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Abstract:
Multi-view clustering and clustering ensembles have become

increasingly popular in recent years. Multi-view clustering em-
ploys relationship of views to cluster data and clustering en-
sembles combine different component clusterings to a better
final partition. In this paper, we proposed multi-view clus-
tering ensembles which extend clustering ensembles to multi-
view clustering. Experimental results show the good perfor-
mance of multi-view spectral clustering ensembles and multi-
view kernel k-means clustering ensembles on real datasets.
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1. Introduction

Clustering is a key issue in intelligence science and is widely
used in the field of artificial intelligence. The technique has
been studied for several decades in areas of pattern recogni-
tion, machine learning, applied statistics, communications and
information theory. It is applied to numerous fields of appli-
cations including data mining, text mining, bio-informatics,
image analysis and segmentation, data compression, and data
classification.

Multi-modal datasets are very common in practice because
of the use of different measuring methods (e.g, infrared and vi-
sual cameras), or of different media, like text, video and audio.
Each instance has multiple representations, called views. The
natural and frequent occurrence of multi-view data has raised
interest in the so called multi-view learning [1]. Multi-view
clustering explores and exploits multiple views simultaneously
in order to obtain a more accurate and robust partitioning of the
data than single view clustering. There exist two methods in
multi-view clustering: centralized and distributed [6]. Central-
ized algorithms simultaneously use all views to cluster the data

while distributed algorithms cluster each view independently
from others, using a single view algorithm, and then combine
the individual clustering to obtain a final partitioning. During
the past decade, Bickel and Scheffer [2] developed a two-view
EM and a two-view spherical k-means algorithm under the as-
sumption that the views are independent. De Sa [3] proposed
a two-view spectral clustering algorithm that creates a bipar-
tite graph and is based on the “minimizing-disagreement” idea.
Kumar et al. [4] proposed a co-training approach for multi-
view spectral clustering and co-regularized multi-view spec-
tral clustering [5]. Grigorios Tzprtzis proposed convex mixture
models for multi-view clustering [6] and kernel-based weighted
multi-view clustering [7].

Clustering ensembles learning is an active research hotspot
and is regarded as an important research branch in machine
learning field. The detailed representation of clustering ensem-
bles was firstly proposed by Strehl and Ghosh [8]. The nature
of clustering ensembles is that different component clusterings
are combined to a better final partition via a consensus func-
tion. A diversity of component clusterings can be obtained by
a number of approaches, such as using different conventional
algorithms, their relaxed versions and built-in randomness, or
by data sampling. Selective ensemble have been attracted many
researchers in the supervised area while few papers have con-
sidered the unsupervised ensemble. Zhou and Tang proposed
an ensemble approach based on bagging [9, 10]. Fern and Lin
[11] designed three ensemble selection methods based on qual-
ity and diversity. Hong et al. [12] introduced a novel selec-
tive clustering ensemble method through resampling. Recently,
Azimi and Fern [13] proposed an adaptive cluster ensembles
method.

However, designing a well consensus function is important
to clustering ensembles. Fred [14] proposed to integrate var-
ious component clusterings through a co-association matrix,
which represents the frequency of each pair of samples ap-
pearing in the same cluster. The final result of clustering en-



sembles is obtained using a voting-type method applied to the
co-association matrix. Strehl and Ghosh [8] have developed
three different consensus functions based on hypergraph for
ensemble learning: cluster-based similarity partitioning algo-
rithm, hypergraph-partitioning algorithm, and meta clustering
algorithm. All of them addressed various hypergraph operation
to find a solution. Topchy et al. [15] designed a consensus
function based on a finite mixture model. The final partition
is found as a solution to a maximum likelihood problem for a
given clustering ensembles. In this paper, we address clustering
ensembles based on selective voting which work by measuring
the similarity between the clusters through counting their over-
lapped data items [9].

The rest of this paper is organized as follows. Section 2 in-
troduces kernel k-means clustering, spectral clustering, multi-
view spectral clustering and multi-view kernel k-means clus-
tering. Section 3 introduces method of clustering ensembles
we employ and multi-view clustering ensembles. After report-
ing experimental results in Section 4, we give conclusions and
future work in Section 5.

2. Multi-view kernel k-means clustering and multi-
view spectral clustering

2.1. Kernel k-means

Kernel k-means is a generalization of the standard k-means
algorithm where the dataset χ = {xi}Ni=1, xi ∈ Rd is mapped
to a higher dimensional reproducing kernel Hilbert space via
the use of kernel trick.

In order to partition dataset χ into M disjoint clusters,
{Ck}Mk=1, the intra-cluster variance in feature space is repre-
sented by

εH =
N∑
i=1

M∑
k=1

δjk∥ϕ(xi)−mk∥2,mk =

∑N
i=1 δjkϕ(xi)∑N

i=1 δjk
, (1)

which is minimized over clusters {Ck}Mk=1, where mk is the
k-th cluster center and δik is an indicator variable with δik = 1
if xi ∈ Ck and 0 otherwise. Through defining transforma-
tion ϕ, kernel function K ∈ RN×N can be written as Kij =
K(xi, xj) = ϕ(xi)

Tϕ(xj) which is the most common way of
representing data in feature space. The squared Euclidean dis-
tances in (1) can be computed using solely the kernel matrix

entries which are written as

∥ϕ(xi)−mk∥2 = Kii −
2
∑N

i=1 δjkKij∑N
i=1 δjk

+

∑N
j=1

∑N
l=1 δjkδlkKjl∑N

j=1

∑N
l=1 δjkδlk

(2)

(centers mk cannot be analytically calculated).
Kernel k-means monotonically converges to a local mini-

mum by iteratively updating the partitioning through assign-
ments of the instances to their closest center in feature space,
which heavily depends on the initial cluster assignments. The
deterministic-incremental approaches such as the global kernel
k-means algorithm could be applied in order to overcome this
disadvantage.

2.2. Spectral clustering

The intra-cluster variance of spectral clustering [16] can be
equivalently written as a trace difference:

εH = tr(K)− tr(Y TKY ),
(3)

where Y ∈ RN×M , Yik = δik√∑N
j=1 δjk

. The first term on

the above equation is a constant, so the minimization of (3)
is equivalent to the maximization of tr(Y TKY ). If Y is re-
laxed to be an arbitrary orthonormal matrix. The optimal Y is
consists of the top M eigenvectors of the kernel matrix K.

2.3. Multi-view extensions

In this section, we briefly introduce multi-view spectral
clustering (MvSpec) and multi-view kernel k-means clustering
(MvKKM) [7]. They constitute the foundation of our subse-
quent proposed methods. The methods addressed kernel-based
scheme which embeds in the clustering process an automatic
“ranking” of the views. On kernel learning, this exploits ker-
nels as a tool for representing and combining views in multi-
view learning. We suppose a dataset χ with N instances and V

views:χ = {xi}Ni=1, where xi = {x(v)
i }Vv=1. Through kernel

methods, the dataset is implicitly mapped to a feature space and
is represented by V kernel matrix {K(v)}Vv=1, and composite



kernels can be represented by

K̃ =
V∑

v=1

wp
vK

(v), wv ≥ 0,
V∑

v=1

wv = 1, p ≥ 1.
(4)

The objection function of multi-view kernel k-means can be
written as

εH̃ =

V∑
v=1

wp
v

N∑
i=1

M∑
k=1

δik∥ϕ(v)(x
(v)
i )−m

(v)
k ∥2,

m
(v)
k =

∑N
i=1 δikϕ

(v)(x
(v)
i )∑N

i=1 δjk
.

(5)

The optimization problem for multi-view kernel k-means can
be written as

min
{wv}V

v=1

εH̃

s.t. wv ≥ 0,

V∑
v=1

wv = 1, p ≥ 1.
(6)

Under the spectral perspective, the objection function of multi-
view spectral clustering can be written as in terms of matrix
traces

εH̃ = tr(K̃)− tr(Y T K̃Y )

=

V∑
v=1

wp
v(tr(K

(v))− tr(Y TK(v)Y )),
(7)

where K(v) is a positive semidefinite matrix and Y TY =
I, Y ∈ RN×M . The optimization problem for multi-view spec-
tral clustering can be written as

min
{wv}V

v=1

εH̃

s.t. wv ≥ 0,

V∑
v=1

wv = 1.
(8)

3. Multi-view clustering ensembles

3.1. Clustering ensembles

Suppose that X = {x1, x2, · · · , xn} ⊂ Rd denotes an
unlabeled dataset. The set is partitioned H times by cluster-
ing algorithms to get H component clustering results Π =

Figure 1. A general framework for multi-view
clustering ensembles

{π1, π2, · · · , πH}, where πi(i = 1, 2, · · · ,H) is the cluster-
ing algorithm results of the ith run. In clustering ensemble,
H component clusterings are combined to final clustering re-
sult π∗ by a consensus function τ [17]. The clusterings are
aligned based on the recognition that similar clusters should
contain similar data items [9]. For example, suppose there are
two clusterings whose corresponding label vectors πa and πb

and each clustering divide the dataset into k clusters, such as
{Ca

1 , C
a
2 , · · · , Ca

k} and {Cb
1, C

b
2, · · · , Cb

k}. For Ca
i and Cb

j , the
number of overlapped data items which appear both clusters is
counted. Then, the pair of clusters whose number of overlapped
data items is the largest, are matched in the way that they are
denoted by the same label. Such a process is repeated until
all the clusters are matched. There are many methods combin-
ing the H component clustering results. The method we use is
selective voting, where the ith component of the label vector
corresponding to the ensemble. For example, πi is determined
by the plurality voting result of {π1

i , π
2
i , · · · , πH

i }.

3.2. Multi-view extensions

In this section, we combine clustering ensembles with multi-
view clustering. As mentioned before, the methods of multi-
view kernel k-means clustering and multi-view spectral clus-
tering are based on kernel trick. Radial basis function kernel



(RBF) can be written as

K(xi, xj) = exp(−∥xi − xj∥2

2σ2
), (9)

where σ represents the scale parameter. Because the scale pa-
rameter in RBF kernel can be different, we can design that com-
posite kernels K̃ are different. In multi-view kernel k-means
clustering and multi-view spectral clustering, different σ can
get different component clustering results. Addressing the ad-
vantage, we can combine clustering ensembles with multi-view
clustering. Then we can see a general framework for multi-
view clustering ensembles in the Fig.1. We described multi-
view kernel k-means clustering ensembles (MvKKMCE) and
multi-view spectral clustering ensembles (MvSpecCE) in Al-
gorithm 1 and Algorithm 2 respectively. Here ‘ClusterEnsem-

Algorithm 1 Multi-view kernel k-means clustering ensembles
Input: v-view data X , label, clusters, n
for each σi in[σmin, σmax] and 0≤ i ≤ n do

for j = 1 to v do
K(v)

end for
K̃i = [K

(1)
i ;K

(2)
i ; · · ·K(v)

i ]
[Clusterelemi] = MvKKM(K̃i, clusters)

end for
[Clusterelem] = [Clusterelem1;Clusterelem2;
· · · ;Clusterelemn]
mico-p = ClusterEnsemble(Clusterelem, label, n)

Algorithm 2 Multi-view spectral clustering ensembles
Input: v-view data X , label, clusters, n
for each σi in[σmin, σmax] and 0 ≤ i ≤ n do

for j = 1 to v do
K(v)

end for
K̃i = [K

(1)
i ;K

(2)
i ; · · · ;K(v)

i ]
[Clusterelemi] = MvSpec(K̃i, clusters)]

end for
[Clusterelem] = [Clusterelem1;Clusterelem2;
· · · ;Clusterelemn]
mico-p = ClusterEnsemble(Clusterelem, label, n)

ble’ represents clustering ensembles algorithm and ‘n’ repre-
sents the number of clustering ensembles. ‘v’ represents the
number of views. ‘label’ represents the true label of clusters.
‘clusters’ represents the number of clusters.

Table 1. Datasets.
Name Attributes Instances Classes

Ionosphere 34 351 2
Handwritten digits data 649 2000 10

In this paper, we address micro-precision as the evaluation
of clustering performance. The clusterings are transformed
into classifiers using the following method: identify each clus-
ter with the class that has the largest overlap with the cluster,
and assign every data item in that clustering to the found class.
The method requires multiple clusters to be assigned to a sin-
gle class, but never assigns a single cluster to multiple classes.
We suppose there are c classes, i.e. {C1, C2, · · · , Cc}, in the
ground truth classification. For a given clustering, by using the
above method, let at denote the number of data items that are
correctly assigned to the class Ct. ‘m’ represents the number of
examples. Then, the clustering performance can be measured
by micro-precision as

mico-p =
1

m

c∑
t=1

at. (10)

The bigger the value of micro-p, the better the clustering per-
formance.

4. Experimental results

In this section, we design two experiments based on Iono-
sphere dataset and handwritten digits dataset which come from
UCI Machine Learning Repository. We compare the perfor-
mance of MvKKMCE with the performance of MvSpecCE on
the two datasets. Details about the two datasets are listed in
Table 1.

4.1. Ionosphere

The ionosphere dataset was collected by a system in Goose
Bay, Labrador. This system consists of a phased array of 16
high-frequency antennas with a total transmitted power on the
order of 6.4 kilowatts. The targets were free electrons in the
ionosphere.“Good” radar returns are those showing evidence
of some type of structure in the ionosphere. “Bad” returns
are those that do not and their signals pass through the iono-
sphere. It includes 351 instances in total which are divided into
225 “Good” (positive) instances and 126 “Bad” (negative) in-
stances.



Table 2. Clustering result (n=10) (%) on Iono-
sphere dataset.

Method p=1 p=1.3 p=1.5 p=2 p=4 p=6
MvSpecCE 80.63 81.77 80.91 73.22 77.21 75.50
MvKKMCE 86.32 86.04 86.04 86.04 86.04 86.04

Table 3. Clustering result (n=5) (%) on handwrit-
ten digits(0∼ 4).

Method p=1 p=1.3 p=1.5 p=2 p=4 p=6
MvSpecCE 77.40 82.60 86.30 95.80 96.60 96.80
MvKKMCE 82.40 89.50 94.40 96.60 97.20 97.30

In our experiments, we regard original data as the first view.
Then we capture 99% of the data variance while reducing the
dimensionality from 34 to 21 with PCA and regard dealt data
as the second view. We take a coarse grid search for scale pa-
rameter σ in the region [20, 26] with with exponent growth 0.5.
Then we take the finer grid search on the neighborhood of the
best results of the coarse search for ten times. So it can avoid
doing more consuming exhaustive parameter search. Because
p parameters have impact on MvKKM and MvSpec, the pro-
posed algorithms are executed for various p values. From Ta-
ble 2, we can conclude that MvKKMCE are much better than
MvSpecCE as p increases.

4.2. Handwritten digits

This dataset consists of features of handwritten digits (0 ∼
9) extracted from a collection of Dutch utility maps. It consists
of 2000 examples (200 examples per class) with view-1 being
the 76 Fourier coefficients, and view-2 being the 216 profile
correlations of each example image.

In our experiments, we do two experiments on the same data
sets and evaluate our model with (0 ∼ 4) and (5 ∼ 9) re-
spectively five clusters. The attributes are normalized to unit
variance as attributes within the same view exhibit significantly
different scales. We take a coarse grid search for scale param-
eter σ in the region [20, 26] with exponent growth 0.5. Then
we take the finer grid search on the neighborhood of the best
results of the coarse search for five times. From Table 3 and
Table 4, we can conclude that MvKKMCE are almost always
better than MvSpecCE as p increases.

Table 4. Clustering result (n=5) (%) on handwrit-
ten digits(5∼ 9).

Method p=1 p=1.3 p=1.5 p=2 p=4 p=6
MvSpecCE 77.40 82.60 86.30 94.00 96.80 96.90
MvKKMCE 71.40 92.60 93.30 93.50 97.30 97.30

5. Conclusions

In this paper, we proposed multi-view clustering ensembles
based on multi-view clustering and clustering ensembles. We
compare the performance of MvKKMCE with the performance
of MvSpecCE on two real datasets and conclude that the per-
formance of MvKKMCE is almost always better than the per-
formance of MvSpecCE. In the future, it would be interesting
to extend clustering ensembles to other multi-view clustering
algorithms.
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