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Abstract Multi-view learning or learning with multiple distinct feature sets is a

rapidly growing direction in machine learning with well theoretical underpinnings and

great practical success. This paper reviews theories developed to understand the prop-

erties and behaviors of multi-view learning, and gives a taxonomy of approaches accord-

ing to the machine learning mechanisms involved and the fashions in which multiple

views are exploited. This survey aims to provide an insightful organization of current

developments in the field of multi-view learning, identify their limitations, and give

suggestions for further research. One feature of this survey is that we attempt to point

out specific open problems which can hopefully be useful to promote the research of

multi-view machine learning.
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1 Introduction

Multi-view learning is concerned with the problem of machine learning from data rep-

resented by multiple distinct feature sets. The recent emergence of this learning mecha-

nism is largely motivated by the property of data from real applications where examples

are described by different feature sets or different “views”. For instance, in multimedia-

content understanding, multimedia segments can be simultaneously described by their

video and audio signals. In web-page classification, a web page can be described by the

document text itself and at the same time by the anchor text attached to hyperlinks

pointing to this page. As another example, in content-based web-image retrieval, an
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object is simultaneously described by visual features from the image and the text sur-

rounding the image. Moreover, a noteworthy fact for multi-view learning is that when

a natural feature split does not exist, performance improvements can still be observed

using manufactured splits. Therefore, multi-view learning is a very promising topic

with widespread applicability.

Canonical correlation analysis (CCA) [21] and co-training [8] are two representative

techniques in early studies of multi-view learning. Some theories and methods were later

devised to investigate their theoretical properties, explain their success, and extend

their applications to other machine learning problems. In 2005, a workshop on learning

with multiple views was held in conjunction with the 22nd international conference on

machine learning to attract attentions and promote research in this area. So far, the idea

of multi-view learning has penetrated multiple existing machine learning branches and

a large number of multi-view learning algorithms have been presented. For example,

the applications of multi-view learning range from dimensionality reduction [10,20,

50] and semi-supervised learning [35,36,38,39,42,54,56] to supervised learning [11,16],

active learning [28,41], ensemble learning [45,51,55], transfer learning [12,52,53] and

clustering [7,15,23,24].

The goal of this survey is to review key advancements in the area of multi-view

learning, in particular, on theories and methodologies, and provide useful suggestions

for further research. Through this survey, we would like to deliver a whole picture of

what is going on and what can be done in the future to make multi-view learning more

successful.

The remainder of this paper proceeds as follows. In Section 2, we introduce exist-

ing theories on multi-view learning, especially on CCA, effectiveness of co-training, and

generalization error analysis for co-training and other multi-view learning approaches.

Section 3 surveys representative multi-view approaches according to the machine learn-

ing mechanisms involved, and also provides another taxonomy in terms of the specific

manners in which multiple views are exploited. Then in Section 4 we list some open

problems which may be helpful for promoting further research of multi-view learning.

Finally, we provide concluding remarks in Section 5.

2 Theories on multi-view learning

We classify current theories on multi-view learning into four categories which are CCA,

effectiveness of co-training, generalization error analysis for co-training, and general-

ization error analysis for other multi-view learning approaches. These theories can par-

tially answer at least the following three questions: why multi-view learning is useful,

what are the underlying assumptions, and how we should perform multi-view learning.

2.1 CCA

CCA, first proposed by Hotelling [21], works on a paired dataset (e.g., data represented

by two views) to find two linear transformations each for one view such that the

correlations between the transformed variables are maximized. It was later generalized

to data with more than two representations in several ways [3,22]. Here we only consider

the case of two views.
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Suppose we have a two-view dataset {(x1,y1), . . . , (xm,ym)}, and X = [x1, . . . ,xm],

Y = [y1, . . . ,ym]. CCA attempts to seek two projection directions wx and wy to max-

imize the following linear correlation coefficient

cov(w>
x X,w>

y Y)
q

var(w>
x X)var(w>

y Y)
=

w>
x Cxywy

q

(w>
x Cxxwx)(w>

y Cyywy)
, (1)

where covariance matrix Cxy is defined as

Cxy =
1

m

m
X

i=1

(xi − mx)(yi − my)> (2)

with mx and my being the means from the two views, respectively

mx =
1

m

m
X

i=1

xi, my =
1

m

m
X

i=1

yi, (3)

and Cxx and Cyy can be defined analogously.

Since the scales of wx and wy have no effects on the value of (1), each of the two

factors in the denominator can be constrained to have value 1. This results in another

widely used objective for CCA

max
wx,wy

w>
x Cxywy

s.t. w>
x Cxxwx = 1, w>

y Cyywy = 1. (4)

The corresponding Lagrangian function is

L(wx,wy, λx, λy) = w>
x Cxywy −

λx

2
(w>

x Cxxwx − 1) −
λy

2
(w>

y Cyywy − 1). (5)

Taking its derivatives with respect to wx and wy to be zero, we have

Cxywy − λxCxxwx = 0 (6)

Cyxwx − λyCyywy = 0. (7)

Subtracting w>
y × (7) from w>

x × (6), we get

λyw
>
y Cyywy − λxw>

x Cxxwx = λy − λx = 0. (8)

Therefore, λx = λy. Suppose λx = λy = λ. Given that Cyy is invertible, wy can be

obtained from (7) as

wy =
1

λ
C−1

yy Cyxwx. (9)

Substituting (9) into (6) results in the following generalized eigenvalue decomposition

problem [39]

CxyC
−1

yy Cyxwx = λ2Cxxwx. (10)

Now wx can be solved, which should then be normalized according to (4). The corre-

sponding wy is obtained from (9) which should also be normalized according to (4).
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To make the relationship between the eigenvalue λ2 in (10) and the correlation

coefficient clear, we rewrite the objective function as

w>
x Cxywy =

1

λ
w>

x CxyC
−1

yy Cyxwx

=
1

λ
w>

x λ2Cxxwx = λw>
x Cxxwx = λ. (11)

Thus, λ reflects the degree of correlation between projections, which must lie in the

interval [−1, +1]. Interestingly, if
`

wx

wy

´

, λ is a solution pair, then
`

wx

−wy

´

, −λ would give

an equal but negative correlation. However, these two kinds of solutions are equivalent

in the sense that we are only seeking projection directions. Therefore, we just need

to consider the positive correlation, as reflected by the objective function in (4). To

maximize the correlation between different views, the eigenvector corresponding to the

largest eigenvalue in (10) should be retained. For real applications, there are often a

lot of projection vector pairs (wx,wy) required to reflect different correlations. If CCA

retains q pairs of correlated projections, an example (x,y) will be transformed to q

projection pairs.

It was shown that overfitting with perfect correlations but failing to distinguish

spurious from useful features can appear using CCA [3,33]. Therefore, regularization is

needed to detect meaningful patterns. The objective function of the regularized CCA

is to maximize

w>
x Cxywy

r

“

(1 − τx)w>
x Cxxwx + τx‖wx‖2

”“

(1 − τy)w>
y Cyywy + τy‖wy‖2

”

, (12)

where regularization parameters τx and τy vary in the interval [0, 1]. Recent statis-

tical analysis, based on a close relationship between maximizing the correlation and

minimizing the discrepancy of the two views in terms of the squared loss, has jus-

tified that controlling the norms of the projection directions is a principled way for

regularization [19].

CCA was extended to kernel CCA [3,17] by means of the kernel trick [34], which

corresponds to performing CCA in a kernel-induced feature space. The formulation

of the regularized kernel CCA can be found in [19,34]. Lately, sparse CCA was also

presented [10,20].

2.2 Effectiveness of co-training

The original co-training algorithm was introduced by Blum and Mitchell [8] for semi-

supervised classification that combines both labeled and unlabeled data under a two-

view setting. From a limited labeled data set, it first trains two weakly-useful classifiers

from the two views separately. Then the two classifiers find their confident predictions

from a pool of unlabeled data to enlarge the labeled data set for further training. The

process repeats until a termination condition is satisfied. Finally, the two classifiers

are used separately or jointly to make predictions on a new example. Later on, the

applicability of co-training was further broadened, e.g., Nigam and Ghani [29] showed

experimentally that when there are no natural multiple views available, co-training

on multiple views manually generated by random splits of features can still improve

performance.
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The probably approximately correct (PAC) learning framework can provide a the-

oretical characterization of the capabilities of machine learning algorithms and the

difficulty of some machine learning problems. Loosely speaking, a concept class C is

PAC-learnable by a learner L using a hypothesis space H if, for any target concept in

C, L will with probability at least (1− δ) output a hypothesis whose error is less than

or equal to ε, after training with a reasonable number of examples and performing a

reasonable amount of computation [27].

To justify the effectiveness of co-training, Blum and Mitchell [8] gave a PAC-style

analysis. They showed that under assumptions that (1) each view in itself is sufficient

for correct classification (i.e., target functions from the two views and the combined

view have label consistency on every example) and (2) the two views of any example are

conditionally independent given the class label, PAC learnability on semi-supervised

learning holds with an initial weakly-useful predictor trained from the labeled data. For

a special case of co-training, Balcan and Blum [4] proved that there is a polynomial-

time algorithm to learn a linear separator under proper assumptions, using a single

labeled example and polynomially many unlabeled examples.

It was shown that the second assumption of co-training can be relaxed to a weaker

expansion assumption on the underlying data distribution for iterative co-training to

succeed, given appropriately strong PAC-learning algorithms on each view, and the

expansion assumption is to some extent necessary as well [5].

Wang and Zhou [48] proved that the co-training process can succeed even without

two views, given that the labeled data set is sufficient to learn good classifiers and

the two classifiers have a large diversity. Under the setting that the learner in each

view is viewed as label propagation and thus the co-training process is viewed as the

combinative label propagation over the two views, they further provided a sufficient

and necessary condition for co-training to succeed with appropriate assumptions [49].

In practice, the original co-training algorithm may be problematic in the sense

that it does not examine the reliability of labels provided by the classifiers from each

view. Actually, even very few inaccurately labeled examples can greatly deteriorate

the performance of subsequent classifiers. To overcome this drawback, Sun and Jin [39]

proposed robust co-training, which integrates CCA to inspect the predictions of co-

training on the unlabeled training data. Based on the low-dimensional representations

recovered by CCA, it calculates the similarities between an unlabeled example and the

original labeled examples. Only those examples whose predicted labels are consistent

with the outcome of CCA label inspection are eligible to enlarge the labeled set.

2.3 Generalization error analysis for co-training

Early theoretical work on co-training such as [8] was only loosely related to its empirical

success. In particular, it does not provide a generalization error bound as a function of

empirically measurable quantities, and there is no very direct and apparent relationship

between the PAC-learnability analysis and the iterative co-training algorithm, as stated

in [14].

Based on the conditional independence assumption of views, Dasgupta et al. [14]

gave a PAC generalization bound for co-training, which shows that the generalization

error of a classifier from each view is upper bounded by the disagreement rate of the

classifiers from the two views. This justifies the kind of empirical work that encourages

agreements between classifiers from different views over the unlabeled data [13].
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The assumption that views are conditionally independent is rather strong, and

hardly holds in practice. Abney [1] generalized the error bound in [14] with weaker

assumptions that are classifiers from different views are weakly dependent and non-

trivial.

2.4 Generalization error analysis for other multi-view learning approaches

In order to gain insights into the roles played by the multi-view regularization and

even unlabeled data in the generalization performance, researchers have provided gen-

eralization error analysis for some other multi-view learning approaches. This kind

of generalization analysis is built upon the Rademacher complexity theory which we

briefly introduce below through a definition and theorem.

Definition 1 (Rademacher complexity [6,33]) For a sample S = {x1, . . . , x`}

generated by a distribution Dx on a set X and a real-valued function class F with

domain X, the empirical Rademacher complexity of F is the random variable

R̂`(F) = Eσ

"

sup
f∈F

˛

˛

˛

˛

2

`

X̀

i=1

σif(xi)

˛

˛

˛

˛

˛

˛

˛

˛

x1, . . . , x`

#

, (13)

where σ = {σ1, . . . , σ`} are independent uniform {±1}-valued (Rademacher) random

variables. The Rademacher complexity of F is

R`(F) = ES [R̂`(F)] = ESσ

"

sup
f∈F

˛

˛

˛

˛

2

`

X̀

i=1

σif(xi)

˛

˛

˛

˛

#

. (14)

Theorem 1 ([33]) Fix δ ∈ (0, 1) and let F be a class of functions mapping from an

input space Z (for supervised learning having the form Z = X×Y ) to [0, 1]. Let {zi}
`
i=1

be drawn independently according to a probability distribution D. Then with probability

at least 1 − δ over random draws of samples of size `, every f ∈ F satisfies

ED[f(z)] ≤ Ê[f(z)] + R`(F) +

r

ln(2/δ)

2`

≤ Ê[f(z)] + R̂`(F) + 3

r

ln(2/δ)

2`
, (15)

where Ê[f(z)] is the empirical error averaged on the ` examples.

Making use of the Rademacher complexity theory, Farquhar et al. [16] analyzed

the generalization error bound of the supervised SVM-2K algorithm, and Szedmak

and Shawe-Taylor [46] characterized the generalization performance of its extended

version for semi-supervised learning.

Rosenberg and Bartlett [31] derived the empirical Rademacher complexity for the

function class of co-regularized least squares and gave the generalization bound which

was later recovered by Sindhwani and Rosenberg [36] but with a much simpler deriva-

tion. Potentially tighter bounds were also reported in terms of the localized Rademacher

complexity [36]. This kind of work was further extended to a more general setting, e.g.,

with more than two views [32].
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Recently, Sun and Shawe-Taylor [42] proposed a sparse semi-supervised learning

framework using Fenchel-Legendre conjugates and instantiated an algorithm named

sparse multi-view SVMs. They gave the generalization error bound of the sparse multi-

view SVMs where the empirical Rademacher complexity has two different forms de-

pending on whether the used iterative procedure iterates only once or multiple steps.

Taking manifold regularization into account, Sun [38] presented multi-view Laplacian

SVMs whose generalization error analysis and empirical Rademacher complexity were

also provided.

3 Multi-view learning methods

We proceed to review representative multi-view learning methods according to the

machine learning mechanisms that multi-view learning is applied to or combined with.

Then we give a high-level taxonomy of multi-view learning methods in terms of how

multiple views are exploited.

3.1 Multi-view dimensionality reduction

As an important branch of unsupervised learning, dimensionality reduction aims to ex-

press high-dimensional data with low-dimensional representations to reveal significant

latent information. It can be used to compress, visualize or re-organize data, and as a

preprocessing step for other machine learning tasks.

CCA is an early and classical method for multi-view dimensionality reduction by

learning subspaces jointly from different views [21]. It was further extended to nonlinear

subspace learning [3,17] and sparse formulations [2,10,20]. Recently, White et al. [50]

adapted new advances of single-view subspace learning to the multi-view case and

provided a convex formulation for multi-view subspace learning. This work permits an

arbitrary loss function that is convex in the first argument, and replaces the usual rank

constraint with a rank-reducing regularizer.

3.2 Multi-view semi-supervised learning

Semi-supervised learning or learning from both labeled and unlabeled data has at-

tracted much attention during the last decade. For many practical applications, label

information is expensive or time-consuming to obtain but unlabeled examples are very

easy to collect. In this scenario it is helpful to combine the limited labeled data together

with the unlabeled data for effective function learning. Semi-supervised learning can

address this problem by learning with few labeled data and a large number of unla-

beled data jointly, where the unlabeled data can play the role of induction preference

towards functions with some properties.

Multi-view semi-supervised learning has an additional approach for induction pref-

erence, namely view agreements. By requiring that functions from different views have

similar outputs, it can reduce the size of the hypothesis space and thus a better gen-

eralization performance is possible. Representative multi-view semi-supervised learn-

ing methods include co-training [8], co-EM [29], multi-view sequential learning [9],

Bayesian co-training [54], multi-view point cloud regularization [32], sparse multi-view
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SVMs [42], and robust co-training [39]. The recent multi-view Laplacian SVMs [38]

integrate the multi-view regularization with manifold regularization, and bring further

improvements.

3.3 Multi-view supervised learning

Unlike semi-supervised learning, supervised learning only uses labeled data for function

learning. However, research on multi-view supervised learning is comparatively less

than multi-view semi-supervised learning. One reason may be that multi-view semi-

supervised learning can often be regarded as a more difficult and general problem

than multi-view supervised learning. Multi-view supervised learning is almost direct to

adapt if one already has a multi-view semi-supervised learning method. But we should

note that these two problems are intrinsically distinct. For example, effective model

selection is more difficult for semi-supervised learning than for supervised learning.

For multi-view supervised learning, Chen and Sun [11] proposed the multi-view

Fisher discriminant analysis which is applicable for both binary and multi-class clas-

sification. Farquhar et al. [16] introduced supervised SVM-2K that was later extended

to multi-view semi-supervised learning [46].

3.4 Multi-view active learning

Active learning is concerned with the scenario, where a learning algorithm can actively

query the user for labels. Due to this interactive nature, the number of examples

needed to learn a function can often be much lower than the corresponding supervised

learning case. In other words, the aim of active learning is to alleviate the burden of

labeling abundant examples by discovering and asking the user to label only the most

informative ones.

Muslea et al. [28] gave a multi-view active learning method co-testing which is a

two-step iterative process. First, it uses a few labeled examples to learn a classifier in

each view. Then it queries an unlabeled example (a contention point) for which the

views predict different labels. After adding the queried example to the labeled training

set, the entire procedure is repeated for a number of iterations. Yu et al. [54] introduced

an active sensing framework with Bayesian co-training, in which the 〈example, view〉

pairs are actively queried to improve learning performance.

However, for some applications there are very limited labeled examples available.

For instance, in the extreme case each category can have a single labeled example where

most existing active learning methods can not be directly applied. Sun and Hardoon [41]

proposed an approach for multi-view active learning with extremely sparse labeled

examples, which adopts a similarity rule defined with CCA [56].

3.5 Multi-view ensemble learning

The goal of ensemble learning is to use multiple models (e.g., classifiers or regressors)

to obtain a better predictive performance than could be obtained from any of the con-

stituent models. It is widely acknowledged that an effective ensemble learning system
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should consist of individuals that are not only accurate, but are diverse as well, that is,

a good balance should hold between diversity and individual performance [37,43,44].

Xu and Sun [51] extended the well-known ensemble learning method Adaboost to

the multi-view learning scenario, and proposed the embedded multi-view Adaboost

algorithm (EMV-Adaboost). The key idea of EMV-Adaboost is that during every iter-

ation an example will contribute to the error rate as long as it is predicted incorrectly

by either of the weaker learners from the two views. Sun and Zhang introduced a

multi-view ensemble learning framework possessing both multiple views and multiple

learners, and applied it successfully to semi-supervised learning [45] and active learn-

ing [55], respectively.

3.6 Multi-view transfer learning

Transfer learning is one emerging and active topic in current machine learning research.

Traditional machine learning algorithms are usually designed for solving a certain single

task. The recent developments of transfer learning or multitask learning have shown

that it is often advantageous to transfer knowledge learned in one or more source tasks

to a related target task to improve learning.

Chen et al. [12] introduced a variant of co-training for domain adaptation which

attempts to bridge the gap between source and target domains whose distributions

can differ substantially. This variant gradually adds to the training set both the target

features and instances that are regarded as the most confident. Specifically, for each

iteration of co-training, it simultaneously learns a target predictor, a split of the feature

space into views, and a subset of source and target features to include in the predictor.

Xu and Sun proposed an algorithm involving a variant of EMV-Adaboost for multi-

view transfer learning [52] and further extended it to taking the advantages of learning

with multiple sources [53].

3.7 Multi-view clustering

Multi-view learning has also been applied to improve single-view clustering methods.

Bickel and Scheffer [7] studied multi-view versions of several clustering algorithms for

text data, and found that EM-based multi-view algorithms significantly outperform

the single-view counterparts while the agglomerative hierarchical multi-view clustering

leads to negative results.

Recently, Tzortzis and Likas [47] proposed a multi-view convex mixture model that

extends convex mixture models to the multi-view clustering setting. de Sa et al. [15]

developed an algorithm to leverage information from multiple views for clustering by

constructing a multi-view affinity matrix. They used this multi-view affinity matrix

as the affinity matrix for spectral clustering. Kumar and Daumé [23] presented a co-

training approach for multi-view spectral clustering, where the clusterings of different

views are bootstrapped using information from one another. In particular, the spectral

embedding from one view is adopted to constrain the similarity graph used for the

other view. Kumar et al. [24] further proposed two co-regularization based approaches

for multi-view spectral clustering by enforcing the clustering hypotheses on different

views to agree with each other. They constructed an objective function that consists
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of the graph Laplacians from all views and made regularizations on the eigenvectors of

the Laplacians such that the resulting cluster structures would be consistent.

3.8 A high-level taxonomy

Current multi-view learning methods can be divided into two major categories: co-

training style algorithms and co-regularization style algorithms. They are two different

approaches for exploiting multiple views.

The co-training style algorithms are inspired by the co-training algorithm [8], which

essentially involve an iterative procedure to exploit different views. For example, co-

EM [29], co-testing [28] and robust co-training [39] are of this category.

For the co-regularization style algorithms such as sparse multi-view SVMs [42] and

multi-view Laplacian SVMs [38], the disagreement between the functions of two views

is taken as one part of the objective function to be minimized. Note that, CCA [21]

and Bayesian co-training [54] also belong to the co-regularization style category.

4 Open problems

Now we present several important open problems which can be very useful for further

developments of multi-view learning.

4.1 PAC-Bayes analysis of multi-view learners

For generalization error analysis of multi-view learners, we have witnessed some results

based on the Rademacher complexity bounds. However, the tightest bounds so far for

practical applications appear to be the PAC-Bayes bound [25,26] for which the most

recent research outcome is using data dependent priors [30]. It would be interesting

to show if tighter and more insightful bounds can be obtained for multi-view learners

with the theory of PAC-Bayes analysis.

4.2 New approaches to exploiting distinct views

From the survey of existing multi-view methods, especially Section 3.8, we know that

the two major categories of approaches to exploiting distinct views are co-training style

algorithms and co-regularization style algorithms. Different from these approaches,

Ganchev et al. [18] introduced stochastic agreement regularization for multi-view learn-

ing over structured outputs, which uses the Bhattacharyya distance between distribu-

tions. Therefore, a natural question to ask is: can we go further beyond these ap-

proaches?

4.3 Theory and practical methods for view construction

It is shown that multi-view learning often works even with multiple views generated

from data with one single view. Typical view construction methods include the random
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split [29] and principal component analysis [45]. Recently, Sun et al. [40] proposed to use

genetic algorithms for view construction. However, the practical problem of effective

view construction is still not as highly valued as it should be.

Meanwhile, it remains a problem when we should generate multiple views from

a whole single view and apply multi-view learning methods rather than single-view

learning methods. Research on this topic is very few. Especially, theoretical insights

are in urgent need.

5 Conclusion

We have surveyed recent developments on theories and methodologies of multi-view

machine learning where when applicable we tried to provide a neat categorization and

organization. Several open problems were also listed, which we think are important for

the development of multi-view learning. This paper can be useful for readers to further

promote the research of multi-view learning, or apply the idea of multi-view learning

to other machine learning problems.
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