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Abstract. Gaussian processes are a popular and effective Bayesian method
for classification and regression. Generating sparse Gaussian processes is
a hot research topic, since Gaussian processes have to face the problem
of cubic time complexity with respect to the size of the training set. In-
spired by the idea of multi-task learning, we believe that simultaneously
selecting subsets of multiple Gaussian processes will be more suitable
than selecting them separately. In this paper, we propose an improved
multi-task sparsity regularizer which can effectively regularize the sub-
set selection of multiple tasks for multi-task sparse Gaussian processes.
In particular, based on the multi-task sparsity regularizer proposed in
[12], we perform two improvements: 1) replacing a subset of points with
a rough global structure when measuring the global consistency of one
point; 2) performing normalization on each dimension of every data set
before sparsification. We combine the regularizer with two methods to
demonstrate its effectiveness. Experimental results on four real data sets
show its superiority.
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1 Introduction

Gaussian processes [1, 2] are a popular and powerful non-parametric tool for
probabilistic modeling. However, the scaling problem of the cubic time complex-
ity with respect to the training size N limits their widespread use. Lots of efforts
[4–6, 12, 13] have been made to overcome the cubic time complexity problem. A
common way to solve this is to select a subset of the training set to get a sparse
representation of the original Gaussian process, where the subset size d is much
smaller than N . The time complexity of the training can be brought down from
O(N3) to O(d2N). Various criteria exist for selecting the subset. For example,
Lawrence et al. [5] selected the points with the biggest entropy reduction based
on information theory. Titsias [6] selected the points with the smallest Kullback-
Leibler divergence between the variational distribution and the exact posterior
distribution over the latent function value.
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Multi-task learning is an active research direction [3, 7, 8, 15]. Simultaneously
learning multiple tasks can be more effective than learning them separately be-
cause the relationship between tasks can be exploited to benefit learning. In this
paper, we focus on multi-task sparse Gaussian processes. Some work [9, 10, 12]
has been done to sparsify multiple Gaussian processes. For example, the multi-
task informative vector machine (MTIVM) [9] which is an extension of [5] shares
the kernel matrix and the training set among tasks. Then, all the tasks just train
one Gaussian process for prediction. Time and memory consumption are much
reduced, but the performance of this method could be unsatisfactory when large
differences between tasks exist. Based on the idea that global structures of sub-
sets of multiple tasks should be consistent, recently Zhu and Sun[12] proposed a
multi-task sparsity regularizer which regularize the subset selection of multiple
Gaussian processes.

In this paper, we propose an improved multi-task sparsity regularizer which
makes improvements over the above regularizer. It consists of three steps. First,
normalization for each data set on each dimension is performed before the subset
selection to make them in the same range. Second, it utilizes manifold-preserving
graph reduction (MPGR) [12, 14] to select one rough global structure for each
task. Last, it replaces the already-selected points in the multi-task sparsity reg-
ularization formula with the rough global structures when calculating the Eu-
clidean distance of one data point to its k nearest neighbors from other tasks. We
integrate the regularizer with MPGR and manifold-preserving graph reduction
with outputs (MPGRO) [13] to get IrMTMPGR and IrMTMPGRO, respec-
tively. Here, “I” stands for “improved” to distinguish them from the multi-task
Gaussian processes built by the previous multi-task sparsity regularizer, and “r”
stands for “relevance” because our method explicitly considers the task rele-
vance. Experimental results show its effectiveness.

A preliminary report [12] has been presented. In this paper, we make sig-
nificant improvements for the multi-task sparsity regularizer, and conduct more
experiments.

The rest of the paper is organized as follows. First we introduce related work
with the multi-task sparsity regularizer. After that, we will analyze two shortages
of the multi-task sparsity regularizer, propose the improved multi-task sparsity
regularizer and apply it to construct multi-task Gaussian processes. We make
our conclusion after experiments on four real data sets.

2 Relate Work

In this section, we briefly introduce the multi-task sparsity regularizer[12].
Based on the idea that the global structures of retained points from closely

related tasks should be similar and structures from loosely related tasks should
be less similar, the multi-task sparsity regularizer is proposed which regularize
the subset selection of multiple Gaussian processes.

It is composed of two parts: 1) One to measure the global consistency of two
subsets; 2) One to measure the task relevance. For the first part, the authors use
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the term
k∑

j=1

1

∥xtn−xj
i∥

to evaluate, where xtn is a point considered for selection

from task tn and xj
i (j = 1, ..., k) are k nearest neighbors of xtn from the already-

selected points of another task i. The reciprocal of the Euclidean distance is
adopted for the sake of maximizing the regularization formula. For the second
part, the authors use the 1

∥ftn−fi∥ to modulate the task relevance, where ftn is

the task-descriptor feature of task tn. The task-descriptor feature is utilized to
describe tasks. Bonilla et al. [11] chose eight crucial points and set the mean of
their labels to be the the task-descriptor feature.

The multi-task sparsity regularizer is then reached by combining the two
terms mentioned above. The regularization formula is given as

Reg(xtn) =

nt∑
i=1,i̸=tn

k∑
j=1

1

∥ ftn − fi ∥∥ xtn − xj
i ∥

, (1)

where nt is the total number of tasks. A big value of Reg means that the point
to be evaluated is more globally consistent with other tasks for its own task.

In that paper, the authors also integrated the multi-task sparsity regularizer
with MPGR to get a multi-task sparse Gaussian process, the relevance multi-
task manifold-preserving graph reduction (rMTMPGR). The sparse criterion of
rMTMPGR is

deg (xtn) + λReg(xtn), (2)

where deg (xtn) =
∑

j w(xtn , j), and λ controls the proportion between the
MPGR formula and the regularizer.

3 Multi-task sparse Gaussian processes with improved
multi-task sparsity regularization

The above multi-task sparsity regularizer seeks to simultaneously construct mul-
tiple sparse Gaussian processes utilizing the consistency of global structures of
retained points among sparse subsets of different tasks. Although the starting
point is reasonable, two shortages still exist.

The first shortage is that the multi-task sparsity regularizer is prone to over-
fit the initial points. In formula (1), the multi-task sparsity regularizer uses
already-selected points of related tasks. This pushes the initial points to a very
important position. Many subsequent points would consider the initial points
when evaluating their global consistency. Specially before the kth selection, the
initial points are used in formula (1) for all the previous iterations. This makes
the following selected points prone to be close to the initial points. A straightfor-
ward strategy to solve this is to replace the already-selected points with the full
data sets. But for every selection, it has to calculate the Euclidean distance from
one candidate to all the points in the other tasks. For the efficiency purpose, we
replace the already-selected points with a rough global structure. By the rough
global structure, we mean that its size should be larger than the targeted sparse
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number of points d and its points are representative. In this paper, we set the
size to 2d. This can avoid the overfitting shortage, and also improve the gen-
eralization ability of the multi-task sparsity regularizer. For the algorithm to
select the rough global structure, the MPGR algorithm is suitable because of its
superiority on representative-subset selection.

As shown in Fig. 1, we employ the multi-task sparsity regularizer and the im-
proved multi-task sparsity regularizer with the MPGR algorithm, respectively,
to choose four points. The top point is set as the initial point. The result demon-
strates that the subset selected with the improved multi-task sparsity regularizer
is more representative. Fig. 1 is only for illustrative purpose, and more experi-
ments on real data sets will be performed in the next section.
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Fig. 1. Different selections by the multi-task sparsity regularizer and the improved
multi-task sparsity regularizer. Circle points are already-selected points. Square points
are candidate points that have not been selected.

The other shortage is that the multi-task sparsity regularizer disregards the
situation that a big difference of the range of input values between tasks ex-
ists. Since the Euclidean distance is adopted to reflect similarities in formula
(1), when the ranges of the input values among tasks are very different, the
multi-task sparsity regularizer will possibly have a negative effect on the subset
selection. See Fig. 2. Suppose tasks A and B are selecting their sparse subsets,
and just three nearest neighbors are considered in formula (1). When evaluat-
ing the consistency of points in task A at this selection, points E, F and G are
counted in because they are closer to points of task A. In addition, these three
points would always be the three nearest neighbors of points of task A. This can
lead to a critical overfitting problem.

To avoid the problem of the big difference, a straightforward approach is
that when evaluating points of task A we make changes to points of task B and
let them be in the same numerical range of task A. For every point of task B,

we execute this formula
xn+mn

A−mn
B

σn
B/σn

A
for each dimension, where xn is the nth
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Fig. 2. An illustration of the problem of numerical scale differences that the multi-task
sparsity regularizer has to face. Task A (left) is selecting the next point with a related
task (right). Points E, F and G will always be the three nearest neighbors of points of
task A.

dimension of one data point in task B, mN
A and mn

B are mean values of the nth
dimension of data sets of task A and B, respectively, and σn

A and σn
B are standard

deviations of the nth dimension of data sets of task A and B, respectively. The
shortage is overcome but this method consumes too much time. For each pair
of tasks, the formula would be executed one time. And when the number of
tasks is as large as M , it would need to execute the formula M(M − 1) times.
A better way to solve this is to execute a normalization formula xn−mn

σn for each
dimension of each task to let them all be in the same numerical range, where
m and σ are the mean value and the standard deviation, respectively. By this
method, each task only needs to execute the formula one time, and the formula
would be executed M times when the number of tasks is M .

With the two shortages overcome, the obtained method is called the improved
multi-task sparsity regularizer. In conclusion, it consists of three steps. First,
normalization for each data set on each dimension is performed to make them
in the same range. The formula xn−mn

σn is utilized. Second, it utilizes MPGR to
select a rough global structure for each task. Last, it replaces the already-selected
points with the rough global structures when calculating the distance of a data
point to its k nearest neighbors from other tasks. Compared to the previous
multi-task sparsity regularizer, it solves the overfitting problem not only to the
initial points but also that derived from the big scale difference. At the same time,
points that are considered in formula (1) would be more representative. Thus, it
improves the generalization ability of the previous regularizer. For comparison,
we apply the improved multi-task sparsity regularizer to MPGR and MPGRO
to get multi-task sparse Gaussian processes IrMTMPGR and IrMTMPGRO,
respectively, in the same way as the previous multi-task sparsity regularizer.
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4 Experiments

We evaluate our methods on four real data sets, Landmine, Concrete slump,
MONK and Energy efficiency. To demonstrate the generalization ability of our
methods, these data sets include problems for binary classification, multi-class
classification and regression. All the data sets are public, which can be found
from the UCI Machine Learning Repository.

We utilize the GPML toolbox 1 to construct Gaussian processes. All the mean
functions, covariance functions, likelihood functions and inference methods are
selected by the accuracy of one experiment with the whole training set. We
conduct experiments ten times on each data set. The training set and the test
set are split randomly. The parameters needed for MPGR and MPGRO are set
the same as in [13]. To make λ easy to set, we split it into two parameters,
λ = α × β. First, we use a normalization parameter α which is set to be the
ratio of the maximum values of the formula of MPGR or MPGRO and our
regularizers, to make them in the same range. Then, we set β to control the
relative proportion, which is selected from {1/2, 2/3, 1, 3/2, 2}. We proceed to
choose all the parameters by five-fold cross-validation on the training set. Then
we evaluate performance on the test set. We conduct our experiments by a
computer with dual 2.53 GHz CPUs and one GB memory.

The error rates and average time are utilized to evaluate the performance
of different methods. For classification, the error rate is measured by the rate
of misclassification. For regression, the error rate is measured by mean absolute
relative error (MARE), which is defined as

MARE =
1

ℓx

∑
i

∣∣∣∣x∗
i − xi

xi

∣∣∣∣, (3)

where xi is the real value of the ith point, x∗
i is its predicted value and ℓx is

the total number of points. The average time is the mean of time on ten experi-
ments, including subset selection and constructing Gaussian processes with the
subsets. We choose two kinds of multi-task sparse Gaussian processes as a base-
line. As mentioned before, IVM is extended to MTIVM [9] by sharing the kernel
parameters and training set among multiple tasks. For comparison purpose in
this paper, we develop MPGR algorithm for constructing sparse Gaussian pro-
cesses to MTMPGR in the same way, which selects the point with the largest
degree among points of all the tasks. MPGRO is also extended to MTMPGRO
for contrast.

The Landmine data set is collected from a read landmine field. It is a binary
classification problem that has 19 related tasks with 9674 data points in total and
each point is represented by a nine-dimensional feature vector. Due to the time
constraint, we just randomly choose five tasks for experiments, and for each task
we randomly choose 320 points as the training data, 80 for test and the subset
size is 40. It is necessary to mention that the Landmine data set is an unbalanced
data set where the ratio of +1 class is only 6.18% on average. The Concrete slump

1 http://gaussianprocess.org/gpml/
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Method Error rate (%) Time (s)

MTMPGR 7.4± 2.5 104.9
rMTMPGR 6.9± 1.5 105.6
IrMTMPGR 6.5± 1.4 172.9
MTMPGRO 22.5± 7.7 510.4
rMTMPGRO 50.1± 8.5 46.2
IrMTMPGRO 47.3± 10.6 238.7

Table 1. Experimental results on the Landmine data set.

data set including 103 data points concerns a regression problem. The slump flow
of concrete is not only determined by the water content, but also influenced by
other concrete ingredients. Seven feature attributes are used to predict three
output variables. We apply this multi-output data to multi-task experiments by
setting each output as a task. In this setting, from the perspective of inputs,
all three tasks are closely consistent both locally and globally. We randomly
choose 80 points as the training data, 23 for test, and the subset size is 50.
The MONK data set is a famous classification problem which is the basis of

Method Error rate (%) Time (s)

MTMPGR 16.5± 4.1 1.3
rMTMPGR 16.4± 2.6 2.3
IrMTMPGR 14.0± 1.6 4.9
MTMPGRO 16.4± 4.7 2.4
rMTMPGRO 14.5± 2.4 1.6
IrMTMPGRO 13.5± 2.5 7.1

Table 2. Experimental results on the Concrete slump data set.

the first international comparison of learning algorithms. It rely on an artificial
robot domain, in which robots are described by six different attributes. Three
tasks are included, and all their data are randomly selected from 432 robots.
They are different in task size, feature setting, misclassification ratio and noise.
Their sizes are 124, 169 and 122, respectively. We randomly choose 120 points
as the training data, 80 for test, and the subset size is 30. The Energy efficiency
data set is provided by a study which attempts to assess the heating load and
cooling load requirements of buildings (that is, energy efficiency) as a function
of building parameters. The data set contains eight features to predict the two
responses. It is similar to the concrete slump data set which is also a multi-
output regression problem. We randomly choose 300 points as the training data,
100 for test, and the subset size is 50. Tables 1∼4 list the experimental results,
which show the effectiveness of the improved multi-task regularizer. From the
overall prediction performance, just like previous informal analysis, the improved
multi-task sparsity regularizer is obviously the best among all the methods for
constructing multi-task sparse Gaussian processes. From the perspective of error



8 J. Zhu and S. Sun

Method Error rate (%) Time (s)

MTMPGR 32.1± 6 2.6
rMTMPGR 23.0± 5.5 3.0
IrMTMPGR 34.7± 4.9 5.1
MTMPGRO 37.6± 4.2 3.0
rMTMPGRO 26.4± 8.3 2.8
IrMTMPGRO 24.2± 7.7 7.5

Table 3. Experimental results on MONK.

Method Error rate (%) Time (s)

MTMPGR 12.7± 1.3 14.7
rMTMPGR 23.1± 5.4 15.7
IrMTMPGR 14.4± 0.4 25.1
MTMPGRO 15.3± 2.1 9.4
rMTMPGRO 11.7± 1.5 6.9
IrMTMPGRO 11.2± 0.1 27.9

Table 4. Experimental results on the Energy efficiency data set.

rates, the best learning algorithms associated with the four data sets almost all
utilize the improved multi-task sparsity regularizer. As mentioned before, the
Landmine data set is an unbalanced data set. Experimental results in Table 1
show that MTMPGRO works badly on this condition, and the results get worse
with the regularizer. This unbalanced case is an open problem worth studying
in the future.

5 Conclusion

In this paper, we proposed the improved multi-task sparsity regularizer to over-
come two shortages of the multi-task sparsity regularizer. We utilized the MPGR
algorithm to choose rough global structures and replaced the already-selected
points with them in formula (1). Then, we carried out normalization for each
data set on each dimension before the subset selection of multiple Gaussian
processes. The combined method to get multi-task sparse Gaussian processes is
the same as the previous multi-task sparsity regularizer. Experimental results
have shown that it indeed improves the performance of the multi-task sparsity
regularizer.

As mentioned in the experiment section, the improved multi-task sparsity
regularizer combined with MTMPGRO can not perform well on the unbalanced
data set. Special considerations on unbalanced data sets will be one of our future
research topics. The time consumed by the methods coupled with the improved
multitask sparsity regularizer is slightly higher, which will be optimized in the
future.
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