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Abstract

In many machine learning algorithms, a major assumption is that the training

and the test samples are in the same feature space and have the same distri-

bution. However, for many real applications this assumption does not hold. In

this paper, we survey the problem where the training samples and the test sam-

ples are from different distributions. This problem can be referred as domain

adaptation. The training samples, always with labels, are obtained from what

is called source domains, while the test samples, which usually have no labels or

only a few labels, are obtained from what is called target domains. The source

domains and the target domains are different but related to some extent; the

learners can learn some information from the source domains for the learning

of the target domains. We focus on the multi-source domain adaptation prob-

lem where there is more than one source domain available together with only

one target domain. A key issue is how to select good sources and samples for

the adaptation. In this survey, we review some theoretical results and well de-

veloped algorithms for the multi-source domain adaptation problem. We also

discuss some open problems which can be explored in future work.
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1. Introduction

In machine learning, most models such as Gaussian process (GP), linear dis-

criminative analysis (LDA), support vector machine (SVM) [1, 2] and principal

component analysis (PCA), assume that training samples are drawn accord-

ing to the same distribution as the unseen test samples. Uniform convergence5

theory guarantees that a model’s empirical training error is close to its true

error with high probability. However, there are many cases in practice where

the training and the test distributions differ. We wish to train a model in one

or more domains (called source domains) and then apply it to another differ-

ent but related domain (called target domain). Such learning task is known as10

domain adaptation [3, 4, 5, 6, 7, 8], which is confronted in many applications,

like computer vision [9, 10, 11, 12], sentimental analysis [13, 14, 15, 16], natural

language processing [17], video concept detection [18, 19], and wifi localization

detection [20]. In these problems, users are generally reluctant to annotate

abundant samples (like consumer videos, or the reviews for certain products)15

to train an effective model for later classification. What they have are a set of

limited labeled samples and a large number of unlabeled data. The task is to

combine the labeled source data and unlabeled target data to classify the target

data as correctly as possible. The difficulty lies in the mismatch between the

source distribution and the target distribution. Domain adaptation approaches20

explicitly or implicitly handle the mismatch between data distributions of the

source and target domains.

Domain adaptation is one of the branches of transfer learning. According to

Pan et. al [8], transductive transfer learning can be categorized into two cases.

The first case is that the feature spaces between the source and target domains25

are different, i.e. XS 6= XT . The second case is that the feature spaces between

the source and target domains are the same, but the marginal probability dis-

tributions of the input data are different, i.e. XS = XT , but P (XS) 6= P (XT ).

The latter case can be referred as domain adaptation. Domain adaptation is

different from semi-supervised learning and data set shift [21]. It assumes that30
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the labeled and unlabeled data come from different but related domains, while

semi-supervised learning methods employ both labeled and unlabeled data from

the same domain. On the other hand, data set shift assumes that the joint dis-

tribution P (X ,Y) of input X and output Y changes across the source and target

domains, i.e. P (X ,Y)S 6= P (X ,Y)T . However, the focus of domain adaptation35

is that the marginal probability distributions of the input data are different.

For the single-source domain setting, much work has been developed. Sev-

eral theoretical analyses have considered the single-source domain adaptation

problem. Ben-David et al. [22] defined two sources of adaptation errors. Firstly,

feature distributions differ between the source and the target domains, which40

means that the test examples are different from the training examples in the

sense of data distributions. Since many applications usually use the lexical items

as features, this problem can be especially difficult. In general, this problem can

be addressed by using the unlabeled target data since feature distributions can

be measured and aligned without annotated examples. Secondly, the decision45

functions differ between domains. The instance may be labeled differently de-

pending on the domains. To correct this error, one needs the knowledge of

the labeling function, which can only be gained from labeled target samples.

Dredze et al. [23] showed how domain adaptation for parsing is difficult when

annotation guidelines differ for different domains.50

In addition to the theoretical analyses, there is also much empirical work on

algorithms for single-source domain adaptation. Chelba and Acero [24] trained

a classifier on the source domain, and then used the maximum a posteriori

(MAP) estimation of the weights of a maximum entropy target domain classi-

fier. The prior is a Gaussian distribution whose mean is equal to the weights55

of the source domain classifier. Daume and Marcu [25] used an empirical Bayes

model to estimate a latent variable model which groups the instances into two

categories domain-specific or common across both domains. Blitzer et al. [26]

introduced structural correspondence learning to automatically induce corre-

spondences among features from two domains, without using the labeled target60

data. Unlike the work of Daume and Marcu [25], they found a common repre-
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sentation for features from different domains, rather than instances.

Often in practice, one may be offered more than one source domain for

training. It is wasteful if we only use one source for training. The most common

way is to add up all the sources as one source. However, this approach ignores65

the difference among the sources. A second way is to train a classifier per

source and combine these multiple base classifiers. Based on the principles of

risk minimization, one can derive a solution which assigns weights for each base

model, and combines multiple base models to maximize their combined accuracy

on the new domain. The combined model can get a reasonable high accuracy70

for the target task. The second model for multi-source domain adaptation is

displayed in Figure 1.

Figure 1: The model for multi-source domain adaptation.

One popular domain adaptation problem arises in text classification tasks

where one can retrieve information from several source domains and make pre-

dictions about another target domain. In natural language processing, sentiment75

classification is a task of classifying documents according to the sentiments.

Given a piece of text (usually a review or essay), what is of interest is whether

the opinion expressed by the text is positive or negative. Sentiment analysis

is useful on a number of text domains, ranging from stock message boards to
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congressional floor debates. In some domains (e.g. movie reviews and book re-80

views), one can have plenty of labeled data for machine learning algorithms to

train a model for classification, while there are also many domains (e.g. piano re-

views) that can not have enough data available for training. Domain adaptation

algorithms can solve such problems by using the domains which have plenty of

labeled as sources, and domains lack of labeled data as target domains. Usually,85

the source and target domains are assumed to be different but related.

Table 1: Summarization of important methods introduced in this paper.

Categories References Characteristics

Theoretical methods

for multi-source domain

adaptation

Crammer et al. [27] The authors gave a general theorem which es-

tablishes a general bound on the expected loss

of the model by minimizing the empirical loss

on the nearest k sources. These nearest k

sources are a recommended set of sources to

be used for training the model.

Mansour et al. [28] The authors studied two types of combinations

for multi-source domain adaptation problems,

i.e., a linear combining rule and a distribution

weighted combining rule. They proved that

the first combination rule may perform poorly

in real-world applications while the second one

can guarantee a loss of at most ε for any target

mixture of the source distributions.

Ben-David et al. [3] By introducing an H∆H-distance between the

target and the source domains, the authors

gave two learning bounds for empirical risk

minimization. Two different types of H∆H-

distance are used: a pair-wise H∆H-distance

and a H∆H-distance between the target do-

main and the weighted combination of source

domains.

continued on next page
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Well-

developed

algorithms

Feature repre-

sentation ap-

proaches

Chattopadhyay et al.

[29]

The authors proposed a weighting scheme

which measures the conditional probability

distribution differences across multiple source

domains.

Sun et al. [30] The authors proposed a two-stage multi-source

domain adaptation methodology. The data

from multiple sources are re-weighted based

on marginal probability differences in the first

stage. In the second stage the source domains

are re-weighted based on conditional probabil-

ity differences.

Duan et al. [31, 10,

32]

The authors introduced a data-dependent reg-

ularizer into the objective of support vector re-

gression using the ε-insensitive loss. In [31, 32]

all the sources are used for the domain adap-

tation problem while in [10] a data-dependent

regularizer for domain selection is proposed.

Combination

of prelearned

classifiers

Schweikert et al. [33] Given some labeled target data, the authors

proposed a multiple convex combinations of

prelearned source classifiers and target classi-

fiers for multi-source domain adaptation.

Sun and Shi [34] The authors proposed a dynamic Bayesian

learning framework for multi-source domain

adaptation. The domain priors for the source

domains are constructed with the Laplacian

matrix on the unlabeled target data. The

point-wise likelihood is calculated according to

the distance of the k-nearest neighbors.

continued on next page
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Well-

developed

algorithms

Combination

of prelearned

classifiers

Yang et al. [12] The authors proposed adaptive support vec-

tor machines by adding a delta function into

the standard support vector machine objec-

tive. The delta function is learned among

source classifiers and target classifier using an

objective function similar to SVMs.

Tu and Sun [35] The authors proposed a cross-domain repre-

sentation learning framework that combines

class-separate objectives and domain-merge

objectives simultaneously to learn a data rep-

resentation model. The framework not only

maximizes the differences between classes but

also minimizes the differences between do-

mains.

Xu and Sun [36, 37] The authors proposed a multi-view adaboost

transfer learning method. The target classi-

fier is learned by combining the weighted pre-

learned classifiers using a new parameter.

Xu and Sun [38, 39] The authors proposed a part-based transfer

learning method. By dividing the feature

space into N parts, the dataset can be divided

into N parts containing different information.

Then N part-based source classifiers for each

source can be trained to form the ensemble

target classifier.

90

Another domain adaptation application is the computational advertising sys-

tem. The system may rank advertisements for queries originating from many

different countries, in many different languages, and covering a variety of prod-

uct domains. A system trained on all queries together, agnostic with respect

to such properties, may benefit from having a large quantity of training data.95

However, it is also possible that data sources have conflicting properties that

reduce the performance of a single model trained in this manner. In this case,

it would be preferable to train separate systems. In fact, both approaches are

inadequate. Data sources typically share some common characteristics and be-

haviors, though differ from one another. A single system obscures differences,100
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while separate systems ignore similarities.

Besides the above applications, some efforts have also been made on domain

adaptation for event recognition in consumer videos [18, 10]. For example, Duan

et al. [10] learned a classifier which uses both the SIFT features of web images

from source domains and the space-time (ST) features as well as SIFT features105

from the target domain to make decisions for the target video.

In this paper, we investigate both theoretical analyses and existing algo-

rithms for multi-source domain adaptation. We hope to provide a useful re-

source for the research of multi-source domain adaptation. The rest of the

survey is organized as follows. In Section 2, some theoretical analyses are pro-110

vided. Section 3 covers some well-developed algorithms. We summarize Sec-

tion 2 and Section 3 in Table 1 for a quick access to the methods introduced

in this paper. In Section 4, some performance evaluation measurements as well

as publicly available datasets about multi-source domain adaptation are listed.

Conclusions and some worth-working lines for multi-source domain adaptation115

are summarized in Section 5.

2. Theoretical analyses for multi-source domain adaptation

We formalize the multi-source domain adaptation problem as follows. Let

X be the input space, D be a distribution on X , and f : X → R be the target

function to learn. A domain is defined as a pair 〈D, f〉. Let L(f(x), y) ∈ R be a120

loss function with respect to f . Suppose we have N distinct sources, with each

source Sj associated with an unknown distribution Dj over the input points,

and an unknown labeling function fj . Each source Sj has mj = ηjm labeled

samples where m is the total sample number from all the sources, and ηj ∈ [0, 1],
∑

ηj = 1. The objective is to use these samples to train a model to perform well125

on a target domain 〈DT , fT 〉. The multi-source domain adaptation problem is to

combine each source Sj to derive a hypothesis h with a small loss L(fT (x), h(x))

on the target domain.

Blitzer et al. [40] gave a bound on the error rate of a hypothesis derived from
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a weighted combination of the source data sets for the specific case of empirical130

risk minimization.

Crammer et al. [27] addressed a problem where multiple sources are present.

But the nature of the problem differs from adaptation since the distribution of

the input points is the same for all these sources, and only the labels change due

to the varying amounts of noise. They gave a general bound on the expected135

loss of the model by minimizing the empirical loss on the nearest k sources.

These nearest k sources form a recommended set of sources. Two key ingredients

needed to apply this bound were introduced: an approximate triangle inequality

and a uniform convergence bound.

Definition 1. For α ≥ 1, the α-triangle inequality holds for a hypothesis

space H if for all g1, g2, g3 ∈ F the following inequality holds:

e(g1, g2) ≤ α(e(g1, g3) + e(g1, g2)). (1)

where F is a class of candidate models and e(g1, g2) = Ex∼DL(g1(x), g2(x)) is140

the expected loss function. The parameter α ≥ 1 is a constant that depends on

H and L.

Definition 2. A uniform convergence bound for a hypothesis space H and

loss function L is a bound that states that for any 0 < δ < 1, with probability at

least 1 − δ for any h ∈ H

|ê(h) − e(h)| ≤ β(n, δ), (2)

where ê(h) = 1

n

∑n

i=1
L(h(xi), yi) for n observations (x1, y1), . . . , (xn, yn) gen-

erated independently according to distributions P1, . . . , Pn and e(h) = E[ê(h)]

where the expectation is taken with respect to (x1, y1), . . . , (xn, yn). Here β is145

function of the number of observations n and the confidence δ, and depends on

H and L.

Definition 2 asserts that for every model in H, its empirical loss on a sample

of size n and the expectation of this loss will be “close” when β(n, δ) is small.
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In general the function β will incorporate standard measures of the complexity150

of H, and will be a decreasing function of the sample size n, as in the classical

O(
√

d/n) bounds of the VC theory.

Given K source domains S1 = 〈D, f1〉 , S2 = 〈D, f2〉 , . . . , SK = 〈D, fK〉, and

for Sj , there are nj samples (xj
i , y

j
i ). Denote n1:k =

∑k

j=1
nj . To analyze the

multi-source domain adaptation problem, the performance of hypothesis ĥk can155

be measured as:

ĥk = arg min
h∈H

1

n1:k

k
∑

j=1

nj
∑

i=1

L(h(xj
i , y

j
i )). (3)

Theorem 1. Let e be the expected loss function for loss L, and F be a class

of models for which the α-triangle inequality holds with respect to e. Let H ⊆

F be a class of hypothesis models for which there is a uniform convergence

bound β for L, f = f1, f2, . . . , fK are the unknown source models in F , εi =160

max(e(f, fi), e(fi, f)), and w.o.l.g., let ε1 ≤ ε2 ≤ · · · ≤ εK . For any δ such that

0 ≤ δ ≤ 1, with probability at least 1 − δ, for any k ∈ {1, . . . ,K},

e(f, ĥk) ≤α2 min
h∈H

{e(f, h)} + (α + α2)

k
∑

i=1

(
ni

n1:k

)εi

+ 2αβ(n1:k, δ/2K).

(4)

The bound is on the expected loss incurred by using all data sources within a

given disparity of the target source. According to the theorem, optimizing this

bound can get a recommended subset of the data to be used in learning a model

for each source. Thus one can avoid the negative adaptation. The optimized

number of sources k∗ to be used for estimating the target f is given as

k∗ = argmink((α + α2)

k
∑

i=1

(
ni

n1:k

)εi + 2αβ(n1:k, δ/2K)). (5)

To demonstrate the applicability of the general theory given by Theorem 1,

Crammer et al. [27] also gave a bound for (noise-free) binary classification and

(noise-free) regression.165
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In (noise-free) binary classification, the loss function L(h(x), y) is defined as

0 if y = h(x) and 1 otherwise, and the expected loss is given by e(g1, g2) =

Ex∼D[L(g1(x), g2(x))] = Prx∼D[g1(x) 6= g2(x)]. For 0/1 loss it is easy to see

that the 1-triangle inequality holds. Classical VC theory provides us with uni-

form convergence as follows.170

Lemma 1. Let H : X → {0, 1} be a class of functions with V C dimension d,

and let L(h(x), y) = |y − h(x)| be the 0/1 loss. The following function β is a

uniform convergence bound for H and L when n ≥ d/2:

β(n, δ) =

√

8(d ln(2en/d) + ln(4/δ))

n
. (6)

With Lemma 1 and Theorem 1, the bound for binary classification is given

as follows.

Theorem 2. Let F be the set of all functions from an input set X into {0, 1}

and let d be the V C dimension of H ∈ F . Let e be the expected 0/1 loss. Let

K, f = f1, f2, . . . , fK ∈ F , εi, ni, and ĥk be defined as above, and assume that

n1 ≥ d/2. For any δ such that 0 < δ < 1,, with probability at least 1 − δ, for

any k ∈ {1, . . . ,K}

e(f, ĥk) ≤min
h∈H

{e(f, h)} + 2
k

∑

i=1

(
ni

n1:k

)εi

+

√

32(d ln(2en1:k/d) + ln(8K/δ))

n1:k

.

(7)

In (noise-free) regression with squared loss, assume that the target model

f is any function from an input class X into some bounded subset of R. The

loss function is L(h(x), y) = (y − h(x))2. The expected loss is e(g1, g2) =175

Ex∼D[L(g1(x), g2(x))] = Ex∼D[(g1(x) − g2(x))2]. The following lemma states

that the 2-triangle inequality holds for regression.

Lemma 2. Given any three functions g1, g2, g3 : X → R, a fixed and unknown

distribution P on the inputs X , and the expected loss e(g1, g2) = Ex∼D[(g1(x)−
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g2(x))2],

e(g1, g2) ≤ 2(e(g1, g3) + e(g3, g1)). (8)

With Lemma 2 and Theorem 1, the bound for regression with squared loss

is given as follows.

Theorem 3. Let F be the set of functions from X into [−B,B] and H ∈ F .180

Let e be the expected square loss. Let K, f = f1, f2, . . . , fK ∈ F , εi, ni, and ĥk

be defined as above. For any δ such that 0 < δ < 1, with probability at least

1 − δ, for any k ∈ {1, . . . ,K}

e(f, ĥk) ≤4 min
h∈H

{e(f, h)} + 6
k

∑

i=1

(
ni

n1:k

)εi

+ 32BRn1:k
(H) + 16B2

√

2 ln(4K/δ))

n1:k

,

(9)

where Rn(H) is the Rademacher complexity for n observations.

Mansour et al. [28] introduced two types of combinations for multi-source

domain adaptation: a linear combining rule and a distribution weighted combin-

ing rule. The first rule is based on a parameter z ∈ ∆ and the target hypothesis

HT is set to HT =
∑N

j=1
zjHj . The second rule is also based on a parame-

ter z ∈ ∆ but sets the target hypothesis HT to be HT =
∑N

j=1

zjDj
P

N
i=1

ziDi
Hj

where
∑N

i=1
ziDi > 0. When the target mixture distribution is known, they

showed that the natural and widely used convex combining rule can perform

poorly. Any such convex combination would expect a classification error of 1

2
,

even when the source hypotheses make no error on their respective domains. A

detailed example was given in [28]. On the other hand, suppose target distribu-

tion DT =
∑N

j=1
λjDj . There exists a distribution weighted combination with

parameter λ whose loss L(Dλ,Hλ, f) is at most ε with respect to any mixture

adaptation problem, where Hλ represents the distribution weighted combining

rule with parameter λ. To show this,

Hλ =

N
∑

j=1

λjDj
∑N

i=1
λiDi

Hj =

N
∑

j=1

λjDj

DT

Hj . (10)
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Suppose the loss function L is convex with respect to the first argument, the

loss of Hλ with respect to DT and a target f ∈ F can be bounded as

L(DT ,Hλ, f) =
∑

x∈X

L(Hλ(x), f(x))DT (x)

≤
∑

x∈X

N
∑

j=1

λjDj(x)L(Hj(x), f(x))

=

N
∑

j=1

λjεj ≤ ε,

where εj := L(Dj ,Hj , f) ≤ ε. With unknown target mixture distribution DT ,185

for any fixed target function f , according to the Brouwer fixed point theorem,

there exists a distribution weighted combining rule that has a loss at most ε

with respect to any mixture DT .

Ben-David et al. [3] gave two learning bounds for empirical risk minimiza-

tion. The first one considers the quality and quantity of data available from190

each source individually, regardless of the relationships between sources. The

second bound depends directly on the H∆H-distance between the target and

the weighted combination of source domains. Firstly, the definition of H∆H-

distance is given as follows.

Definition 3. For a hypothesis space H, the symmetric difference hypothesis

space H∆H is the set of hypotheses

H∆H = {h(x) ⊕ h′(x) : h, h′ ∈ H} (11)

where ⊕ is the XOR function. In other words, every hypothesis g ∈ H∆H is195

the set of disagreements between two hypotheses in H.

By the definition, a distance dH∆H(DS ,DT )) between two distributions is

defined:

dH∆H(DS ,DT ) = 2 sup
h,h′∈H

|εS(h, h′) − εT (h, h′)|. (12)

It is easy to prove that the following inequality holds for any hypotheses h, h′ ∈

H, which is useful in the following theorems,

|εS(h, h′) − εT (h, h′)| ≤
1

2
dH∆H. (13)
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Suppose there are N distinct sources. Each source Sj is associated with an

unknown distribution Dj over input points and an unknown labeling function

fj . Let vector α = (α1, . . . , αN ) denote domain weights with
∑N

j=1
αj = 1.

Considering the pairwise H∆H-distance between each source and the target,200

the bound in [3] gives a trade-off between minimizing the average divergence of

the target data and weighting all points equally to encourage faster convergence.

The bound is given below.

Theorem 4. Let H be a hypothesis space of VC dimension d. For each j ∈

{1, . . . , N}, let Sj be a labeled sample of size βjm generated by drawing βjm

points from Dj and labeling them according to fj. If ĥ ∈ H is the empirical mini-

mizer of ε̂α(h) for a fixed weight vector α on these samples, ε̂α =
∑N

j=1
αjεj(h)

=
∑N

j=1

αj

mj

∑

x∈Sj
|h(x) − fj(x)|. Let h∗

T =minh∈H εT (h) be the target error

minimizer, then for any δ ∈ (0, 1), with probability at least 1 − δ,

εT (ĥ) ≤εT (h∗
T ) + 2

√

√

√

√

√





N
∑

j=1

α2
j

βj





(

d log(2m) − log(δ)

2m

)

+
N

∑

j=1

αj(2λj + dH∆H(Dj ,DT )),

(14)

where λj = minh∈H{εT (h) + εj(h)}, and εT (h) reflects the probability according

to the distribution DT that a hypothesis h disagrees with a labeling function fT205

and is defined as εT (h) = Ex∼DT
[|h(x) − fT (x)|].

For the bound in Theorem 4, it is not necessary to have a single hypothesis

that is good for every source domain because divergence between domains is

measured only between each source domain and the target domain. However,

the domain structure is ignored when calculating unlabeled divergence. An210

alternate bound is given in the next theorem, which allows to alter the source

distribution by changing α.

Theorem 5. Let H be a hypothesis space of VC dimension d. For each j ∈

{1, . . . , N}, let Sj be a labeled sample of size βjm generated by drawing βjm
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points from Dj and labeling them according to fj. If ĥ ∈ H is the empiri-

cal minimizer of ε̂α(h) for a fixed weight vector α on these samples and h∗
T

=minh∈H εT (h) is the target error minimizer, then for any δ ∈ (0, 1), with prob-

ability at least 1 − δ,

εT (ĥ) ≤εT (h∗
T ) + 4

√

√

√

√

√





N
∑

j=1

α2
j

βj





(

d log(2m) − log(δ))

2m

)

+ 2γα + dH∆H(Dα,DT ),

(15)

where γα = minh{εT (h) + εα(h)} = minh{εT (h) +
∑N

j=1
αjεj(h)}.

In Theorem 5, a hypothesis h∗ is demanded to exist which has low error

on both the α-weighted convex combination of sources and the target domain.215

Instead of measuring the H∆H-divergence between the target and each source

domain, the bound measures the divergence between the target and a mixture

of sources, which may be significantly tighter.

3. Well-developed algorithms

In this section, we investigate some well developed algorithms for multi-220

source domain adaptation. We categorize the algorithms into two groups of ap-

proaches, i.e., feature representation approaches and combination of prelearned

classifiers.

As we mentioned before, the source domains and the target domains are dif-

ferent, and certain features among the domains are domain-specific while others225

are common. Therefore, there may exist mappings from the original feature

spaces to a latent feature space that is shared between domains. Feature rep-

resentation approaches [8] for domain adaptation change the feature represen-

tations to better describe shared characteristics among the domains. This kind

of approach aims to make the source and target domain distributions similar,230

either by penalizing or removing features whose statistics vary between domains

or by learning a feature space embedding or projection in which a distribution

divergence statistic is minimized.
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The second group of approaches introduced here utilize prelearned classifiers

trained both on the source domains and (if any) the target domain. These235

prelearned classifiers are weighted and combined to obtain a final classifier for

the target domain. The core issue here is how to assign a weight for each

prelearned classifier according to the relationship between the source domain

and the target domain.

3.1. Feature representation approaches240

Chattopadhyay et al. [29] introduced a framework called conditional prob-

ability based multi-source domain adaptation from the smoothness assumption

on the probability distribution of the target domain data. Assume that there

are M source domains with plenty of labeled samples in each source domain,

and the target domain consists of plenty of unlabeled data DT
u with sample size

nu and a few labeled data DT
l with sample size nl. The framework assigns dif-

ferent weights to different source domains based on the conditional probability

differences. Denote the weight factor by βs for the sth source domain, which

is learned on the unlabeled target domain samples as follows. For each source,

a hypothesis hs is learned. Using these M source hypotheses to predict the

unlabeled target domain data DT
u gets a nu × M matrix HS with each row of

HS given by HS
i = [h1

i , h
2
i , . . . , h

M
i ]. HS

i is a vector consisting of the predicted

labels of M source hypotheses for the ith sample of target domain data. Let

β = [β1, . . . , βM ] be the weight vector, and the optimization for β can be done

by minimizing the difference in predicted labels between two nearby points in

the target domain using the following objective:

min
β

nu
∑

i,j=1

(HS
i βHS

j β)2Wij (16)

where HS is defined above, and Wij is the similarity between the two target

domain data samples.

Optimizing Eq. 16 enforces that nearby points in the marginal distribu-

tion of the target data have similar conditional probabilities, and the proposed
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weighting scheme is likely to give higher weights to those sources which have sim-

ilar conditional probability distributions to the target data. The multi-source

domain adaptation framework is given as follows:

min
fT ∈HK

γA

∥

∥fT
∥

∥

2

K
+

1

nl

nl
∑

i=1

(fT
i −yT

i )2+
θ

2nu

nT
∑

j=nl+1

∥

∥

∥

∥

∥

fT
j −

M
∑

s=1

βsfs
j

∥

∥

∥

∥

∥

+
γI

n2
T

(fT )
>

LfT

(17)

where the first term controls the complexity of the classifier fT in the reproduc-

ing kernel Hilbert space HK , and γA controls the penalty factor. The second

term is the empirical error of fT on the few labeled target domain data DT
l ,245

where fT
i is the ith label predicted by fT , and yT

i is the ground truth. The

third term is the empirical error on the unlabeled target data, which are labeled

using the conditional-probability-based weighting scheme.
∑M

s=1
βsfs

j is the es-

timated label for the unlabeled target data xj based on the M source domain

classifiers fs. The fourth term is a manifold-based regularizer based on the250

smoothness assumption on the target domain data, where L is the graph Lapla-

cian associated with the target domain data DT = DT
u ∪DT

l and nT = nu + nl.

γI controls the importance of fT in the intrinsic geometry of the data marginal

probability of x.

Based on the work in [29], Sun et al. [30] proposed a two-stage domain255

adaptation methodology for multi-source problems. Following the settings in

[29] the source data samples in [30] are re-weighted in the first stage based on

the marginal probability differences as

min
αs

∥

∥

∥

∥

∥

1

ns

ns
∑

i=1

αs
i Φ(xs

i ) −
1

nT

nT
∑

i=1

Φ(xt
i)

∥

∥

∥

∥

∥

2

H

(18)

s.t. αs
i ≥ 0,

where Φ(x) is a feature map onto a reproducing kernel Hilbert space H, ns is

the number of samples in the sth source domain, nT = nl + nu is the sample

size of the target domain, and αs is the ns dimensional weight vector. In the

second stage, the source domains are reweighted using the weighting scheme

introduced in [29]. After the two stage weighting, the target classifier can be
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learned based on the reweighted source data and a few labeled target domain

data. Formally, the classifier for the target domain is given as

f∗ = arg min
h

µ

M
∑

s=1

βs

ns

ns
∑

i=1

αs
iL(h(xs

i ), y
s
i ) +

nl
∑

j=1

1

nl

L(h(xT
j ), yt

j). (19)

Duan et al. [31, 10, 32] introduced a data-dependent regularizer into the

objective of SVR (support vector regression) using the ε-insensitive loss. The260

regularizer is defined below:

Definition 4. Let DT
l ∪DT

u be the target domain, where DT
l = {(x1, y1), . . . , (x

T
nl

, yT
nl

)}

and DT
u = xT

nl+1, . . . , x
T
nT

. Let Dj be the jth source domain, where Dj =

{(xj
i , y

j
i )|

nj

i=1}, yj
i is the label of xj

i , j = 1, . . . ,M , and M is the total number

of source domains. The data-dependent regularizer for domain adaptation is

defined as:

Ω(fT
u ) =

1

2

M
∑

j=1

γj

nT
∑

i=nl+1

(fT (xT
i ) − f j(xT

i ))2 (20)

where fT (xT
i ) is the decision value of xT

i form the target classifier, f j(xT
i ) is

the decision value of xT
i form the jth source classifier, and γj is a pre-defined

weight for measuring the relevance between the jth source domain and the target

domain.265

In this definition, when γj is large, it means that the jth source domain and

the target domain are relevant, so f j(xT
i ) should be close to fT (xT

i ). It can be

regarded as the vector β in [29], and can be prelearned based on the Laplacian

graph of the unlabeled target samples. An alternative to define γj is to use the

so called maximum margin discrepancy (MMD) criterion proposed in [41].270

In [31, 32], the authors proposed a method which simultaneously minimize

the structural risk functional of least-squares SVM as well as the data-dependent

regularizer defined above. The method, named domain adaptation machine

(DAM), is formulated as

min
fT

Ω(fT ) +
1

2

nl
∑

i=1

(f t
i − yt

i)
2 + Ω(fT

u ), (21)
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where Ω(·) is the regularizer, and the second term is the empirical error of the

target classifier fT on the target labeled samples DT
l . To solve this optimization

problem, using the ε-insensitive loss function, the authors gave a sparse solution

for the problem (referred as FastDAM in [32]). Assume that the regularizer

Ω(fT ) = 1

2θ
‖w‖

2
for the penalty of function complexity of fT . The optimization

problem in Eq. 21 is then rewritten as:

min
fT ,w,b

1

2
‖w‖

2
+ C

nT
∑

i=1

lε(w
>φ(xi) + b− fT

i ) + θ(
1

2

nl
∑

i=1

(f t
i − yt

i)
2 + Ω(fT

u )) (22)

where C is another tradeoff parameter to control the difference between fT (x)

and w>φ(xi)+b, θ is a tradeoff parameter to control the empirical error from the

target domain as well as the smoothness regularizer, and lε(t) is the ε-insensitive

loss: lε(t) =







|t| − ε, if |t| > ε

0, otherwise.
Since the ε-insensitive loss is non-smooth,

Eq. 22 is usually transformed as a constrained optimization problem as:275

min
fT ,w,b

1

2
‖w‖

2
+ C

nT
∑

i=1

(ξi + ξ∗i ) + θ(
1

2

nl
∑

i=1

(f t
i − yt

i)
2 + Ω(fT

u ))

s.t.











w>φ(xi) + b − fT
i ≤ ε + ξi, ξi ≥ 0,

fT
i − w>φ(xi) − b ≤ ε + ξ∗i , ξ∗i ≥ 0,

(23)

where ξi’s and ξ∗i ’s are slack variables for the ε-insensitive loss.

The DAM in [29, 31] uses all the source domains for multi-source domain

adaptation. The only difference among the sources is the different weight as-

signed to each source, which reflects the relevance between the source domain

and the target domain. But in practice it may be more beneficial to choose a

few relevant source domain rather than use all of them. To this end, Duan et

al. [10] proposed a data-dependent regularizer for domain selection, which is an

extension to Definition 4:

Ω(fT
u ) =

1

2

M
∑

j=1

dj

nT
∑

i=nl+1

(fT (xT
i ) − f j(xT

i ))2 (24)

where dj ∈ {0, 1} is a domain selection indicator for the jth source domain.

Some selected source domains share a similar decision boundary with the target

domain, thus avoiding the negative adaptation.
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3.2. Combination of prelearned classifiers280

When some labeled target data are available, Schweikert et al. [33] proposed

a classification method for multi-source domain adaptation by combining the

prelearned source classifiers and target classifier through a simple weight scheme.

Using a so-called multiple convex combination, the final classifier f(x) for the

target domain is formulated as:

f(x) = αfT (x) +
1 − α

M

M
∑

k=1

fk(x), (25)

where α balances the two terms, M is the number of source domains, and fk

is the pre-computed source classifier using the labeled training data from the

kth source domain, and fT is the target classifier obtained by learning an SVM

classifier using the labeled training samples from the target domain.

The multi-source domain adaptation framework proposed by Sun and Shi

[34] combines the prelearned source classifiers to obtain a good target classifier.

There is no need for the labeled target data to exist in their framework. The

framework is based on the Bayesian learning principle: the probability of which

class a target example belongs to is proportional to the product of prior and

likelihood assigned to this example. Suppose there are M source domains Ss

with pre-defined source classifier fs, s = {1, . . . ,M}, and the target domain

T . The target domain only has plenty of unlabeled samples. The prior is

constructed with the Laplacian matrix on the unlabeled target data as follows

priors =
1

∑nu

i,j=1
(ys

i − ys
j )

2Wij

=
1

2(Y s)>LY s
, (26)

where nu is the size of the target unlabeled samples, Y s = {y1, . . . , ynu
}, ys

i

is the predicted labels for the ith sample xi in the target domain, W is the

weight matrix where Wij measures the closeness between xi and xj , and L is

the Laplacian matrix constructed on the unlabeled target domain. The different

prior of each source shows the fitness between each source domain and the target

domain. The bigger the prior is, the better the corresponding source classifier

is. For the likelihood, the authors employed the mean Euclidean distance of the
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k-nearest neighbors of instance xi to reflect the similarity between the target

domain and the source domain. It is intuitive that the higher probability of the

instance from the target domain occurring in the source domain, the better the

source classifier is. For each instance xi in the target domain, the probability

of it occurring in the source domain Ss is inversely proportional to the the

mean Euclidean distance of the k-nearest neighbors in source domain Ss, so the

likelihood that xi occurs in Ss is defined as

Likes
i =

k
∑

j

∥

∥xi − xs
j

∥

∥

(27)

where xs
j , which comes from the sth source, is among the k-nearest neighbors of

xi. After the prior and the likelihood are defined, the posterior is proportional

to the product of the prior and the likelihood:

postsi ∝ priors
i × Likes

i (28)

where postsi is the posterior of xi based on the sth source domain. The posteriors285

are used to weight the source classifiers.

Yang et al. [12] explored classifier adaptation techniques based on support

vector machines. A “delta function” in the form of δf(x) = w>φ(x) is added

into the standard SVM (support vector machine) objective, and they got the

adaptive support vector machine (A-SVM) as: f(x) = fS(x)+δf(x) = fS(x)+

w>φ(x), where fS is the pre-computed classifier from the source domain. For

multi-source settings, the adapted classifier can be extended as

f(x) =

M
∑

k=1

αkfS
k (x) + δf(x) =

M
∑

k=1

αkfS
k (x) + w>φ(x), (29)

where αk ∈ (0, 1) is the weight of each source classifier fS
k (x) and

∑M

k=1
αk = 1.

Once the model is learned from the source domains, the prediction process does

not involve any source domain data, so the A-SVM model is efficient for online

application. In [12], equal weights were used for all source classifiers in the290

experiments.

Tu and Sun [35] proposed a multi-source domain adaptation framework

called cross-domain representation learning framework, which combines class-
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Algorithm 1: Cross-domain representation-learning framework

Input: Datasets X1,X2, . . . ,Xns
from different domains, where example Xi ∈

R
d (i = 1, 2, . . . , n) is the raw data representation. Label information of labeled

subsets. Domain information of X1,X2, . . . ,Xn.

Output: The transformation operator FT (Xi) = X̄i, where X̄i is the new

representation of Xi (i = 1, 2, . . . , n).

Objective function : J(FT ) = combination of Qc(FT ) and Qd(FT ), where

Qc(FT ) and Qd(FT ) indicate the class-separate related quality and domain-

merge related quality, respectively.

Keys: 1) How to define the Qd(FT ) by modifying Qc(FT ). 2) How to define

the combination of Qd(FT ) and Qc(FT ).

separate objectives and domain-merge objectives simultaneously to learn a data

representation model. The learned model can catch data characteristics which295

are not only helpful for later tasks but also robust to the domain differences. The

framework takes into consideration both maximizing the differences between

classes and minimizing the difference between domains. Here, maximizing the

differences between classes can be considered as the class-separate objective for

the classification task, and minimizing the difference between domains can be300

naturally regarded as one of the domain-merged objectives. The framework is

described in Algorithm 1. Three implementations are proposed in [35]: domain-

merge and class-separate correlation feature selection (DMCS CFS), domain-

merge and class-separate Fisher discriminant analysis (DMCA FDA), domain-

merge and class-separate pairwise constraints based distance metric learning305

(DMCS PCDML).

Recently, Xu and Sun introduced transfer learning methods with multi-view

adaboost for both single-source and multi-source domain adaptation [36, 37].

When there are only one source domain [37], the multi-view transfer learn-

ing method with adaboost is described as follows. Suppose there are n la-310

beled target samples X = (x1, y1), . . . , (xn, yn), and m labeled source examples
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S = (xn+1, yn+1), . . . , (xn+m, yn+m). To use the adaboost method, initialize a

weight vector Wt ∈ Rm+n for the samples in the source and target domain,

t = {1, . . . , T} where T is the iteration number. All of the features are divided

into to views V1 and V2. In the tth iteration, two weaker learners from these two315

views hV 1
t and hV 2

t are learned . Then the empirical accuracies on the target

samples as well as a proposed parameter agreet are used to update the weight

vector. The parameter agreet indicates the percentage of the samples predicted

to be the same class by the two classifiers hV 1
t and hV 2

t . In [36], this method

was extended to the multi-source setting.320

Another transfer learning framework proposed by Xu and Sun is called part-

based transfer learning [38, 39]. Since many collections of data consist of a num-

ber of parts of factors which contain different information of the data, learning

through different parts can get more various kinds of knowledge for the task

(classification, regression, etc.).325

In [39], a transfer learning method for one source domain and one target do-

main based on partly transfer learning was proposed, namely part-based transfer

learning. Suppose one source domain with n labeled training samples and one

target domain with m labeled training samples and large numbers of unlabeled

test samples are given. The feature spaces are the same for both the source330

and target domains. The method is described as follows. Firstly, divide the

source and target feature spaces into N parts according to certain criteria. For

example, suppose the dimension of the feature space is ten and the feature space

is divided into three parts. One alternative way is to split the first nine fea-

tures into three parts and add the last feature into each part to create three335

interdependent four-dimensional parts.

After the division, N part-based source classifiers can be trained on the

N source parts, and simultaneously their optimal model parameters are got.

Then, train N part-based target classifiers for the target training samples using

the N optimal model parameters obtained by training the N part-based source340

classifiers accordingly. The empirical classification accuracies of the N part-

based target classifiers are used to weight the N target classifiers to obtain
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the final target classifier for the target domain. This step transfers the source

information to the target domain by the optimal model parameters obtained in

the source training step.345

When given multiple sources, the method in [39] can be easily extended to

the multi-source domain adaptation setting. Suppose there are M source do-

mains and a target domain. The feature space can be divided into N parts.

For each source domain, N part-based source classifiers as well as the optimal

model parameters are obtained. Therefore, for each part of the target domain,350

M part-based target classifiers can be trained according to the M correspond-

ing optimal model parameters transferred from the part-based source classifiers.

These M part-based target classifiers are then weighted according to the empir-

ical classification accuracies to form the ensemble part-based target classifier.

Thus N ensemble part-based target classifiers can be trained. Finally, such N355

ensemble part-based target classifiers are weighted according to their accuracies

to gain the final target classifier trained from the M source domains and the

target training domain. In [38, 39], the parameters learned from the source

domain(s) were transferred directly to the target domain. This may not be

suitable in many complex situations because of the diversity between the source360

domains and the target domain. To this end, using the parameters learned from

the source domain to initialize the parameters for the target classifier is an al-

ternative and might be more suitable for transferring. After this initialization,

some learning algorithms such as neural networks can be used to update them

until getting a satisfying solution.365

4. Model Evaluation

4.1. Performance measurements

The most popular performance measurement in the classification task for

multi-source domain adaptation is the classification accuracy [26, 5, 11, 30, 34].

Let h and f be the labeling functions that map the target unlabeled data points

to their true labels and prediction labels, respectively. Then the classification
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accuracy is defined as

Accu =
|{x|x ∈ DT ∧ h(x) = f(x)}|

|DT |
, (30)

where x is the data point and DT is the target domain. Intuitively, the higher

the Accu is, the better the target classifier is.

In regression, the mean squared error (MSE), which measures the average of

the squares of the “errors” between the estimator and what is estimated, is often

used for performance measurement [28]. Let Ŷ be a vector of n predictions, and

Y be the vector of true values. Then the MSE of the predictor is defined as

MSE =
n

∑

i=1

1

n
(Ŷ − Y )2. (31)

4.2. Public datasets370

In this subsection, some publicly available datasets are listed in Table 2 for

the convenience of use by other researchers: sentiment classification dataset, 20

newsgroups dataset, TRECVID dataset, email spam dataset, objective recog-

nition dataset, and wifi dataset. Methods evaluated on each dataset are also

listed in the table and researchers can use them for comparison in their new375

research. We test each URL in the table and make sure that the datasets can

be downloaded through the URLs.

5. Conclusions and open problems

In this survey, we presented a theoretical investigation as well as some well-

developed algorithms for multi-source domain adaptation.380

In the future, several important research issues need to be considered. Firstly,

it would be interesting to investigate algorithms that choose a convex combina-

tion of multiple sources to minimize the bound in [3] as possible approaches to

adaptation from multiple sources. In addition, the error bound given in [28] is

defined on a fixed target distribution. Therefore, investigating the possibility of385

using an arbitrary target distribution to generalize the error bound is also an

interesting problem to be considered.
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Table 2: Publicly available datasets for multi-source domain adaptation.

Dataset References Source Brief description

Sentiment

Classi-

fication

dataset

Ben-David et al. [3]

Mansour et al. [28, 7]

Sun et al. [30]

Sun and Shi [34]

Tu and Sun [35]

http://www.cs.

jhu.edu/~mdredze/

datasets/sentiment

Sentiment classification data consist of

product reviews from several different

product types taken from Amazon.com.

20 News-

groups

dataset

Sun et al. [30]

Duan et al. [32]
http://www.

qwone.com/~jason/

20Newsgroups

The 20 Newsgroups data set is a collection

of approximately 20,000 newsgroup docu-

ments, partitioned (nearly) evenly across

20 different newsgroups.

TRECVID

dataset

Duan et al. [31, 32]

Yang et al. [12]

http://www-nlpir.

nist.gov/projects/

trecvid

The TRECVID dataset contains 61901

key frames extracted from 108 hours of

video programs form six different broad-

cast channels, including three English

channels, two Chinese channels, and one

Arabic channel.

Email

Spam

dataset

Duan et al. [32] http://www.

ecmlpkdd2006.

org/challenge.html

The email spam dataset contains a set of

4000 publicly available labeled emails as

well as three email sets (each has 2500

emails) annotated by three different users.

Objection

Recognition

dataset

Kulis et al. [11] https://www.

eecs.berkeley.

edu/~jhoffman/

domainadapt/

This dataset contains images from 31 ob-

ject categories and three domains. These

three domains differ from each other by the

objective pose, image background, and res-

olution, but have the same objective cate-

gories.

Wifi

dataset

Pan et al. [20] http://www.cse.

ust.hk/~qyang/

ICDMDMC07/

The data were collected and organized at

Hong Kong University of Science and Tech-

nology and used for indoor location estima-

tion.
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Secondly, how can prior knowledge about domain similarity be included

in the learning procedure? The work by Sun and Shi [34] steps forward by

proposing a prior based on the Laplacian matrix. A nature question to ask is390

thus if there is other types of appropriate priors. More effective algorithmic

implementations for the Bayesian framework are interesting research topics. In

addition, for the part-based methods, the authors used a simple criterion to

divide the feature space. In the future, more heuristic criteria could be explored

to generate the part models.395

Thirdly, most existing domain adaptation algorithms assume that the feature

space between the source domains and the target domains is the same. But, in

many applications, the feature spaces among domains may be different. Such

problem are gaining more and more interests and need further explorations.

Finally, so far, many domain adaptation techniques have been used to appli-400

cations with a limited variety, such as text classification and image classification

problems. Only a little work has considered video classification [18, 10]. In the

future, more work on other challenging applications is needed, such as brain-

computer interface signal classification [42, 43], video and speech based appli-

cations [30], activity detection, social network analysis, and logical inference405

[8].
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[33] G. Schweikert, G. Rätsch, C. Widmer, B. Schölkopf, An empirical analysis

of domain adaptation algorithms for genomic sequence analysis, Advances

in Neural Information Processing Systems 21 (2009) 1433–1440.

[34] S. Sun, H. Shi, Bayesian multi-source domain adaptation, in: Proceed-510

ings of the International Conference on Machine Learning and Cybernetics,

2013, pp. 24–28.

[35] W. Tu, S. Sun, Cross-domain representation-learning framework with com-

bination of class-separate and domain-merge objectives, in: Proceedings of

the 1st International Workshop on Cross Domain Knowledge Discovery in515

Web and Social Network Mining, 2012, pp. 18–25.

[36] Z. Xu, S. Sun, Multi-source transfer learning with multi-view adaboost,

Lecture Notes in Computer Science 7665 (2012) 332–339.

[37] Z. Xu, S. Sun, Multi-view transfer learning with adaboost, in: Proceed-

ings of the 23rd IEEE International Conference on Tools with Artificial520

Intelligence, 2011, pp. 399–402.

31



[38] S. Sun, Z. Xu, M. Yang, Transfer learning with part-based ensembles, Lec-

ture Notes in Computer Science 7872 (2013) 271–282.

[39] Z. Xu, S. Sun, Part-based transfer learning, Lecture Notes in Computer

Science 6677 (2011) 434–441.525

[40] J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, J. Wortman, Learning

bounds for domain adaptation, Advances in Neural Information Processing

Systems 20 (2008) 129–136.

[41] K. Borgwardt, A. Gretton, M. Rasch, H. Kriegel, B. Schölkopf, A. J. Smola,

Integrating structured biological data by kernel maximum mean discrep-530

ancy, Bioinformatics 22 (14) (2006) 49–57.

[42] S. Sun, J. Zhou, A review of adaptive feature extraction and classification

methods for eeg-based brain-computer interfaces, in: Proceedings of the

International Joint Conference on Neural Networks, 2014, pp. 1746–1753.

[43] W. Tu, S. Sun, A subject transfer framework for EEG classification, Neu-535

rocomputing 82 (2012) 109–116.

32


