+u))>, f2 = (f2(x1), ..., f2(xl+u))>.

2.4 Optimization

We now concentrate on solving (5). As an application of the representer theo-
rem [20, 21], the solution to problem (5) has the following form

f1(x) =
l+u
∑

i=1

αi
1k1(xi, x), f2(x) =

l+u
∑

i=1

αi
2k2(xi, x). (6)

Therefore, we can rewrite ‖f1‖
2 and ‖f2‖

2 as

‖f1‖
2 = α

>
1 K1α1, ‖f2‖

2 = α
>
2 K2α2, (7)

where K1 and K2 are (l + u) × (l + u) Gram matrices respective from view V1

and V2, and vector α1 = (α1
1, ..., α

l+u
1 )>, α2 = (α1

2, ..., α
l+u
2 )>. In addition, we

have

f1 = K1α1, f2 = K2α2. (8)

To simplify our formulations, we respectively replace
γ2

(l + u)2
and

γ3

(l + u)
in

(5) with γ2 and γ3. Thus, the primal problem can be reformulated as

min
α1,α2,ξ1,ξ2

F0 =
1

2l

l
∑

i=1

(ξi
1 + ξi

2) + γ1(α
>
1 K1α1 +

α
>
2 K2α2) + γ2(α

>
1 K1L1K1α1 + α

>
2 K2L2K2α2) +

γ3(K1α1 − K2α2)
>(K1α1 − K2α2)

s.t.











yi(
∑l+u

j=1 αj
1k1(xj , xi)) ≥ 1 − ξi

1,

yi(
∑l+u

j=1 αj
2k2(xj , xi)) ≥ 1 − ξi

2,

ξi
1, ξi

2 ≥ 0, i = 1, . . . , l ,

(9)



where yi ∈ {+1,−1}, γ1, γ2, γ3 ≥ 0. Note that the additional bias terms are
embedded in the weight vectors of the classifiers by using the example represen-
tation of augmented vectors.

We present two theorems concerning the convexity and strong duality (which
means the optimal value of a primal problem is equal to that of its Lagrange
dual problem [22]) of problem (9) with proofs omitted.

Theorem 1. Problem (9) is a convex optimization problem.

Theorem 2. Strong duality holds for problem (9).

Suppose λi
1, λ

i
2 ≥ 0 are the Lagrange multipliers associated with the first two

sets of inequality constraints of problem (9). Define λ1 = (λ1
1, ..., λ

l
1)

> and λ2 =
(λ1

2, ..., λ
l
2)

>. It can be shown that the Lagrangian dual optimization problem
with respect to λ1 and λ2 is a quadratic program. Classifier parameters α1 and
α2 used by (6) can be solved readily after we get λ1 and λ2.

3 Theoretical Analysis

In this section, we give a theoretical analysis of the generalization error of the
MvLapSVM method in terms of the theory of Rademacher complexity bounds.

3.1 Background Theory

Some important background on Rademacher complexity theory is introduced as
follows.

Definition 1 (Rademacher complexity, [15, 23, 24]). For a sample S =
{x1, . . . , xl} generated by a distribution Dx on a set X and a real-valued function
class F with domain X, the empirical Rademacher complexity of F is the random
variable

R̂l(F) = Eσ[sup
f∈F

|
2

l

l
∑

i=1

σif(xi)||x1, . . . , xl],

where σ = {σ1, . . . , σl} are independent uniform {±1}-valued (Rademacher)
random variables. The Rademacher complexity of F is

Rl(F) = ES [R̂l(F)] = ESσ[sup
f∈F

|
2

l

l
∑

i=1

σif(xi)|].

Lemma 1 ([15]). Fix δ ∈ (0, 1) and let F be a class of functions mapping
from an input space Z (for supervised learning having the form Z = X × Y ) to
[0, 1]. Let (zi)

l
i=1 be drawn independently according to a probability distribution



D. Then with probability at least 1 − δ over random draws of samples of size l,
every f ∈ F satisfies

ED[f(z)] ≤ Ê[f(z)] + Rl(F) +

√

ln(2/δ)

2l

≤ Ê[f(z)] + R̂l(F) + 3

√

ln(2/δ)

2l
,

where Ê[f(z)] is the empirical error averaged on the l examples.

Note that the above lemma is also applicable if we replace [0, 1] by [−1, 0].
This can be justified by simply following the proof of Lemma 1, as detailed
in [15].

3.2 The Generalization Error of MvLapSVM

We obtain the following theorem regarding the generalization error of MvLapSVM,
which is similar to one theorem in [12]. The prediction function in MvLapSVM
is adopted as the average of prediction functions from two views

g =
1

2
(f1 + f2). (10)

Theorem 3. Fix δ ∈ (0, 1) and let F be the class of functions mapping from
Z = X×Y to R given by f̃(x, y) = −yg(x) where g = 1

2 (f1+f2) ∈ G and f̃ ∈ F .
Let S = {(x1, y1), · · · , (xl, yl)} be drawn independently according to a probability
distribution D. Then with probability at least 1 − δ over samples of size l, every
g ∈ G satisfies

PD(y 6= sgn(g(x))) ≤
1

2l

l
∑

i=1

(ξi
1 + ξi

2) + 2R̂l(G) + 3

√

ln(2/δ)

2l
,

where ξi
1 = (1 − yif1(xi))+ and ξi

2 = (1 − yif2(xi))+.

Proof. Let H(·) be the Heaviside function that returns 1 if its argument is greater
than 0 and zero otherwise. Then it is clear to have

PD(y 6= sgn(g(x))) = ED[H(−yg(x))]. (11)

Consider a loss function A : R → [0, 1], given by

A(a) =







1, if a ≥ 0;
1 + a, if −1 ≤ a ≤ 0;
0, otherwise.

By Lemma 1 and since function A− 1 dominates H − 1, we have [15]

ED[H(f̃(x, y)) − 1] ≤ ED[A(f̃(x, y)) − 1]

≤ Ê[A(f̃(x, y)) − 1] + R̂l((A− 1) ◦ F) + 3

√

ln(2/δ)

2l
.



Therefore,

ED[H(f̃(x, y))]

≤ Ê[A(f̃(x, y))] + R̂l((A− 1) ◦ F) + 3

√

ln(2/δ)

2l
. (12)

In addition, we have

Ê[A(f̃(x, y))] ≤
1

l

l
∑

i=1

(1 − yig(xi))+

=
1

2l

l
∑

i=1

(1 − yif1(xi) + 1 − yif2(xi))+

≤
1

2l

l
∑

i=1

[(1 − yif1(xi))+ + (1 − yif2(xi))+]

=
1

2l

l
∑

i=1

(ξi
1 + ξi

2), (13)

where ξi
1 denotes the amount by which function f1 fails to achieve margin 1 for

(xi, yi) and ξi
2 applies similarly to function f2.

Since (A − 1)(0) = 0, we can apply the Lipschitz condition [23] of function
(A− 1) to get

R̂l((A− 1) ◦ F) ≤ 2R̂l(F). (14)

It remains to bound the empirical Rademacher complexity of the class F . With
yi ∈ {+1,−1}, we have

R̂l(F) = Eσ[sup
f∈F

|
2

l

l
∑

i=1

σif̃(xi, yi)|]

= Eσ[sup
g∈G

|
2

l

l
∑

i=1

σiyig(xi)|]

= Eσ[sup
g∈G

|
2

l

l
∑

i=1

σig(xi)|] = R̂l(G). (15)

Now combining (11)∼(15) reaches the conclusion of this theorem. ut

3.3 The Empirical Rademacher Complexity R̂l(G)

In this section, we give the expression of R̂l(G) used in Theorem 3. R̂l(G) is
also important in identifying the different roles of regularization terms in the
MvLapSVM approach. The techniques adopted to derive R̂l(G) is analogical to
and inspired by those used for analyzing co-RLS in [19, 24].



The loss function L̂ : H1 × H2 → [0,∞) in (5) with L̂ = 1
2l

∑l
i=1[(1 −

yif1(xi))+ + (1 − yif2(xi))+] satisfies

L̂(0, 0) = 1. (16)

We now derive the regularized function class G from which our predictor g is
drawn.

Let Q(f1, f2) denote the objective function in (5). Substituting the predictors
f1 ≡ 0 and f2 ≡ 0 into Q(f1, f2) results in an upper bound

min
f1,f2∈H1×H2

Q(f1, f2) ≤ Q(0, 0) = L̂(0, 0) = 1. (17)

Because each term in Q(f1, f2) is nonnegative, the optimal function pair (f∗
1 , f∗

2 )
minimizing Q(f1, f2) must be contained in

H = {(f1, f2) : γ1(‖f1‖
2 + ‖f2‖

2) + γ2(f1u
>L1uf1u +

f2u
>L2uf2u) + γ3

l+u
∑

i=l+1

[f1(xi) − f2(xi)]
2 ≤ 1}, (18)

where parameters γ1, γ2, γ3 are from (9), f1u = (f1(xl+1), ..., f1(xl+u))>, f2u =
(f2(xl+1), ..., f2(xl+u))>, and L1u and L2u are the unnormalized graph Lapla-
cians for the graphs only involving the unlabeled examples (to make theoretical
analysis on R̂l(G) feasible, we temporarily assume that the Laplacians in (5) are
unnormalized).

The final predictor is found out from the function class

G = {x →
1

2
[f1(x) + f2(x)] : (f1, f2) ∈ H}, (19)

which does not depend on the labeled examples.
The complexity R̂l(G) is

R̂l(G) = Eσ[ sup
(f1,f2)∈H

|
1

l

l
∑

i=1

σi(f1(xi) + f2(xi))|]. (20)

To derive the Rademacher complexity, we first convert from a supremum over
the functions to a supremum over their corresponding expansion coefficients.
Then, the Kahane-Khintchine inequality [25] is employed to bound the expec-
tation over σ above and below, and give a computable quantity. The following
theorem summarizes our derived Rademacher complexity.

Theorem 4. Suppose S = K1l(γ1K1 + γ2K
>
1uL1uK1u)−1K>

1l + K2l(γ1K2 +
γ2K

>
2uL2uK2u)−1K>

2l , Θ = K1u(γ1K1 + γ2K
>
1uL1uK1u)−1K>

1u + K2u(γ1K2 +
γ2K

>
2uL2uK2u)−1K>

2u, J = K1u(γ1K1 + γ2K
>
1uL1uK1u)−1K>

1l − K2u(γ1K2 +
γ2K

>
2uL2uK2u)−1K>

2l , where K1l and K2l are respectively the first l rows of K1

and K2, and K1u and K2u are respectively the last u rows of K1 and K2. Then
we have U√

2l
≤ R̂l(G) ≤ U

l with U2 = tr(S) − γ3tr(J
>(I + γ3Θ)−1J ).



4 Experiments

We performed multi-view semi-supervised learning experiments on a synthetic
and two real-world classification problems. The Laplacian SVM (LapSVM) [10],
co-Laplacian SVM (CoLapSVM) [11], manifold co-regularization (CoMR) [19]
and co-SVM (a counterpart of the co-RLS in [11]) are employed for comparisons
with our proposed method. For each method, besides considering the prediction
function (f1 + f2)/2 for the combined view, we also consider the prediction
functions f1 and f2 from the separate views.

Each data set is divided into a training set (including labeled and unlabeled
training data), a validation set and a test set. The validation set is used to select
regularization parameters from the range {10−10, 10−6, 10−4, 10−2, 1, 10, 100},
and choose which prediction function should be used. With the identified regu-
larization parameter and prediction function, performances on the test data and
unlabeled training data would be evaluated. The above process is repeated at
random for ten times, and the reported performance is the averaged accuracy
and the corresponding standard deviation.

4.1 Two-Moons-Two-Lines Synthetic Data

This synthetic data set is generated similarly to the toy example used in [11].
Noisy examples in two classes appear as two moons in one view and two parallel
lines in the other view, and points on one moon are enforced at random to
associate with points on one line (see Fig. 1 for an illustration). The sizes for
labeled training set, unlabeled training set, validation set and test set are 10,
200, 100 and 100, respectively.

As in [11], a Gaussian and linear kernel are respectively chosen for the two-
moons and two-lines view. The classification accuracies of different methods on
this data set are shown in Table 1, where T and U means accuracies on the test
data and unlabeled training data, respectively, and best accuracies are indicated

−3 −2 −1 0 1 2 3 4 5

−1

0

1

2

3

(a) Two-moons view

−3 −2 −1 0 1 2 3

−1

0

1

2

(b) Two-lines view

Fig. 1. Distribution of the two-moons-two-lines data



Table 1. Classification accuracies and standard deviations (%) of different methods
on the synthetic data

LapSVM CoLapSVM CoMR Co-SVM MvLapSVM

T 91.40 (1.56) 93.40 (3.07) 91.20 (1.60) 96.30 (1.95) 96.90 (1.70)

U 90.60 (2.33) 93.55 (2.72) 90.90 (2.02) 96.40 (1.61) 96.40 (1.46)

in bold (if two methods bear the same accuracy, the smaller standard deviation
will identify the better method).

From this table, we see that methods solely integrating manifold or multi-
view regularization give good performance, which indicates the usefulness of
these regularization concerns. Moreover, among all the methods, the proposed
MvLapSVM performs best both on the test set and unlabeled training set.

4.2 Image-Text Classification

We collected this data set from the sports gallery of the yahoo! website in 2008.
It includes 420 NBA images and 420 NASCAR images, some of which are shown
in Fig. 2. For each image, there is an attached short text describing content-
related information. Therefore, image and text constitute the two views of this
data set.

Each image is normalized to be a 32×32-sized gray image. Feature extraction
for the texts is done by removing stop words, punctuation and numbers and
then applying Porter’s stemming [26]. In addition, words that occur in five or
fewer documents were ignored. After this preprocessing, each text has a TFIDF
feature [27] of 296 dimensions.

Fig. 2. NBA (left) and NASCAR (right) images



Table 2. Classification accuracies and standard deviations (%) of different methods
on the NBA-NASCAR data

LapSVM CoLapSVM CoMR Co-SVM MvLapSVM

T 99.33 (0.68) 98.86 (1.32) 99.38 (0.68) 99.43 (0.59) 99.38 (0.64)

U 99.03 (0.88) 98.55 (0.67) 98.99 (0.90) 98.91 (0.38) 99.54 (0.56)

The sizes for labeled training set, unlabeled training set, validation set and
test set are 10, 414, 206 and 210, respectively. Linear kernels are used for both
views. The performance is reported in Table 2 where co-SVM ranks first on the
test set while MvLapSVM outperforms all the other methods on the unlabeled
training set. If we take the average of the accuracies on the test set and unlabeled
training set, clearly our MvLapSVM ranks first.

4.3 Web Page Categorization

In this subsection, we consider the problem of classifying web pages. The data
set consists of 1051 two-view web pages collected from the computer science de-
partment web sites at four U.S. universities: Cornell, University of Washington,
University of Wisconsin, and University of Texas [17]. The task is to predict
whether a web page is a course home page or not. Within the data set there are
a total of 230 course home pages. The first view of the data is the words ap-
pearing on the web page itself, whereas the second view is the underlined words
in all links pointing to the web page from other pages. We preprocess each view
according to the feature extraction procedure used in Section 4.2. This results in
2332 and 87-dimensional vectors in view 1 and view 2 respectively [28]. Finally,
document vectors were normalized to TFIDF features.

Table 3. Classification accuracies and standard deviations (%) of different methods
on the web page data

LapSVM CoLapSVM CoMR Co-SVM MvLapSVM

T 94.02 (2.66) 93.68 (2.98) 94.02 (2.24) 93.45 (3.21) 94.25 (1.62)

U 93.33 (2.40) 93.39 (2.44) 93.26 (2.19) 93.16 (2.68) 93.53 (2.04)

The sizes for labeled training set, unlabeled training set, validation set and
test set are 12, 519, 259 and 261, respectively. Linear kernels are used for both
views. Table 3 gives the classification results obtained by different methods.
MvLapSVM outperforms all the other methods on both the test data and unla-
beled training data.



5 Conclusion

In this paper, we have proposed a new approach for multi-view semi-supervised
learning. This approach is an extension of SVMs for multi-view semi-supervised
learning with manifold and multi-view regularization integrated. We have proved
the convexity and strong duality of the primal optimization problem, and used
the dual optimization to solve classifier parameters. Moreover, theoretical results
on the generalization performance of the MvLapSVM approach and the empirical
Rademacher complexity which can indicate different roles of regularization terms
have been made. Experimental practice on multiple data sets has also manifested
the effectiveness of the proposed method.

The MvLapSVM is not a special case of the framework that Rosenberg et al.
formulated in [29]. The main difference is that they require the loss functional
depends only on the combined prediction function, while we use here a slightly
general loss which has a separate dependence on the prediction function from
each view. Their framework does not subsume our approach.

For future work, we mention the following three directions.

– Model selection: As is common in many machine learning algorithms, our
method has several regularization parameters to set. Usually, a held out
validation set would be used to perform parameter selection, as what was
done in this paper. However, for the currently considered semi-supervised
learning, this is not very natural because there is often a small quantity
of labeled examples available. Model selection for semi-supervised learning
using no or few labeled examples is worth further studying.

– Multi-class classification: The MvLapSVM algorithm implemented in
this paper is intended for binary classification. Though the usual one-versus-
rest, one-versus-another strategy, which converts a problem from multi-class
to binary classification, can be adopted for multi-class classification, it is
not optimal. Incorporating existing ideas of multi-class SVMs [30] into the
MvLapSVM approach would be a further concern.

– Regularization selection: In this paper, although the MvLapSVM al-
gorithm obtained good results, it involves more regularization terms than
related methods and thus needs more assumptions. For some applications,
these assumptions might not hold. Therefore, a probably interesting improve-
ment could be comparing different kinds of regularizations and attempting to
select those promising ones for each application. This also makes it possible
to weight different views unequally.
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