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Abstract— Learning from multiple feature sets, which is
also called multi-view learning, is more robust than single
view learning in many real applications. Canonical correlation
analysis (CCA) is a popular technique to utilize information
from multiple views. However, as an unsupervised method, it
does not exploit the label information. In this paper, we propose
an algorithm which combines uncorrelated linear discriminant
analysis (ULDA) with CCA, named multi-view uncorrelated
linear discriminant analysis (MULDA). Due to the successful
application of ULDA, which seeks optimal discriminant features
with minimum redundancy in the single view situation, it
could be expected that the recognition performance would be
enhanced. Experiments on handwritten digit data verify this
expectation with results outperform other related methods.

I. INTRODUCTION

LEARNING from multiple feature sets, which is also
called multi-view learning, is a rapid growing direction

in machine learning with well theoretical basis and great
practical success [1]. This learning mechanism emerged
recently, largely motivated by a phenomenon of real data, that
is, the same object can be observed at different viewpoints
to generate multiple distinct samples. For instance, web
pages can be described by urls and caption text. In content-
based web-image retrieval, an object can be simultaneously
described by the text surrounding the image and the visual
features from the image. Moreover, even natural different
‘views’ do not exist, manufactured splits of features can still
improve the performance in various applications.

A critical issue of multi-view learning is to effectively
utilize the information stemming from different sources to
improve its application performance. An effective method is
information fusion, which can be realized through obtaining
a common space for multiple views. Feature extraction is a
common way to obtain this kind of subspace.

Canonical correlation analysis (CCA), first proposed by
Hotelling [2], is the most popular technique to extract fea-
tures in multi-view learning. It works on paired datasets to
find two linear transformations each for one view such that
the two transformed variables are most correlated. Kernel
CCA (KCCA) [3][4] is a nonlinear extension of CCA by
means of the kernel trick, which corresponds to performing
CCA in a kernel-induced feature space. Locality preserving
CCA (LPCCA) [5] is another nonlinear extension of CCA,
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which was introduced to discover the local manifold structure
of the data by forcing nearby points in the original feature
space to be close in the transformed subspace as well. Other
typical approaches include bilinear model (BLM) [6] and
partial least squares (PLS) [7]. However, all the aforemen-
tioned methods are unsupervised methods, i.e., without using
label information, which may limit them from recognition
performance.

To overcome this deficiency, many supervised methods
for multi-view learning have been proposed in the past
years. Linear discriminant analysis (LDA) [8] is an effec-
tive supervised method in single-view learning. It seeks
an optimal linear transformation that maps the data into a
subspace, in which the within-class distance is minimized
and simultaneously the between-class distance is maximized,
thus achieving maximum discrimination. Following the way
LDA preserves class structure, discriminant CCA (DCCA)
[9] was proposed to exploit discriminant structure by taking
within-class correlation terms into account. It maximizes
the difference of within-class and between-class correla-
tions across two views. Similarly, inspired by the great
performance of DCCA, random correlation ensemble (RCE)
[10] was proposed to incorporate discriminant information
into CCA by using random cross-view correlation between
within-class examples and construct a lot of feature extractors
to do multi-view ensemble learning. In [11][12], multiview
Fisher discriminant analysis (MFDA) was proposed to learn
classifiers in different views by maximizing the consistency
between the predicted labels of these classifiers. However, it
can only be applicable in binary classification. To deal with
this problem, Chen and Sun [13] used a hierarchical clus-
tering approach to extend MFDA to a multi-class scenario,
namely hierarchical MFDA (HMFDA). In [14], common
discriminant feature extraction (CDFE) was proposed to
learn two transforms simultaneously by incorporating both
empirical discriminative power and local consistency.

As mentioned above, to guarantee the recognition perfor-
mance, preserving discriminant structure is a very important
property in feature extraction. In other words, in the scenario
of multi-view learning, both inter-view and intra-view dis-
criminant information mean a lot to ensure the classification
ability in the common space. DCCA and RCE take cross-
view correlation between within-class examples into account,
which means inter-view class structure was preserved, while
intra-view data structure is ignored yet. The other methods
mentioned above have similar deficiency as well. Multi-view
discriminant analysis (MvDA) [15] is an effective method to
cope with this problem. It maximizes the difference between



the within-class variation and the between-class variation
which are calculated from the samples from all views. It uses
the same way to represent inter-view correlation and intra-
view correlation, which can be cast as a natural extension
of LDA with all the transformed feature sets (e.g. different
views) regarded as a large data set.

In this paper, we propose a new approach called multi-
view uncorrelated linear discriminant analysis (MULDA),
which extracts mutually uncorrelated features in each view
and computes transformations of each view to project them
into a common subspace. Inspired by the effectiveness of
CCA and LDA, we formulate our objective function with a
simple and natural combination of these two methods. Addi-
tionally, because of the fact that the feature vectors extracted
by the uncorrelated LDA (ULDA) [16][17][18][19] could
contain minimum redundancy and the successful application
of ULDA in various applications in the past years, we extend
the LDA part to ULDA with a uncorrelated constraint added
into our objective function. Similar to [16], it can be solved
with a sequence of generalized eigenvalue problems.

The remainder of this paper is organized as follows.
Section II gives a brief review of some related work. The
formulations and solutions of the proposed MULDA are
presented in Section III. Section IV performs handwritten
digit recognition experiments on the multiple features data
set. Finally, we conclude this paper and discuss some future
works in Section V.

II. BACKGROUND

In this section, we give a brief review of CCA, LDA and
ULDA.

A. Canonical Correlation Analysis

Canonical correlation analysis was first proposed by
Hotelling [2] to find a common space for two views such
that the correlations between these transformed feature sets
are maximized.

Given a data set with two views {(x1, y1) , ..., (xn, yn)},
and X = [x1, ..., xn] , Y = [y1, ..., yn]. CCA seeks to find
two projection directions wx and wy , one for each view, to
maximize the following linear correlation coefficient:
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with mx and my being the means from the two views,
respectively,

mx =
1

n

n∑
i=1

xi, my =
1

n

n∑
i=1

yi. (5)

Since wx, wy are scale-independent, (1) is equivalent to
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Applying Lagrangian multiplier method on (6), the opti-
mization problem of CCA can be solved by a generalized
eigenvalue problem as follows:[
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The generalized eigenvalue λ reflects the degree of cor-
relation between projections. Suppose retaining d pairs of
projection vectors (wx, wy) corresponding to the largest
eigenvalues, the transformations of each view to a common
space will be Wx = [wx1, ..., wxd] ,Wy = [wy1, ..., wyd].

The classical CCA can only exploit the linear relation-
ships between feature sets. When dealing with the nonlinear
problem, KCCA [3] would be effective and LPCCA [5] is
an alternative option.

B. Linear Discriminant Analysis

Linear discriminant analysis is a powerful technique for
dimensional reduction, which was first proposed in [8]. It
aims to find an optimal transformation that maps the data into
a lower-dimensional space in which the within-class distance
is minimized and the between-class distance is maximized
simultaneously, thus achieving maximum discrimination.

Given a data matrix X ∈ Rm×n with each column corre-
sponding to a data point. Assuming X = [x1, x2, ..., xn] =
[X1, X2, ..., Xk], where xj ∈ Rm (1 ≤ j ≤ n) represents a
data point, n is the sample size, k is the number of classes
and Xi ∈ Rm×ni denotes the subset of all the samples in
class i with ni being the number of data in this subset. So
we have

∑k
i=1 ni = n. Classical LDA computes a linear

transformation G ∈ Rm×l that maps each column xi of X in
the m-dimensional space to a vector qi in the l-dimensional
space:

G : xi ∈ Rm → qi = GTxi ∈ Rl (l ≤ m) . (8)

In LDA, three scatter matrices, called with-class,
between-class and total scatter matrices are defined as
follows:
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Based on these scatter matrices, the Fisher criterion func-
tion can be defined as:

F (φ) =
φTSbφ

φTSwφ
, (12)

and an alternative criterion for classical LDA is:

F (φ) =
φTSbφ

φTStφ
. (13)

Fisher’s vector φ for (12) is the eigenvector corresponding
to the maximum eigenvalue of S−1

w Sb, and (13) can be solved
analogously. Then the linear transformation G mentioned
above is formulated by the first l eigenvectors corresponding
to the largest eigenvalues.

C. Uncorrelated Linear Discriminant Analysis
Uncorrelated linear discriminant analysis was first pro-

posed in [16] to find the optimal discriminant vectors that
are St-orthogonal. To be specific, suppose (r − 1) vectors
φ1, φ2, ..., φr−1 are obtained, then the rth vector φr is
the one that maximizes the criterion (12), subject to the
constraints: φT

r Stφi = 0, i = 1, ..., r − 1.
In [16], φi is found successively as follows: The j-th

discriminant vector φj of ULDA is the eigenvector cor-
responding to the maximum eigenvalue of the following
generalized eigenvalue problem:

PjSbφj = λjSwφj , (14)

where
P1 = Im,
Pj = Im − StD

T
j (DjStS

−1
w StD

T
j )

−1DjStS
−1
w (j > 1),

Dj = [φ1, φ2, ..., φj−1]
T
(j > 1),

Im = diag(1, 1, ..., 1) ∈ Rm×m.
(15)

III. MULTI-VIEW UNCORRELATED LINEAR
DISCRIMINANT ANALYSIS

Correlated information between multiple views can pro-
vide useful information for building robust classifiers. Addi-
tionally, discriminant features of each view are important for
recognition. So we propose a approach to incorporate CCA
and LDA, which is called multi-view linear discriminant
analysis (MLDA). It aims to achieve maximum correlation
between different views and discrimination of each view
simultaneously, so that the performance in this transformed
common space would be enhanced. Moreover, motivated by
the fact that uncorrelated features with minimum redundancy
are highly desirable in many applications, we add a con-
straint into our objective function. Due to this constraint, the
extracted feature vectors are mutually uncorrelated in each
view. This procedure can be seen as an extension of the LDA
ingredient in MLDA. The purpose of our method is to take
advantage of both ULDA and CCA, so that useful features
can be exploited for multi-view application.

In this section, we first introduce the formulation of multi-
view linear discriminant analysis and its solution. Then we
present our new approach multi-view uncorrelated linear
discriminant analysis and describe the explicit derivation of
the final solution.

A. Multi-view Linear Discriminant Analysis

Similar to the notations in the last section, assume we
have a two-view data set {(x1, y1) , ..., (xm, ym)} ∈ Rp ×
Rq, and X = [x1, x2, ..., xn] = [X1, X2, ..., Xk], Y =
[y1, y2, ..., yn] = [Y1, Y2, ..., Yk], where p and q represent
the dimension of X and Y . MLDA seeks to maximize the
following objective function:
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) ,
(16)

in which we use the common classical LDA criterion (13) to
exploit discriminant vectors in each view. γ > 0 is a tunable
parameter to balance the relative significance between the
CCA part and the LDA part in (16)

By constraining the factors in the denominator to have
value 1, (16) can be formulated as the following optimization
problem:

maxwx,wy wT
x Sbxwx + wT

y Sbywy + 2γwT
xCxywy

s.t. wT
x Stxwx = 1, wT

y Stywy = 1,
(17)

where the matrices Sbx and Sby are constructed according
to (10), Stx and Sty are computed following (11), and Cxy

is constructed according to (2). From (3), (4) and (11) we
can find that they all represent the covariance matrix of a
data set. Thus we replace Cxx and Cyy with Stx and Sty

respectively for simplicity.
Through optimizing (17), the correlation between different

views and the discrimination of each view can be maximized
simultaneously. By using Lagrangian multiplier techniques,
we can transform this constrained optimization problem (17)
to a generalized multivariate eigenvalue problem of the
following form:[

Sbx γCxy

γCyx Sby

] [
wx

wy

]
=

[
Stx

Sty

] [
λxwx

λywy

]
, (18)

which has appeared in the solution of [20] and can be solved
by an alternation method [21].

In [22], a general multi-view feature extraction approach
called generalized multiview analysis (GMA) was proposed
for cross-view classification and retrieval. It has a similar
formulation with (17), which is relaxed by coupling the
constraints with a parameter to obtain a closed-form solu-
tion. Similarly, for the sake of convenience, we couple the
constraints in (17) with σ =

tr(Stx )

tr(Sty )
, such that the constraints

are transformed to a single constraint wT
x Stxwx+σwT

y Stywy.
In the remainder, we will use this kind of relaxed version to
derive our closed-form solution.

B. Multi-view Uncorrelated Linear Discriminant Analysis

It has been proved that uncorrelated features with
minimum redundancy are desirable in many applications
[16][17][18][19]. Inspired by the fact that ULDA can be
successfully combined with other learning methods to obtain
better performance [23], we add the uncorrelated constraint
wT

r Stwj = 0, j = 1, 2, ..., r − 1 into MLDA, such that the



extracted feature vectors will be mutually uncorrelated in
each view.

Let (wx1, wy1) be the vector pair solved by MLDA
corresponding to the maximum eigenvalue. Suppose r − 1
vector pairs (wxj , wyj), j = 1, 2, ..., r − 1, of the two-view
data set are obtained. MULDA seeks to find the rth feature
vector pair (wxr, wxr) of data set X and Y which optimize
the objective function (17) with the following conjugated
orthogonality constraints:

wT
xrStxwxj = wT

yrStywyj = 0 (j = 1, 2, ..., r − 1). (19)

The optimization problem of MULDA can be formulated
as:

maxwxr,wyr wT
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where wxr and wxr represent the rth discriminant vector of
data set X and Y , respectively.

The corresponding Lagrangian function of (20) is
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Taking its derivatives with respect to wxr and wyr to be

zero, we have
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which means 2λ represents the value of the objective function
in (20).
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then we derive a generalized eigenvalue problem:[
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Equivalently,

P̃ S̃bŵr = λS̃tŵr, (37)

from which we can obtain the rth uncorrelated feature vector
ŵr =

[
wT

xr wT
yr

]
, which is the eigenvector corresponding

to the maximum eigenvalue of (37). Matrices P̃ , S̃b and S̃t

are the corresponding matrices in (36).



With d obtained vector pairs (wxj , wyj), j = 1, 2, ..., d
after d iterations, let Wx = [wx1, wx2, ..., wxd], Wy =
[wy1, wy2, ..., wyd]. The combined feature extraction can be
performed according to the following two strategies [24]:

I) Z =

[
Wx

Wy

]T [
X
Y

]
, (38)

II) Z =

[
Wx

Wy

]T [
X
Y

]
, (39)

and d satisfies the constraints 1 ≤ d ≤ min(p, q) and 1 ≤
d ≤ k. Both of them are usable. In our experiments, we
apply the first strategy to fuse extracted features. The main
algorithm is given in Algorithm 1.

Algorithm 1 Multi-view uncorrelated linear discriminant
analysis
Input:

Training data X , Y ;
Reduced dimensions d;
Parameter λ;

Output:
Transformed data Z;

1: Construct matrices Cxy , Sbx , Sby , Stx , Sty as in (2),
(10), (11).

2: σ ← tr(Stx )
tr(Sty )

.
3: Initialize Dx = ∅, Dy = ∅
4: for r = 1 to d do
5: Construct matrices Px, Py as in (35);
6: Obtain the rth vector pair (wxr, wyr) by solving (36);
7: Set Dx = Dx ∪ wxr, Dy = Dy ∪ wyr;
8: end for
9: Wx ← Dx, Wy ← Dy;

10: Extract features according to (38);
11: return Z.

As our projection vectors are solved by generalized eigen-
value decomposition, and in some cases S̃t could be singular,
such that (37) can not be applied directly, we add a regular-
izer to S̃t [25] in our experiments.

IV. EXPERIMENTS ON HANDWRITTEN DIGIT
RECOGNITION

In this section, we evaluate the effectiveness of our method
MULDA on handwritten digit recognition. Section IV.A
describes our data set. Section IV.B examines the effect
of the number of reduced dimensions on the recognition
performance of MULDA. In Section IV.C, we compare
MULDA with DCCA and k-nearest-neighbor (KNN), in
terms of recognition accuracy. After feature extraction using
MULDA and DCCA, the KNN classifier with K = 3 is
employed.

A. Data Set

The multiple features data set, which is available from
the UCI repository, consists of features of handwritten digits
(‘0’-‘9’) extracted from a collection of Dutch utility maps.

200 samples per class (for a total of 2,000 samples) have
been digitized in binary images. Six sets of features, which
respectively describe the digits from different views, are
included. The six feature sets and number of features in each
set are listed as follows: 1) Fourier coefficients of the char-
acter shapes (FOU,76); 2) Profile correlations (FAC,216); 3)
Karhunen-Love coefficients (KAR,64); 4) Pixel averages in
2 x 3 windows (PIX,240); 5) Zernike moments (ZER,47);
6) Morphological features (MOR,6).

Any two of them are picked out to construct view X
and view Y , so that there are total 15 pairs of different
combinations and each combination forms a two-view data
set. For each class, 100 pairs of feature vectors are randomly
picked out for training, and the remaining are for test. We
report averaged results after 20 random experiments. In the
implementation of MULDA, we use 5-fold cross validation
to select tuning parameter γ among [0, 1000] for each two-
view data set.

B. Effect of the Number of Reduced Dimensions on MULDA

In this experiment, the effect of the number of reduced
dimensions on the recognition performance of MULDA is
studied. We run MULDA by keeping the first d̃ dimensions
only, where 1 ≤ d̃ ≤ min(p, q) and 1 ≤ d̃ ≤ k. The recogni-
tion results on the combination of PIX and ZER are shown
in Fig. 1, where the horizontal axis represents the reduced
dimensions and the vertical axis represents the recognition
accuracy. We can observe that the accuracy increases mono-
tonically as the number of reduced dimensions increases,
until d̃ = k − 1 is reached. This observation is consistent
with the theory in [8], that the optimal dimensionality of
feature space is k − 1. Most observations of other two-view
data sets are similar, so we do not present them here. For the
two-view data sets in which feature set MOR is included,
the reduced dimensions is set to be the dimension of MOR.
Otherwise, in the following experiment, we set the reduced
dimensions of MULDA to be k − 1.

C. Comparison of Recognition Performance

In this section, we present experimental results which
compare MULDA with other two algorithms, DCCA and
KNN. The reduced dimensions of DCCA is set to be the
same with MULDA. KNN denotes the method that apply 3-
NN classifier directly on two-view data sets. The results are
summarized in Table I.

To make the comparison results more intuitive, we sum-
marize the results in Fig. 2. Each number in horizonal axis
corresponds to a two-view data set in Table I. We can observe
from Fig. 2 that in most cases, the recognition performance
of MULDA is better than DCCA and KNN. And in those
cases that KNN is superior, MULDA is more competitive
with KNN than DCCA. These comparative results confirm
that in most instances, MULDA is able to extract a small
number of features in each view and fuse them without loss
of classification accuracy. Moreover, as MULDA removes
the redundancy in the original features while achieving max-
imum correlation between different views and discrimination
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Fig. 1. Effect of the number of reduced dimensions on the recognition
performance of MULDA for the combination of PIX and ZER

in each view, the accuracy rate can be improved in the
common space in many situation. DCCA utilizes label infor-
mation by maximizing the difference between within-class
and between-class correlations across two views. However,
it misses the discriminative information within each view,
which is very important for classification. For this reason,
the recognition performance of DCCA is usually not as good
as MULDA, though it can get the best performance on some
rare occasions.

TABLE I
RECOGNITION ACCURACIES ON MULTIPLE FEATURE DATA SET.

X Y KNN DCCA MULDA
FOU KAR 0.9714 0.8964 0.9699
FOU FAC 0.9353 0.8885 0.9740
FOU PIX 0.9733 0.8752 0.9558
FOU ZER 0.8223 0.8367 0.8174
FOU MOR 0.4432 0.7812 0.6745
KAR FAC 0.9372 0.9710 0.9781
KAR PIX 0.9726 0.9365 0.9534
KAR ZER 0.8407 0.8851 0.9626
KAR MOR 0.5820 0.8427 0.9651
FAC PIX 0.9377 0.9643 0.9757
FAC ZER 0.9543 0.8851 0.9782
FAC MOR 0.9277 0.8581 0.9796
PIX ZER 0.8542 0.8677 0.9539
PIX MOR 0.6735 0.8242 0.9618
ZER MOR 0.7649 0.7711 0.8331

V. CONCLUSION AND FUTURE WORK

In this paper, we develop MULDA, an efficient algorithm
that combines ULDA and CCA to simultaneously take advan-
tage of these two algorithms. Different from previous work,
both intra-view class structure and inter-view correlation are
considered in our method. Additionally, the feature vectors
extracted by our method are mutually uncorrelated in the
common space, which means we can remove the redundancy
in the original features while achieving maximum correlation
between different views and discrimination in each view.

Comparative experiments on handwritten digit recognition
verify the effectiveness of MULDA. The experimental results
show that MULDA outperforms other related works in most
cases.



In the implementation, we derive the closed-form solution
of MULDA based on a relaxation of the constraints. Some
deviations may be caused by this approximation. In our
future work, we will study the effect of this approximation.
Besides, for large and high-dimensional data sets, our algo-
rithm may be computationally expensive, since each feature
vector corresponds to a generalized eigenvalue decomposi-
tion problem, which encourages us to exploit more efficient
closed-form solution, such as [17].

Additionally, inspired by [23], incorporating sparsity into
our algorithm will be one future focus. And many studies
imply that a non-linear extension of feature extraction meth-
ods can improve performance especially when the data has
weak linear separability [26]. In the future, we also plan to
extend the current work to deal with the nonlinearity.
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