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Multi-view Uncorrelated Discriminant Analysis
Shiliang Sun, Xijiong Xie, and Mo Yang

Abstract—Multi-view learning is more robust than single-view learning in many real applications. Canonical Correlation Analysis (CCA)
is a popular technique to utilize information stemming from multiple feature sets. However, it does not exploit label information effectively.
Later Multi-view Linear Discriminant Analysis (MLDA) was proposed through combining CCA and Linear Discriminant Analysis (LDA).
Due to the successful application of Uncorrelated Linear Discriminant Analysis (ULDA), which seeks optimal discriminant features
with minimum redundancy, we propose a new supervised learning method called Multi-view Uncorrelated Linear Discriminant Analysis
(MULDA) in this paper. This method combines the theory of ULDA with CCA. Then we adapt Discriminant Canonical Correlation
Analysis (DCCA) instead of the CCA in MLDA and MULDA, and discuss about the effect of this modification. Furthermore, we generalize
these methods to the nonlinear case by kernel-based learning techniques. The new method is called Kernel Multi-view Uncorrelated
Discriminant Analysis (KMUDA). Then we modify Kernel Multi-view Discriminant Analysis (KMDA) and KMUDA by replacing Kernel
Canonical Correlation Analysis (KCCA) with Kernel Discriminant Canonical Correlation Analysis (KDCCA). Our methods are tested
on different real datasets and compared with other state-of-the-art methods. Experimental results validate the effectiveness of our
methods.

Index Terms—Feature extraction, Multi-view discriminant analysis, Uncorrelated discriminant analysis, Canonical correlation analysis,
Kernel-based learning technique.
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1 INTRODUCTION

I N the real world, an object can be observed from different
viewpoints, which indicates that it can be described by

multiple distinct feature sets. However, learning from a single
view may be non-robust. Motivated by these reasons, multi-
view learning [1] was proposed. A critical issue in multi-
view learning is to effectively utilize the information stemming
from different feature sets. One effective approach is to fuse
information through obtaining a common subspace for these
feature sets and feature extraction is often used to achieve this
subspace.

Canonical Correlation Analysis (CCA), first proposed by
Hotelling [2], is a powerful tool for feature extraction in multi-
view learning. It works on paired datasets to find two linear
transformations each for one view such that the two trans-
formed variables are most correlated. However, an inherent
shortage of CCA is that label information is not utilized,
which may limit it in the classification performance. Linear
Discriminant Analysis (LDA) [3][4] is a popular supervised
learning method in single-view learning. It seeks an optimal
linear transformation that maps data into a subspace, in
which the within-class distance is minimized and the between-
class distance is maximized simultaneously. Following the
way LDA preserves the class structure, Discriminant CCA
(DCCA) [5] was proposed to exploit the discriminant structure
in multi-view learning. It takes within-class and between-
class correlation terms from different views into account,
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and therefore the inter-view class structure can be preserved.
Another approach to utilizing label information in multi-view
learning is realized by maximizing the consistency between
predicted labels. For example, Multi-view Fisher Discriminant
Analysis (MFDA) [6][7] was proposed to learn classifiers in
different views. The difference between the predicted labels
of these classifiers is minimized. However, it can only be
applied in binary classification. Later Chen and Sun [8] used a
hierarchical clustering approach to extend MFDA to the multi-
class scenario, namely Hierarchical MFDA (HMFDA).

As mentioned above, preserving the discriminant structure
is very important in feature extraction. In the scenario of multi-
view learning, both inter-view and intra-view discriminant
information are important to ensure the classification perfor-
mance in the common subspace. DCCA, as we introduced
in the last paragraph, just takes cross-view correlation into ac-
count, which means the inter-view class structure is preserved,
while the intra-view data structure is ignored yet. Multi-view
Discriminant Analysis (MvDA) [9] is an effective method to
cope with this issue. It maximizes the difference between the
within-class variation and the between-class variation which
are calculated from the examples across all views. It can be
cast as a natural extension of LDA with all the transformed
feature sets (e.g. different views) regarded as a large dataset.

Multi-view Linear Discriminant Analysis (MLDA) [10][23]
can be regarded as a combination of CCA and LDA. Through
optimizing the corresponding objective, discrimination in each
view and correlation between two views can be maximized
simultaneously. Uncorrelated LDA (ULDA) [11][12][13][14]
is an extension of LDA by adding some constraints into
the optimization objective of LDA, so that the feature vec-
tors extracted by ULDA could contain minimum redundancy.
Similarly, motivated by the successful application of ULDA
in various applications, we propose Multi-view Uncorrelated
Linear Discriminant Analysis (MULDA) by imposing two
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more constraints in each view. It extracts uncorrelated features
in each view and computes transformations of each view to
project data into a common subspace.

Part of this research has been reported in a short conference
paper [10]. Except the above work, there are mainly two
differences in this paper compared to the previous work. Firstly
since DCCA is able to preserve class structures between two
views and the corresponding objective is similar to CCA,
the CCA part is further replaced with DCCA in MLDA and
MULDA. The effect of this modification is shown in the exper-
imental results. Secondly as all the methods mentioned before
are linear methods, when data have weak linear separability,
the performance of these methods may be poor. Kernel-based
learning techniques are a feasible approach to deal with the
nonlinear problem. They map the input space into a high
dimensional feature space, in which a nonlinear problem can
be solved as a traditional linear problem. Even though the
problem can be solved by linear methods, kernel extensions
of linear methods can often provide better performance. For
example, Kernel CCA (KCCA) [15][16][17] was provided as
a nonlinear extension of CCA by means of the kernel trick. In
[18], Generalized Discriminant Analysis (GDA) was proposed
to generalize linear discriminant analysis to kernel-based non-
linear discriminant analysis and MLDA was also extended to
Kernel Multi-view Discriminant Analysis (KMDA) [23]. Un-
correlated discriminant vectors using the kernel method were
proposed in [19] to extend ULDA. Similarly, DCCA has its
nonlinear version called Kernelized Discriminative Canonical
Correlation Analysis (KDCCA) [20]. Thus we propose a new
method called Kernel Multi-view Uncorrelated Discriminant
Analysis (KMUDA). It is expressed by the kernel operators
and can similarly be regarded as a combination of GDA and
KCCA. As we tried before, we will also replace the KCCA
part with KDCCA in KMDA and KMUDA, and study the
effect.

In the next section, we review some related work briefly.
Then the formulations and solutions of MULDA are presented
in Section 3. Furthermore, the modifications of MLDA and
MULDA are also presented in this section. Finally, we provide
the time complexity of the linear feature extraction algorithms.
Section 4 gives the explicit objective of KMUDA and the
derivation of the corresponding closed-form solution, where
the modifications of KMDA and KMUDA are also given.
Then we provide the time complexity of the nonlinear feature
extraction algorithms. After reporting experimental results in
Section 5, we conclude this paper and discuss some future
work in Section 6.

2 RELATED WORK

In this section, first some basic notations that will be used
are presented. Then we give a brief review of some research
related to our work.

2.1 Notations
Let X and Y be two normalized feature matrices whose
mean values are 0, respectively. X = [x1, x2, ..., xn] =
[X1, X2, ..., Xk] , X ∈ Rp×n, where xj ∈ Rp (1 ≤ j ≤ n)

represents an example, n is the number of examples, m is
the number of classes and Xi ∈ Rp×ni denotes the subset
of all the examples in class i with ni being the number of
examples in this subset. Similarly, Y = [y1, y2, ..., yn] =
[Y1, Y2, ..., Yk] , Y ∈ Rq×n. Then we have a two-view dataset
{(x1, y1) , ..., (xn, yn)}. In the remainder of this paper, when
we refer to single-view learning, view X is used.

For kernel methods, we need to map the feature sets into a
Hilbert space F . Suppose we have two nonlinear mapping
functions φx : Rp → F, xj 7→ φx(xj) and φy : Rq →
F, yj 7→ φy(yj). Then X and Y are mapped into φx(X) =
[φx(x1), ..., φx(xn)] and φy(Y ) = [φy(y1), ..., φy(yn)], re-
spectively. We assume that the examples in X and Y are
centered in F for convenience (the mapped examples can
be mean-normalized by using the method in [18]). In order
to generalize linear methods to the nonlinear case, the inner
product is replaced with the following Mercer kernel function:
k(xi, xj) = φx(xi)T φx(xj). So kernel matrices can be repre-
sented as Kx = φx(X)T φx(X) and Ky = φy(Y )T φy(Y ).

2.2 CCA and KCCA
CCA is an approach to correlating linear relationships between
two-view feature sets [17]. It seeks linear transformations each
for one view such that the correlation between these trans-
formed feature sets are maximized in the common subspace.

The aim of CCA is to find two projection directions wx and
wy , one for each view, and the following linear correlation
coefficient

cov
(
wT

x X, wT
y Y

)
√

var (wT
x X) var

(
wT

y Y
) =

wT
x Cxywy√

(wT
x Cxxwx)

(
wT

y Cyywy

)
(1)

is maximized. In this equation (1), the covariance matrices
Cxy , Cxx and Cyy are calculated as

Cxy =
1
n

XY T , Cxx =
1
n

XXT , Cyy =
1
n

Y Y T . (2)

The term 1
n in (2) can be cancelled out when calculating the

correlation coefficient. We omit it from these expressions in the
remainder of this paper. Since wx, wy are scale-independent,
(1) is equivalent to the following optimization problem

maxwx,wy wT
x Cxywy

s.t. wT
x Cxxwx = 1, wT

y Cyywy = 1.
(3)

It can be transformed into a generalized eigenvalue problem
as [

0 Cxy

Cyx 0

] [
wx

wy

]
= λ

[
Cxx 0

0 Cyy

] [
wx

wy

]
. (4)

In this paper, 0 represents the appropriate number of zero
elements.

KCCA [15][16][17] is a nonlinear extension of CCA. The
desired projection vectors wφ

x and wφ
y can be expressed as

a linear combination of all training examples in the feature
space, and there exist coefficient vectors a = [a1, ..., an]> and
b = [b1, ..., bn]>, such that

wφ
x =

n∑

i=1

aiφx(xi) = φ(X)a, wφ
y =

n∑

i=1

biφy(yi) = φ(Y )b.

(5)



IEEE TRANSACTIONS ON CYBERNETICS 3

Substituting (5) and (2) into (3) and using the definition of the
kernel matrix, one can formulate the optimization problem of
KCCA as

maxa,b aT KxKyb
s.t. aT KxKxa = 1, bT KyKyb = 1,

(6)

which can be solved in a similar way like CCA [2].

2.3 LDA, ULDA and GDA

LDA is an effective supervised feature extraction method for
single-view learning. It seeks an optimal linear transformation
to map the data into a subspace so that the ratio between
between-class distance and within-class distance is maximized.
The optimal transformation can be obtained by maximizing the
Fisher criterion function. Given a data matrix X , the Fisher
criterion function is defined as

F (w) =
wT Sbw

wT Sww
, (7)

where w represents the projection vector. An alternative crite-
rion for classical LDA is

F (w) =
wT Sbw

wT Stw
, (8)

where Sb, Sw and St denote the between-class, within-class
and total scatter matrix, respectively. These scatter matrices
are calculated as

Sw =
1
n

X(I −W )XT , Sb =
1
n

XWXT , St =
1
n

XXT ,

(9)
where W = diag(W1,W2, ..., Wk), and Wi is an (ni × ni)
matrix with all elements equal to 1

ni
. The term 1

n in these
expressions is also omitted in our following work.

Similar to CCA, the optimization problem of criterion (8)
can be transformed to

maxw wT Sbw
s.t. wT Stw = 1.

(10)

The optimal vector w is the eigenvector corresponding to the
maximum eigenvalue of S−1

t Sb.
ULDA was first proposed in [11] to find the optimal

projection vectors that are St-orthogonal. Specifically, to ex-
tend LDA to ULDA, we just need to add some constraints
(wT

r Stwi = 0, i = 1, ..., r − 1) into (10), so that the feature
vectors extracted by ULDA can be mutually uncorrelated.

In [11], wi is found successively as follows. The jth dis-
criminant vector wj of ULDA is the eigenvector corresponding
to the maximum eigenvalue of the following generalized
eigenvalue problem

PjSbwj = λjSwwj , (11)

where

P1 = Ip,
Pj = Ip − StD

T
j (DjStS

−1
w StD

T
j )−1DjStS

−1
w (j > 1),

Dj = [w1, w2, ..., wj−1]
T (j > 1),

Ip = diag(1, 1, ..., 1) ∈ Rp×p.
(12)

Based on the kernel technique (K = φx(X)T φx(X)), the
Fisher criterion (8) can be generalized to the kernel-based
version GDA [18] as

F (w) =
wT Sφ

b w

wT Sφ
t w

=
aT KWKa

aT KKa
. (13)

2.4 DCCA and KDCCA
DCCA proposed in [5] exploits class structures by taking both
within-class and between-class correlation into consideration.
It can preserve class structures between two views. The
optimization problem of DCCA is formulated as

maxwx,wy
wT

x XAY T wy

s.t. wT
x XXT wx = 1, wT

y Y Y T wy = 1,
(14)

where

A =




1n1×n1

. . . 0
1ni×ni

0
. . .

1nk×nk




. (15)

Applying the Lagrangian multiplier method, the solution of
(14) can be transformed into a generalized eigenvalue problem
[

0 XAY T

Y AXT 0

] [
wx

wy

]
= λ

[
XXT 0

0 Y Y T

] [
wx

wy

]
. (16)

KDCCA [20] integrates the kernel trick into DCCA, for which
the optimization problem is formulated as

maxa,b aT KxAKyb
s.t. aT KxKxa = 1, bT KyKyb = 1.

(17)

3 MULTI-VIEW UNCORRELATED LINEAR DIS-
CRIMINANT ANALYSIS

Inspired by the effectiveness of CCA and LDA, MLDA was
proposed to incorporate these two methods. The correlation
information between views and discriminant information in
each view can be preserved simultaneously in the transformed
common subspace. Furthermore, since ULDA can extract
uncorrelated features with minimum redundancy, which may
be highly desirable in many applications, we extend MLDA
to a new method called MULDA. The purpose of this method
is to take advantage of both CCA and ULDA, so that useful
features can be exploited for multi-view applications. As we
introduced in Section 2, DCCA can preserve discriminant
structures between views. In this paper, we further replace the
CCA part with DCCA in MLDA and MULDA, and thus both
intra-view and inter-view class structures can be preserved.

In this section, first the optimization objective and corre-
sponding solution of MLDA are introduced in Section 3.1.
Then we provide the optimization problem of MULDA and
state several related theorems in Section 3.2. In Section 3.3,
we provide modifications of MLDA and MULDA, so that
discriminant information can be preserved between views. In
Section 3.4, we provide the time complexity analysis of the
linear feature extraction algorithms.
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3.1 Multi-view Linear Discriminant Analysis

From (2) and (9), Cxx and St both represent the total scatter
matrix. MLDA was proposed to incorporate (3) and (10). The
optimization problem of MLDA is given by

maxwx,wy
wT

x Sbx
wx + wT

y Sby
wy + 2γwT

x Cxywy

s.t. wT
x Stx

wx = 1, wT
y Sty

wy = 1,
(18)

where the matrices Sbx , Sby , Stx and Sty are constructed
according to (9), and Cxy is computed following (2).

Through optimizing (18), the correlation between different
views and the discrimination of each view can be maximized
simultaneously. Using the Lagrangian multiplier technique,
(18) can be solved by a generalized multivariate eigenvalue
problem in the following form

[
Sbx γCxy

γCyx Sby

] [
wx

wy

]
=

[
Stx 0
0 Sty

] [
λxwx

λywy

]
, (19)

which has appeared in the solution of [21] and can be solved
by an alternation method [22].

In order to obtain a closed-form solution, the constraints
in (18) can be coupled with σ = tr(Stx )

tr(Sty ) , such that the

constraints are transformed into a single constraint wT
x Stx

wx+
σwT

y Sty
wy = 1. In the remainder, we will use this coupled

constraint in our optimization problem.

3.2 Multi-view Uncorrelated Linear Discriminant
Analysis

It has been proved that uncorrelated features with minimum re-
dundancy are desirable in many applications [11][12][13][14].
Motivated by the fact that ULDA can be combined with
other methods to enhance performance [24], a new approach
MULDA is proposed. The extracted feature vectors will be
mutually uncorrelated in each view.

Let (wx1, wy1) represent the vector pair solved by MLDA
corresponding to the maximum eigenvalue. Suppose r − 1
vector pairs (wxj , wyj), j = 1, 2, ..., r − 1 of the two-
view dataset are obtained. MULDA aims to find the rth

discriminant vector pair (wxr, wyr) of matrices X and Y
which optimizes the objective function (18) and subject to
the following conjugate orthogonality constraints

wT
xrStxwxj = wT

yrStywyj = 0 (j = 1, 2, ..., r − 1). (20)

The optimization problem of MULDA can be formulated as

maxwxr,wyr
wT

xrSbx
wxr + wT

yrSby
wyr + 2γwT

xrCxywyr

s.t. wT
xrStxwxr + σwT

yrStywyr = 1,
wT

xrStxwxj = wT
yrStywyj = 0

(j = 1, 2, ..., r − 1),
(21)

where wxr and wyr represent the rth discriminant vectors of
matrices X and Y , respectively.

Through optimizing (21), we obtain d feature vectors for
each view: zxl = wT

xlX , zyl = wT
ylY , l = 1, 2, ..., d. They are

characterized by the following theorem:

Theorem 3.1. Any two feature vectors zxi and zxj (i 6= j)
extracted by multi-view uncorrelated linear discriminant anal-
ysis are statistically uncorrelated in view X . And it’s the same
(statistically uncorrelated) in view Y .

Proof: It is obvious that the following conditions hold:

E[(zxi − Ezxi)(zxj − Ezxj)] = wT
xiStwxj = 0.

E[(zyi − Ezyi)(zyj − Ezyj)] = wT
yiStwyj = 0.

(22)

Therefore, the theorem holds.
Accordingly, the rth discriminant vector pair (wxr, wyr) of

matrices X and Y can be obtained in terms of the following
theorem.

Theorem 3.2. The rth discriminant vector pair (wxr, wyr)
of matrices X and Y is the eigenvector corresponding to the
maximum eigenvalue of the following generalized eigenequa-
tion[

Px 0
0 Py

] [
Sbx

γCxy

γCyx Sby

] [
wxr

wyr

]
= λ

[
Stx

0
0 σSty

] [
wxr

wyr

]
,

(23)
where

Px = I − Stx
DT

x

(
DxStx

DT
x

)−1
Dx,

Py = I − Sty
DT

y

(
DySty

DT
y

)−1
Dy,

Dx =
[
wx1, wx2, · · · , wx(r−1)

]T
,

Dy =
[
wy1, wy2, · · · , wy(r−1)

]T
,

I = diag(1, 1, ..., 1).

(24)

Proof: Since wT
xrStx

wxr + σwT
yrSty

wyr = 1 and
wT

xrStx
wxj = wT

yrSty
wyj = 0, we construct the corre-

sponding Lagrangian function of (21) in terms of Lagrangian
multipliers λ, αj and βj

L (wxr, wyr) = wT
xrSbx

wxr + wT
yrSby

wyr + 2γwT
xrCxywyr

−λ
(
wT

xrStx
wxr + σwT

yrSty
wyr − 1

)

−∑r−1
j=1 2αjw

T
xrStx

wxj

−∑r−1
j=1 2βjw

T
yrStywyj .

(25)
Taking its derivatives with respect to wxr and wyr to be zero,
we have

Sbxwxr + γCxywyr − λStxwxr −
r−1∑

j=1

αjStxwxj = 0, (26)

Sbywyr + γCyxwxr − λσStywyr −
r−1∑

j=1

βjStywyj = 0. (27)

Multiplying the left-hand side of (26) and (27) by wT
xr and

wT
yr respectively, we obtain

2λ = wT
xrSbx

wxr + wT
yrSby

wyr + 2γwT
xrCxywyr, (28)

which means 2λ is equal to the value of the objective function
in (21).

Multiplying the left-hand side of (26) by wT
xi, we obtain a

set of r − 1 expressions

wT
xiSbx

wxr + γwT
xiCxywyr −

∑r−1
j=1 αjw

T
xiStx

wxj = 0

(i = 1, 2, ..., r − 1),
(29)
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which can be expressed in another form



wT
x1

wT
x2
...

wT
x(r−1)


Sbxwxr + γ




wT
x1

wT
x2
...

wT
x(r−1)


Cxywyr

−




wT
x1

wT
x2
...

wT
x(r−1)


Stx




wT
x1

wT
x2
...

wT
x(r−1)




T 


α1

α2

...
αr−1


 = 0.

(30)

Let
α =

[
α1, α2, · · · , αr−1

]T
,

Dx =
[
wx1, wx2, · · · , wx(r−1)

]T
,

(31)

so that (29) can be represented in a single matrix relation

DxSbx
wxr + γDxCxywyr = DxStx

DT
x α. (32)

Thus we obtain

α =
(
DxStx

DT
x

)−1
(DxSbx

wxr + γDxCxywyr) . (33)

Symmetrically, let

β =
[
β1, β2, · · · , βr−1

]T
,

Dy =
[
wy1, wy2, · · · , wy(r−1)

]T
,

(34)

then we get

β =
(
DySty

DT
y

)−1 (
DySby

wyr + γDyCyxwxr

)
. (35)

Using (31), (26) can be rewritten as

Sbx
wxr + γCxywyr − λStx

wxr − Stx
DT

x α = 0. (36)

Substituting (33) into (36), we have
[
I − Stx

DT
x

(
DxStx

DT
x

)−1
Dx

]
(Sbx

wxr + γCxywyr)
= λStxwxr.

(37)
Analogously, from (27) and (35) we have

[
I − Sty

DT
y

(
DySty

DT
y

)−1
Dy

] (
Sby

wyr + γCyxwxr

)

= λσStywyr.
(38)

Let
Px = I − StxDT

x

(
DxStxDT

x

)−1
Dx,

Py = I − Sty
DT

y

(
DySty

DT
y

)−1
Dy.

(39)

Then we derive the final generalized eigenvalue solution
[
Px 0
0 Py

] [
Sbx γCxy

γCyx Sby

] [
wxr

wyr

]
= λ

[
Stx 0
0 σSty

] [
wxr

wyr

]
.

(40)

With d obtained vector pairs (wxl, wyl), l = 1, 2, ..., d
after d iterations, let Wx = [wx1, wx2, ..., wxd], Wy =
[wy1, wy2, ..., wyd]. The combined feature extraction can be
obtained according to the following two strategies [25]:

I) Z =
[
Wx 0
0 Wy

]T [
X
Y

]
, (41)

II) Z =
[
Wx

Wy

]T [
X
Y

]
, (42)

with d subjecting to the constraints 1 ≤ d ≤ min(p, q, m).
Both of them are applicable. In our experiments, we apply
the first strategy to fuse extracted features. In addition, since
our closed-form solutions are solved by generalized eigenvalue
decomposition, to avoid the singularity problem, a regularizer
(a multiplication of an identity matrix) [26] is added in our
experiments. The main procedure is given in Algorithm 1.

Algorithm 1 Multi-view uncorrelated linear discriminant anal-
ysis
Require:

Training data X , Y ;
Dimension of the transformed feature space d;
Parameter λ.

Ensure:
Transformed data Z.

1: Construct matrices Cxy , Sbx
, Sby

, Stx
, Sty

as in (2),(9).
2: σ ← tr(Stx )

tr(Sty ) .
3: Initialize Dx and Dy to be empty matrices.
4: for r = 1 to d do
5: Construct matrices Px, Py as in (39);
6: Obtain the rth vector pair (wxr, wyr) by solving (40);
7: Set Dx = [Dx, wxr] (append wxr to Dx as the last

column), Dy = [Dy, wyr] (append wyr to Dy as the
last column).

8: end for
9: Wx ← Dx, Wy ← Dy .

10: Extract features according to (41).
11: return Z.

3.3 Modifications of MLDA and MULDA
MLDA utilizes the principle of CCA to exploit the information
between views. Through optimizing the objective of CCA, the
extracted feature vectors can preserve maximum inter-view
correlation in the transformed common subspace. DCCA is
an effective supervised feature extraction method for multi-
view learning, which can exploit discriminant information
between views. Inspired by the fact that DCCA has a similar
optimization objective like CCA, we replace Cxy = XY T

with Cxy
′ = XAY T in (21), where A is formulated according

to (15). The resultant method is called MLDA-m. MULDA
can also be extended to MULDA-m with this modification to
preserve both inter-view and intra-view class structures.

Discriminant information and correlation information be-
tween views are very important in multi-view feature extrac-
tion. It is worthwhile to discuss which one is more powerful.
We will compare the classification performance of these two
types of methods in our experiments.

3.4 The Time Complexity of the Above Linear Fea-
ture Extraction Algorithms
In this section, we summarize the time complexity of the above
linear feature extraction algorithms in Table 1.
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TABLE 1
The Time Complexity of the Linear Feature Extraction

Algorithms.

Method Time complexity
CCA O((p + q)3)

DCCA O((p + q)3)
MLDA O((p + q)3)

MLDA-m O((p + q)3)
MULDA O(d(p + q)3)

MULDA-m O(d(p + q)3)

4 KERNEL MULTI-VIEW UNCORRELATED DIS-
CRIMINANT ANALYSIS

The nonlinear extension of feature extraction methods can
improve performance, especially when data have weak linear
separability. Kernel methods are suitable to achieve this kind
of extension. The main idea in the kernel method is to map
an input feature space into a high dimensional feature space,
in which a linear problem is solved [27]. The construction
of the kernel operator K allows us to solve the original
nonlinear problem in a linear way without knowing the implicit
nonlinear mapping function. Since MULDA is a linear method,
motivated by the properties of the kernel method, we extend
it to new nonlinear methods by using kernel-based learning
techniques.

In this section, first we introduce the kernel-based version
of MLDA, which is called kernel multi-view discriminant
analysis [18]. Then KMUDA which is the nonlinear extension
of MULDA is proposed with some related theorems and proofs
presented. Furthermore, the modification mentioned before is
also applied to KMDA and KMUDA. Finally, we provide the
time complexity analysis of the nonlinear feature extraction
algorithms.

4.1 Kernel Multi-view Discriminant Analysis

Suppose that matrices X and Y are mapped into high dimen-
sional feature spaces as φx(X) = [φx(x1), ..., φx(xn)] and
φy(Y ) = [φy(y1), ..., φy(yn)]. Using the dual representations
and kernel matrices, KMDA can be expressed as

maxa,b aT φx(X)T φx(X)Wφx(X)T φx(X)a
+bT φy(Y )T φy(Y )Wφy(Y )T φy(Y )b
+2γaT φx(X)T φx(X)φy(Y )T φy(Y )b

s.t. aT φx(X)T φx(X)φx(X)T φx(X)a
+σbT φy(Y )T φy(Y )φy(Y )T φy(Y )b = 1,

(43)
where σ =

tr(φx(X)T φx(X)φx(X)T φx(X))
tr(φy(Y )T φy(Y )φy(Y )T φy(Y ))

and W is the same
as the one in (9). Let Kx = φx(X)T φx(X) and Ky =
φy(Y )T φy(Y ) be the kernel matrices corresponding to these
two expressions. Substituting them into (43) results in

maxa,b aT KxWKxa + bT KyWKyb + 2γaT KxKyb
s.t. aT KxKxa + σbT KyKyb = 1,

(44)

where σ = tr(KxKx)
tr(KyKy) . Using the Lagrangian multiplier tech-

nique, this optimization problem can be solved as
[
KxWKx γKxKy

γKyKx KyWKy

] [
a
b

]
= λ

[
KxKx 0

0 KyKy

] [
a
b

]
.

(45)

4.2 Kernel Multi-view Uncorrelated Discriminant
Analysis
MULDA may not extract useful uncorrelated feature vec-
tors when dealing with linearly inseparable problems. In the
transformed high dimensional kernel spaces, we propose a
new method called KMUDA, which aims to exploit not only
discriminant but also uncorrelated feature vectors from these
two mapped views.

Assuming we have r − 1 vector pairs (wφ
xj , w

φ
yj), j =

1, 2, ..., r − 1, we can express these vector pairs with dual
representations: wφ

xj = φx(X)aj , wφ
yj = φy(Y )bj , j =

1, 2, ..., r− 1 similar to (5). KMUDA seeks the rth projection
vector pair (wφ

xr, w
φ
yr) for the mapped matrices φ(X) and

φ(Y ) with the following constraints imposed

wφT
xr Sφ

txwφ
xj = wφT

yr Sφ
tywφ

yj = 0. (46)

Note that the first vector pair (wφ
x1, w

φ
y1) is solved by (45)

corresponding to the maximum eigenvalue.
Using the dual representations and kernel matrices, the

optimization problem of KMUDA is expressed as

maxar,br
aT

r KxWKxar + bT
r KyWKybr

+2γaT
r KxKybr

s.t. aT
r KxKxar + σbT

r KyKybr = 1,
aT

r KxKxaj = bT
r KyKybj = 0

(j = 1, 2, ..., r − 1).

(47)

Once the vector pairs (al, bl), l = 1, 2, ..., d are obtained, we
use the following transformation to extract features from the
mapped view φ(X):

Zφ
x =




zφ
x1

zφ
x2
...

zφ
xd


 =




wφT
x1

wφT
x2
...

wφT
xd


φ(X) =




aT
1

aT
2
...

aT
d







k(x1, X)
k(x2, X)

...
k(xn, X)


 , (48)

where k(xi, X) = φx(xi)T φx(X). Analogously, for the
mapped view φ(Y ), we have the transformed feature matrix
Zφ

y .
From (48) we find that since we don’t know the ex-

plicit nonlinear mapping function φx and φy , it is difficult
to obtain uncorrelated discriminant vector pairs (wxl, wyl),
l = 1, 2, ..., d directly for each view. However, it is very
flexible to get (al, bl), l = 1, 2, ..., d by utilizing the kernel
function. Therefore we call al and bl , l = 1, 2, ..., d as pseudo-
discriminant vectors for convenience.

As discussed in the last section, it is straightforward to
obtain the following theorem.

Corollary 4.1. Any two feature vectors zφ
xi and zφ

xj (i 6= j)
extracted by kernel multi-view uncorrelated discriminant anal-
ysis are statistically uncorrelated in the mapped view φ(X).
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And it’s the same (statistically uncorrelated) in the mapped
view φ(Y ).

Proof: It is obvious that the following conditions hold:

E[(zφ
xi − Ezφ

xi)(z
φ
xj − Ezφ

xj)] = wφT
xi Sφ

t wφ
xj = 0.

E[(zφ
yi − Ezφ

yi)(z
φ
yj − Ezφ

yj)] = wφT
yi Sφ

t wφ
yj = 0.

(49)

Therefore, the corollary holds.
Additionally, we can obtain the rth pseudo-discriminant

vector pair (ar, br) of the mapped matrices φ(X) and φ(Y )
according to the following theorem.

Corollary 4.2. The rth feature vector pair (ar, br) of the
mapped matrices φ(X) and φ(Y ) is the eigenvector corre-
sponding to the maximum eigenvalue of the following equa-
tion:
[
Pφ

x 0
0 Pφ

y

][
Sφ

bx
γCφ

xy

γCφ
yx Sφ

by

] [
ar

br

]
= λ

[
Sφ

tx
0

0 σSφ
ty

] [
ar

br

]
,

(50)
where

Sφ
bx

= KxWKx, Sφ
by

= KyWKy, Sφ
tx

= KxKx,

Sφ
ty

= KyKy, Cφ
xy = KxKy, Cφ

yx = KyKx,

Pφ
x = I − Sφ

tx
DT

a

(
DaSφ

tx
DT

a

)−1

Da,

Pφ
y = I − Sφ

ty
DT

b

(
DbS

φ
ty

DT
b

)−1

Db,

Da =
[
a1, a2, · · · , ar−1

]T
,

Db =
[
b1, b2, · · · , br−1

]T
,

I = diag(1, 1, ..., 1).

(51)

Proof: According to (47), we can construct the corre-
sponding Lagrangian function in terms of Lagrangian multi-
pliers λ, αj and βj

L (ar, br) = aT
r KxWKxar + bT

r KyWKybr

+2γaT
r KxKybr

−λ
(
aT

r KxKxar + σbT
r KyKybr − 1

)
−∑r−1

j=1 2αja
T
r KxKxaj

−∑r−1
j=1 2βjb

T
r KyKybj

= aT
r Sφ

bx
ar + bT

r Sφ
by

br + 2γaT
r Cφ

xybr

−λ
(
aT

r Sφ
tx

ar + σbT
r Sφ

ty
br − 1

)

−∑r−1
j=1 2αja

T
r Sφ

tx
aj

−∑r−1
j=1 2βjb

T
r Sφ

ty
bj .

(52)
The remaining proof is similar to the one given in the section
in which MULDA is introduced.

When d pseudo-discriminant vector pairs (al, bl), l =
1, 2, ..., d are obtained after d iterations, the feature extraction
can be performed in the feature space using the mapped data,
following the method given in (48). The main procedure is
listed in Algorithm 2.

4.3 Modifications of KMDA and KMUDA
Observing (44), it is obvious that KMDA can be regarded as
a combination of KCCA and GDA. The purpose of KMUDA
is to extend our former algorithm MULDA to solve nonlinear
problems by utilizing kernel-based learning techniques, so that

Algorithm 2 Kernel multi-view uncorrelated linear discrimi-
nant analysis
Require:

Training data φ(X), φ(Y );
Dimension of the transformed feature space d;
Parameter λ.

Ensure:
Transformed data Z.

1: Construct matrices Cφ
xy , Sφ

bx
, Sφ

by
, Sφ

tx
, Sφ

ty
as in (51).

2: σ ← tr(Sφ
tx

)

tr(Sφ
ty

)
.

3: Initialize Da and Da to be empty matrices.
4: for r = 1 to d do
5: Construct matrices Pφ

x , Pφ
y as in (51);

6: Obtain the rth vector pair (ar, br) by solving (50);
7: Set Da = [Da, ar] (append ar to Da as the last

column), Db = [Db, br] (append br to Db as the last
column).

8: end for
9: Wx ← Da, Wy ← Db.

10: Extract features according to (41).
11: return Z.

we can extract feature vectors with maximum discrimination
in each view and correlation between views from the possibly
linearly inseparable two-view data. Furthermore, these feature
vectors extracted from the mapped datasets will be mutually
uncorrelated in each view. Similar to the last section, which
has similar optimization expressions compared (17) with (6),
we can replace the KCCA part with KDCCA in KMDA
and KMUDA. In this case, the feature vectors extracted by
this modification will contain minimum within-class distance
and maximum between-class distance for both intra-view and
inter-view. In other words, the class structure information can
be preserved not only in each view but also between views
while the redundant information is removed in the common
subspace. We also make experiments to study the effect of this
modification and name these two methods as KMDA-m and
KMUDA-m.

4.4 The Time Complexity of the Above Nonlinear
Feature Extraction Algorithms

In this section, we summarize the time complexity of the above
nonlinear feature extraction algorithms in Table 2.

TABLE 2
The Time Complexity of the Nonlinear Feature Extraction

Algorithms.

Method Time complexity
KCCA O(n3)

KDCCA O(n3)
KMDA O(n3)

KMDA-m O(n3)
KMUDA O(dn3)

KMUDA-m O(dn3)
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5 EXPERIMENTS

In this section, we evaluate the performance of our methods
for extracting features from two-view data for classification.
Experiments are performed on two types of datasets: (a)
Multiple-feature dataset for handwritten digit classification, (b)
PIE human face dataset for face recognition.

The methods used for comparison are the following:
kNN: k-nearest-neighbor classifier with k = 3 is applied

directly on the original two-view data;
KkNN: k-nearest-neighbor classifier with k = 3 is applied

on the mapped two-view data in the kernel space;
CCA: Canonical correlation analysis to extract features from

the two-view data for classification;
KCCA: Kernel canonical correlation analysis [17];
DCCA: Discriminant canonical correlation analysis [5];
KDCCA: Kernelized discriminant canonical correlation

analysis [20];
MvDA: Multi-view discriminant analysis [9];
MLDA: Multi-view linear discriminant analysis;
MULDA: Multi-view uncorrelated linear discriminant anal-

ysis;
MLDA-m: Multi-view linear discriminant analysis with

modifications;
MULDA-m: Multi-view uncorrelated linear discriminant

analysis with modifications;
KMDA: Kernel multi-view discriminant analysis;
KMUDA: Kernel multi-view uncorrelated discriminant

analysis;
KMDA-m: Kernel multi-view discriminant analysis with

modifications;
KMUDA-m: Kernel multi-view uncorrelated discriminant

analysis with modifications.
After using the feature extraction methods, the kNN classi-

fiers with k=3, k=5 and k=7 are applied for classification. For
all the kernel-based methods, the commonly used Gaussian
kernel is employed, and the kernel width parameters are opti-
mized among [2−3, 2−2, ..., 24] multiplying the mean squared
distances between examples. In addition, the tuning parameter
γ in MLDA, MLDA-m, MULDA and MULDA-m is optimized
among [1, 5, 10, 15, 20], while in KMDA, KMDA-m, KMUDA
and KMUDA-m this parameter is set to 10. The average
classification accuracies and standard deviations are recorded
during 10 random experiments. More details are reported in
the following subsections.

5.1 Multiple-Feature Dataset
In this subsection, we evaluate the effectiveness of our methods
on handwritten digit classification. First we introduce the
dataset. Then the effect of the number of reduced dimensions
on the classification performance of MULDA is studied. At
last, we compare all the methods listed above in terms of
classification accuracies.

5.1.1 Dataset
The multiple-feature database is available from the UCI
repository. It is composed of features of handwritten digits
(‘0’-‘9’) extracted from a collection of Dutch utility maps.

200 examples per class (for a total of 2,000 examples)
have been digitized in binary images. Six sets of features,
which respectively describe different views of the digits are
included. The six feature sets and number of attributes in
each set are listed as follows: 1) Fourier coefficients of the
character shapes (FOU,76); 2) Profile correlations (FAC,216);
3) Karhunen-Love coefficients (KAR,64); 4) Pixel averages in
2 x 3 windows (PIX,240); 5) Zernike moments (ZER,47); 6)
Morphological features (MOR,6).

Any two of them are picked out to construct view X and
view Y , so that there are in total 15 pairs of different combi-
nations and each combination forms a two-view dataset. For
each class, we randomly pick out 100 pairs of feature vectors
for training, and the remaining for test. In the implementation
of the methods, five-fold cross-validation is used to select the
optimal parameters.

5.1.2 Effect of the number of reduced dimensions on
MULDA

In this experiment, we study the effect of the number of
reduced dimensions on the classification performance of
MULDA. The dimension of the common subspace is restricted
to be d̃ by keeping the first d̃ projection vectors only, where
1 ≤ d̃ ≤ min(p, q, m). In Fig.1 we show the classification
results on the combination of PIX and ZER, where the
horizontal axis represents the reduced dimensions and the
vertical axis represents the classification accuracy. It can be
observed that the accuracy increases monotonically as the
number of reduced dimensions increases, until d̃ = m − 1
is reached. This observation is consistent with the theory in
[3], that is, the optimal dimensionality of the extracted feature
space is m − 1. Since results on the other two-view datasets
are similar, we do not present them here. Based on these
observations, except the two-view datasets in which feature
set MOR is included, the reduced dimensions of MULDA are
set to m − 1. The reduced dimensions for the exceptions are
set to be the dimension of feature vectors belonging to MOR.

2 3 4 5 6 7 8 9 10
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0.6

0.65
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Fig. 1. Effect of the number of reduced dimensions on the
classification performance of MULDA for the combination
of PIX and ZER.
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TABLE 3
Classification Accuracy and Standard Deviation (%) on the Multiple-Feature Database for the Linear Case and t-test

Results (k = 3).

X Y kNN CCA DCCA MvDA MLDA MLDA-m MULDA MULDA-m
FOU KAR 95.45±0.59 84.36±0.68 89.89±1.12 91.76±0.70 97.53±0.31 96.88±0.44 97.29±0.47 96.64±0.40
FOU FAC 96.74±0.36 88.02±0.86 91.75±0.97 78.08±1.09 97.91±0.43 97.30±0.44 97.76±0.42 97.53±0.33
FOU PIX 96.91±0.37 84.81±0.52 90.12±0.85 90.43±0.74 97.52±0.49 97.11±0.44 97.12±0.45 97.13±0.31
FOU ZER 83.60±0.56 80.45±1.04 83.34±0.64 70.87±1.41 85.67±0.56 85.51±0.65 85.37±0.76 85.58±0.92
FOU MOR 80.65±0.70 76.34±1.09 83.35±1.09 70.64±1.08 82.98±0.92 83.19±0.88 82.47±0.77 83.18±0.90
KAR FAC 96.44±0.43 88.93±0.85 95.78±0.46 80.12±1.40 96.44±0.84 97.12±0.35 97.24±0.52 97.12±0.35
KAR PIX 96.40±0.33 87.05±0.91 93.89±0.61 92.65±0.43 97.23±0.46 95.25±0.60 95.91±0.39 94.87±0.48
KAR ZER 95.25±0.41 69.49±0.62 88.36±1.44 84.04±0.81 95.91±0.39 96.45±0.30 96.16±0.42 96.31±0.56
KAR MOR 95.50±0.38 80.70±1.33 91.99±1.41 87.16±1.24 96.65±0.33 94.27±1.46 96.58±0.54 94.26±0.15
FAC PIX 96.94±0.41 85.19±0.76 95.86±0.68 81.95±1.47 96.86±0.59 96.89±0.70 96.69±0.52 96.81±0.59
FAC ZER 96.35±0.38 74.77±0.97 88.15±1.12 92.84±1.68 97.02±0.45 97.41±0.56 97.10±0.43 97.25±0.68
FAC MOR 97.23±0.34 82.99±1.86 93.02±1.03 87.24±1.69 97.69±0.49 94.20±0.19 97.29±0.80 94.16±1.90
PIX ZER 96.64±0.28 66.40±1.35 87.82±1.63 79.60±1.58 95.72±0.45 95.59±0.56 95.19±0.66 95.56±0.45
PIX MOR 96.96±0.28 77.61±0.82 91.84±1.66 80.60±2.17 96.35±0.51 92.38±1.70 96.09±0.67 92.36±1.70
ZER MOR 82.02±0.11 72.80±1.57 82.76±1.03 70.17±1.55 82.93±0.65 83.24±0.91 81.88±0.73 83.22±0.92

t-test 1 1 1 1 / 0 1 1

TABLE 4
Classification Accuracy and Standard Deviation (%) on the Multiple-Feature Database for the Linear Case and t-test

Results (k = 5).

X Y kNN CCA DCCA MvDA MLDA MLDA-m MULDA MULDA-m
FOU KAR 95.60±0.39 85.06 ±0.63 90.26±0.75 92.08±0.54 97.68±0.39 96.91±0.26 97.21±0.35 96.68±0.61
FOU FAC 97.01±0.34 87.82 ±1.05 91.73±1.20 77.17±1.42 97.86±0.41 91.73±1.20 97.65±0.52 97.44±0.38
FOU PIX 96.94±0.40 84.82±0.65 90.28±0.54 91.14±0.32 97.43±0.49 97.14±0.42 96.97±0.38 97.01±0.47
FOU ZER 83.84±0.39 75.78±1.07 83.91±0.75 70.25±1.11 85.89±0.80 85.76±0.81 85.76±0.75 86.00±0.52
FOU MOR 81.05±1.05 76.55±1.42 83.49 ±0.95 70.14±1.40 83.66±0.95 83.43±0.59 82.55±0.84 83.39±0.58
KAR FAC 96.33±0.40 88.81±0.80 96.00±0.71 81.63±1.37 97.28±0.56 97.27±0.52 97.21±0.54 97.27±0.52
KAR PIX 96.39±0.28 87.57±1.57 94.11±0.85 92.98±0.55 95.91±0.40 95.48±0.62 95.92±0.40 95.30±0.74
KAR ZER 95.17±0.54 71.04±1.04 88.68±1.39 85.35±1.19 96.27±0.54 96.40±0.50 96.08±0.56 96.34±0.49
KAR MOR 95.39±0.38 81.34 ±0.98 92.15±1.28 87.72±1.61 96.57±0.55 94.42±1.36 96.60±0.59 94.40±1.36
FAC PIX 96.91±0.52 85.43±1.21 95.86±0.67 83.57±1.48 96.87±0.54 96.89±0.54 96.71±0.49 97.09±0.51
FAC ZER 96.49±0.36 75.78±1.07 88.57±1.39 93.08±0.76 96.96±0.44 97.43±0.59 97.15±0.44 97.42±0.49
FAC MOR 97.11±0.41 83.50±1.16 93.19±0.13 87.97±2.34 97.72±0.52 94.30±1.94 97.36±0.74 94.32±1.91
PIX ZER 96.60±0.21 68.17±0.92 93.99±1.31 81.44±1.30 95.54±0.49 95.70±0.56 95.22±0.62 95.72±0.66
PIX MOR 96.90±0.31 78.12±0.63 91.78±0.16 82.13±2.41 96.36±0.57 92.37±1.78 96.19±0.64 92.35±1.77
ZER MOR 82.10±0.76 74.01±1.01 82.77±0.97 71.51±2.62 83.15±0.54 83.38±0.97 82.70±0.76 83.37±0.53

t-test 1 1 1 1 / 1 1 0

TABLE 5
Classification Accuracy and Standard Deviation (%) on the Multiple-Feature Database for the Linear Case and t-test

Results (k = 7).

X Y kNN CCA DCCA MvDA MLDA MLDA-m MULDA MULDA-m
FOU KAR 95.49±0.34 85.06±0.63 90.38±0.90 92.00±0.76 97.58±0.37 96.95±0.48 97.06 ±0.30 96.78±0.22
FOU FAC 96.90±0.49 87.82±1.05 91.88±1.20 75.24±1.43 97.86±0.40 97.46±0.33 97.71±0.41 97.42±0.60
FOU PIX 96.81±0.22 84.82±0.65 90.30±0.90 90.82±0.67 97.23±0.50 97.13±0.34 96.83±0.40 96.98±0.32
FOU ZER 83.87±0.79 80.80±0.83 84.12±0.88 68.33±1.31 86.17±0.67 85.61±0.72 85.54±0.64 85.79±0.70
FOU MOR 80.96±0.91 76.55±1.42 83.28 ±0.92 68.43±1.08 83.50±0.83 83.75±0.66 82.87±0.47 83.78±0.63
KAR FAC 96.16±0.46 88.64±0.92 95.84±0.84 81.31±1.14 97.18±0.56 97.10±0.67 97.09±0.58 97.10±0.67
KAR PIX 96.23±0.32 87.69±0.79 94.25±0.77 92.55±0.79 95.88±0.49 95.33±0.54 95.91±0.49 95.28±0.67
KAR ZER 94.95±0.34 71.71±1.00 88.70±1.33 85.62±1.46 96.25±0.54 96.34±0.36 95.89±0.54 96.31±0.35
KAR MOR 95.10±0.46 81.43±1.10 91.91±1.53 87.83±1.69 96.67±0.55 94.55±1.45 96.57±0.70 94.52±1.46
FAC PIX 96.89±0.45 85.07±0.93 95.98±0.66 82.55±1.85 96.67±0.55 96.89±0.55 96.60±0.61 96.84±0.59
FAC ZER 96.41±0.41 76.31±0.94 88.63±1.44 92.92±1.05 97.05±0.64 97.47±0.39 97.04±0.47 97.43±0.48
FAC MOR 96.92±0.46 83.64±0.98 93.29±1.08 88.12±2.20 97.78±0.53 94.48±1.58 97.36±0.72 94.47±1.60
PIX ZER 96.57±0.34 68.58±1.30 88.53±1.25 81.59±1.47 95.47±0.69 95.63±0.74 95.09±0.64 95.63±0.48
PIX MOR 96.80±0.27 78.54±0.84 91.79±1.77 81.26±2.33 96.35±0.60 92.78±1.65 96.19±0.73 92.77±1.64
ZER MOR 82.26±0.37 74.41±1.11 83.04±0.57 71.54±1.60 83.43±0.67 83.72±1.03 82.81±0.67 83.72±0.94

t-test 1 1 1 1 / 0 1 0
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TABLE 6
Classification Accuracy and Standard Deviation (%) on the Multiple-Feature Database for the Nonlinear Case and

t-test Results (k = 3).

X Y KCCA KDCCA KMDA KMDA-m KMUDA KMUDA-m
FOU KAR 86.32±1.36 93.78±1.09 96.74±0.27 86.60±1.22 96.74±0.27 98.58±0.31
FOU FAC 88.89±0.85 94.74±0.65 96.89±0.62 89.83±0.97 96.89±0.62 98.64±0.45
FOU PIX 88.08±0.66 94.29±0.49 96.86±0.44 88.75±1.08 96.86±0.44 98.61±0.28
FOU ZER 81.27±0.97 86.17±0.82 87.76±0.88 85.26±0.75 87.76±0.88 87.53±0.77
FOU MOR 80.71±1.30 82.21±0.70 79.20±1.06 79.15±0.91 82.85±0.86 85.42±0.45
KAR FAC 88.48±0.80 97.69±0.52 98.50±0.38 95.86±0.77 98.50±0.38 98.45±0.38
KAR PIX 87.05±1.38 97.42±0.38 98.08±0.33 95.86±0.68 98.08±0.33 98.16±1.34
KAR ZER 73.69±1.15 93.04±0.54 94.33±0.83 86.19±1.03 94.33±0.83 98.05±0.30
KAR MOR 85.85±0.75 90.27±1.21 84.36±1.36 81.47±1.76 95.27±0.82 98.12±0.29
FAC PIX 87.67±0.97 97.68±0.51 98.41±0.28 98.42±0.27 98.41±0.28 98.42±0.27
FAC ZER 80.03±0.82 93.81±0.50 94.52±0.79 98.11±0.33 94.52±0.79 98.40±0.29
FAC MOR 87.39±0.77 93.28±1.54 83.71±1.35 98.15±0.29 93.53±0.16 98.15±0.29
PIX ZER 71.03±1.12 92.92±0.55 94.82±0.85 86.05±2.21 94.82±0.85 98.17±0.28
PIX MOR 85.96±1.06 91.45±1.58 86.30±1.15 87.58±1.43 92.28±0.87 98.32±0.27
ZER MOR 77.68±0.74 83.10±1.02 76.89±0.81 77.40±2.20 81.05±0.34 84.58±0.34

t-test 1 1 1 1 1 /

TABLE 7
Classification Accuracy and Standard Deviation (%) on the Multiple-Feature Database for the Nonlinear Case and

t-test Results (k = 5).

X Y KCCA KDCCA KMDA KMDA-m KMUDA KMUDA-m
FOU KAR 87.35±1.39 93.75± 0.89 96.82± 0.36 86.82± 1.31 96.82± 0.36 98.58±0.33
FOU FAC 90.77±0.79 94.97± 0.72 97.11± 0.36 89.20± 1.25 97.11± 0.36 98.53±0.42
FOU PIX 89.55±1.00 94.33± 0.54 96.87± 0.42 87.89± 1.11 96.87± 0.42 98.67±0.31
FOU ZER 81.87±0.71 86.71± 0.46 87.52±0.68 85.59± 0.89 87.52± 0.68 87.06±0.52
FOU MOR 80.83±1.28 82.14± 0.99 79.24± 1.42 79.48± 1.27 82.66± 0.96 85.21±0.55
KAR FAC 91.62±0.76 97.69± 0.54 98.42±0.27 94.31± 0.94 98.42± 0.27 98.46±0.35
KAR PIX 90.22±1.22 97.36± 0.40 98.01± 0.31 96.04± 0.70 98.01± 0.31 98.14±0.28
KAR ZER 79.37±1.41 93.24± 0.50 94.39± 0.94 85.40± 1.04 94.39± 0.94 97.99±0.33
KAR MOR 87.59±0.99 90.17± 1.18 84.87± 1.15 81.61± 2.39 95.37± 0.58 98.19±0.48
FAC PIX 89.14±0.81 97.75± 0.58 98.37± 0.28 95.25± 1.02 98.37± 0.28 98.39±0.27
FAC ZER 84.90±1.17 93.96± 0.60 94.64± 0.76 88.99± 0.92 94.64± 0.76 98.36±0.40
FAC MOR 90.35±0.96 93.31± 1.56 89.34± 1.06 88.45± 1.33 94.58± 0.82 98.18±0.42
PIX ZER 73.53±1.07 93.17± 0.55 95.11± 0.91 86.79± 0.90 95.11± 0.91 98.12±0.21
PIX MOR 86.20±1.03 91.57± 1.56 86.70± 1.08 88.42± 1.73 92.43± 0.85 98.28±0.38
ZER MOR 78.46±0.86 83.88± 0.59 77.50± 0.76 78.06± 2.42 81.69± 0.84 85.06±0.42

t-test 1 1 1 1 1 /

TABLE 8
Classification Accuracy and Standard Deviation (%) on the Multiple-Feature Database for the Nonlinear Case and

t-test Results (k = 7).

X Y KCCA KDCCA KMDA KMDA-m KMUDA KMUDA-m
FOU KAR 88.13±0.76 93.36± 0.77 96.75± 0.34 86.66± 1.39 96.75± 0.34 98.56±0.30
FOU FAC 90.70±1.01 94.91± 0.65 97.12± 0.43 90.23± 1.09 97.12± 0.43 98.59±0.35
FOU PIX 89.35±1.13 94.22± 0.58 96.89± 0.47 88.19± 1.27 96.89± 0.47 98.67±0.25
FOU ZER 81.97±1.07 86.83± 0.68 87.38±0.65 86.36± 0.80 87.38±0.65 86.93± 0.59
FOU MOR 80.85±1.17 82.51± 0.76 79.10± 1.30 79.57± 0.89 82.97± 1.04 85.51±0.47
KAR FAC 91.87±0.59 97.60± 0.60 98.47±0.32 94.36± 0.91 98.47±0.32 98.47±0.36
KAR PIX 91.04±1.15 97.27± 0.32 98.08± 0.29 98.08± 0.35 98.08± 0.29 98.08±0.35
KAR ZER 79.75±1.68 93.19± 0.43 94.21± 0.96 88.71± 1.21 94.21± 0.96 98.08±0.24
KAR MOR 87.24±1.09 90.91± 0.74 84.63± 0.89 82.38± 2.00 95.49± 0.57 98.19±0.43
FAC PIX 89.11±0.95 97.73± 0.53 98.41± 0.28 95.76± 0.83 98.41± 0.28 98.42±0.34
FAC ZER 84.78±0.98 94.02± 0.51 94.52± 0.59 89.05± 0.84 94.52± 0.59 98.33±0.45
FAC MOR 89.99±1.01 93.08± 1.63 84.12± 1.30 84.79± 1.95 93.82± 1.75 98.27±0.44
PIX ZER 73.72±1.25 93.06± 0.51 94.96± 1.11 87.02± 0.99 94.96± 1.11 98.18±0.38
PIX MOR 87.23±0.86 91.28± 1.58 86.70± 1.03 88.29± 1.63 92.47± 1.04 98.30±0.43
ZER MOR 79.06±0.86 84.12± 0.65 77.84± 0.70 82.15± 1.16 82.23± 0.85 84.70±0.71

t-test 1 1 1 1 1 /
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5.1.3 Comparison of classification performance

The methods we compare in this paper can be divided into two
categories which are linear methods and nonlinear methods. In
the linear case, we compare our methods MLDA-m, MULDA
and MULDA-m with kNN, CCA, DCCA, MvDA and MLDA.
The reduced dimensions of CCA and DCCA are set to be the
same as MULDA. The results are summarized in Tables 3∼5.
We further use the t-test method [31] to show the significance
of the results. All the other methods are compared with the
performance of MLDA with the significance level of 0.05 in
Tables 3∼5 (MLDA is selected because its performance ap-
pears to be the best). The value 1 represents that the compared
two methods have a significant performance difference, while
the value 0 represents not.

In the nonlinear case, the methods used to compare with
our methods KMDA-m, KMUDA and KMUDA-m are KCCA,
KDCCA and KMDA. All the other methods are compared with
the performance of KMUDA-m with the significance level of
0.05 (KMUDA-m is selected because its performance appears
to be the best). Tables 6∼8 list the classification results of these
methods and the results of t-test. Obviously we can observe
that KMUDA-m achieves the best accuracy. More discussions
of these results can be found in Section 5.3.

5.2 PIE Dataset

In this section, we evaluate the performance of our algorithms
on face recognition datasets. The dataset is CMU PIE, which
will be introduced below. Then the comparison of all the
methods is reported.

5.2.1 Dataset

The CMU PIE database (available at http://www.cad.zju.edu.
cn/home/dengcai/Data/FaceData.html) consists of a collection
of face images under varying poses, illuminations and expres-
sions. It contains 68 subjects, each with 13 different poses, 43
different illumination conditions and 4 different expressions.
Some preprocessing steps had been done for images in this
database [28][29]. Face areas in each image are cropped to
the size of 64 by 64 pixels, and then resized to 32 by 32
pixels. Twenty subjects with the frontal pose are chosen for
our experiments and each subject has 49 collections. Thus
we have a face database with 980 images. PCA is applied
to this database with 100 percent of total energy preserved.
Finally, the transformed 64 by 64 pixels database is reduced
to the dimensionality 42 and it is constructed as view X . The
processed 32 by 32 pixels database is reduced to the dimen-
sionality 25 and it is set to be view Y . In each experiment, 20
images of each person are randomly selected for training, and
the remaining 29 images are used for test. Four-fold cross-
validation is used to estimate parameters.

5.2.2 Comparison of classification performance

In this experiment, we compare the performance of each
algorithm on face recognition datasets. Tables 9∼11 show the
classification accuracies on the CMU PIE database.

TABLE 9
Classification Accuracy and Standard Deviation (%) on

the PIE Database (k = 3).

Method Classification accuracy
kNN 95.67±2.46
CCA 89.50±2.91

DCCA 96.57±1.55
MvDA 95.64±2.21
MLDA 96.67±1.50

MLDA-m 97.32±1.06
MULDA 96.71±1.62

MULDA-m 96.76±1.52
KkNN 97.36±1.24
KCCA 91.86±2.53

KDCCA 97.88±1.22
KMDA 98.36±0.89

KMDA-m 98.10±1.07
KMUDA 98.36±0.89

KMUDA-m 98.52±0.80

TABLE 10
Classification Accuracy and Standard Deviation (%) on

the PIE Database (k = 5).

Method Classification accuracy
kNN 93.47±3.78
CCA 85.83±4.21

DCCA 96.29 ±1.40
MvDA 94.95±2.42
MLDA 96.02±1.66

MLDA-m 97.05±0.93
MULDA 95.76 ±1.76

MULDA-m 96.12±1.77
KkNN 94.10±2.70
KCCA 89.24±3.29

KDCCA 97.74±1.14
KMDA 98.97±0.57

KMDA-m 98.95±0.57
KMUDA 98.97±0.57

KMUDA-m 98.95±0.57

TABLE 11
Classification Accuracy and Standard Deviation (%) on

the PIE Database (k = 7).

Method classification accuracy
kNN 92.03±3.69
CCA 83.41±3.67

DCCA 96.07±1.55
MvDA 93.48±2.59
MLDA 95.62±1.90

MLDA-m 96.55±1.08
MULDA 95.00±2.21

MULDA-m 95.59±1.92
KkNN 92.69±2.55
KCCA 86.91±2.81

KDCCA 93.96±1.63
KMDA 98.40±1.08

KMDA-m 98.38±1.08
KMUDA 98.40±1.08

KMUDA-m 98.38±1.08
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5.3 Discussions of Experimental Results

From Tables 3∼5, we can observe that the classification perfor-
mances of our methods MLDA-m, MULDA and MULDA-m
are better than the other linear multi-view feature extraction
methods except MLDA in most cases. Our methods outper-
form kNN which applies the classifier directly on the original
two-view dataset. Moreover, in those cases that kNN or MLDA
is superior, our methods are still very competitive. The results
of the linear methods in Tables 9∼11 can further demonstrate
the good performance of the proposed methods. In Tables
9∼11, MULDA-m performs better than MULDA. MLDA-m
performs best in all the linear methods.

Comparing the results in Tables 3∼5 with the corresponding
results in Tables 6∼8, we can first observe that the kernel
extension of each linear method can bring improvement in
classification performance in most cases. And in Tables 9∼11
the result of each kernel-based method is also better than the
corresponding linear method except the results of KDCCA
and DCCA in Table 11. This is consistent with the theory that
kernel representation offers an alternative solution to increase
the power of the linear learning method [17]. From Tables 6∼8
and Tables 9∼11, it is obvious that our methods KMUDA and
KMUDA-m are generally better than all the other methods.
However, the performance of KMDA-m is not better than
KMDA in most cases.

Comparing Table 3 with Table 6, we can observe that
MLDA performs better than KMDA in eleven cases, and
MLDA-m performs better than KMDA-m in eleven cases.
MULDA performs better than KMUDA in ten cases. Com-
paring Table 4 with Table 7, we can observe that MLDA
performs better than KMDA in fourteen cases, and MLDA-
m performs better than KMDA-m in fourteen cases. MULDA
performs better than KMUDA in ten cases. Comparing Table
5 with Table 9, we can observe that MLDA performs better
than KMDA in eleven cases, and MLDA-m performs better
than KMDA-m in thirteen cases. MULDA performs better
than KMUDA in nine cases. We speculate the reason is that
the tuning parameter γ in MLDA, MLDA-m, MULDA and
MULDA-m are optimized among [1, 5, 10, 15, 20], while in
KMDA, KMDA-m, KMUDA and KMUDA-m this parameter
is set to 10 in order to reduce the numbers of tuning parame-
ters.

About our methods, an interesting and obvious result can be
observed from Tables 6∼8. KMUDA-m outperforms KMUDA
in almost all two-view datasets. For the other cases, the
accuracies of KMUDA-m and KMUDA are very close. So we
can speculate that KMUDA with modifications can achieve
better classification performance than KMUDA. This means
that the discriminant information between views contributes
more than the correlation information between views when
extracting features from the transformed high-dimensional
feature space. However, in the linear case, we can just say
that MULDA with modifications is as effective as MULDA.

From the t-test results of Table 3, we can observe that
the performance difference between MLDA and MLDA-m
is insignificant. From the t-test results of Table 4, we can
observe that the performance difference between MLDA and

MULDA-m is insignificant. From the t-test results of Table
5, we can observe that the performance difference between
MLDA and MLDA-m is insignificant and the performance
difference between MLDA and MULDA-m is insignificant.
We speculate the reason is that class structures between views
in MLDA-m and MULDA-m is not very informative on this
dataset. From the t-test results of Tables 6∼8, we can ob-
serve that KMUDA-m and the other methods are significantly
different. We conclude that KMUDA-m can achieve the best
classification performance.

6 CONCLUSION AND FUTURE WORK
In this paper, we proposed a new method MULDA, which
utilizes the principles of CCA and ULDA to take advantage
of these two algorithms. By optimizing the objective function,
both class structures in each view and correlation information
between views can be preserved in the transformed common
subspace. To exploit the inter-view discriminant information,
we also modified MULDA by replacing the CCA part with
DCCA, which is able to utilize the class information between
views in the combined feature extraction. Simultaneously, we
modified MLDA by replacing the CCA part with DCCA.
Additionally, in order to deal with the possibly linearly in-
separable problem, we proposed a novel algorithm to combine
the kernel method into MULDA called KMUDA. The features
extracted by KMUDA can simultaneously maximize the dis-
crimination in each view and correlation between views, which
makes it suitable for classification in problems of weak linear
separability. Similarly, we proposed another new method,
KMUDA with modifications, which aims to preserve class
structures not only in each view but also between views. More-
over, owing to the integration of the uncorrelated constraints,
the feature vectors extracted by our methods are mutually
uncorrelated in the common subspace. Simultaneously, we also
extended KMDA to KMDA-m.

To evaluate the effectiveness of our methods, we performed
experiments to compare our methods with other related and
state-of-the-art methods on handwritten digit classification and
face recognition datasets. The experimental results validate
that MLDA-m, MULDA and MULDA-m are superior to the
other methods in the linear cases except MLDA, and KMUDA
and KMUDA-m outperform the other nonlinear methods in
most cases. The improvements of accuracies after nonlinear
extensions verify that the performance can be increased by
using the kernel representation. Moreover, the comparison
between MULDA and MULDA-m shows that MULDA-m is
as competitive as MULDA, which implies that when dealing
with the linear problems, correlation information and discrim-
inant information are both useful for classification. However,
it’s very interesting that the modification of KMUDA can
significantly improve the performance in most cases for the
nonlinear problems. Our kernel methods give a significant
improvement on the classification performance. So we specu-
late that preserving class structures between views for feature
extraction can provide more powerful information in the
nonlinear scenario. In conclusion, our methods perform better
than the other related methods for extracting features from
two-view data for classification.
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In our methods, each feature vector corresponds to a gener-
alized eigenvalue decomposition process. For large and high-
dimensional datasets, our algorithm may be computationally
expensive, and thus we will try to exploit more efficient closed-
form solutions, such as [12]. In the future, it is also interesting
to extend the current work to semi-supervised learning [30].
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