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Abstract

Representing manifolds using fewer examples has the advantages of eliminating the
influence of outliers and noisy points and simultaneously accelerating the evaluation
of predictors learned from the manifolds. In this paper, we give the definition of
manifold-preserving sparse graphs as a representation of sparsified manifolds and
present a simple and efficient manifold-preserving graph reduction algorithm. To
characterize the manifold-preserving properties, we derive a bound on the expected
connectivity between a randomly picked point outside of a sparse graph and its
closest vertex in the sparse graph. We also bound the approximation ratio of the
proposed graph reduction algorithm. Moreover, we apply manifold-preserving sparse
graphs to semi-supervised learning and propose sparse Laplacian support vector
machines (SVMs). After characterizing the empirical Rademacher complexity of
the function class induced by the sparse Laplacian SVMs, which is closely related
to their generalization errors, we further report experimental results on multiple
data sets which indicate their feasibility for classification.

Key words: Sparsity; Graph reduction; Support vector machine; Statistical
learning theory; Semi-supervised learning

1 Introduction

Learning with the manifold assumption has been an active research topic dur-
ing the past decade, with a variety of successful applications such as nonlin-
ear dimensionality reduction, data representation, and semi-supervised learn-
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ing [4,19,23,26]. A usual procedure includes constructing a weighted graph us-
ing all the training examples and then performing learning based on the graph.
However, it has two shortcomings: (1) Possible outliers and noisy points, likely
to damage the manifold structure, are retained; (2) The evaluation of predic-
tors learned from the graph for new examples can be time-consuming if the
predictors involve computations on all the examples in the original graph.

Although some methods such as random sampling or k-means clustering can
be used to reduce the size of the graph, they have no guarantees of preserving
the manifold structure or effectively removing outliers and noisy examples. In
particular, the k-means method is sensitive to outliers, and time-consuming
when the number of clusters is large. To overcome the aforementioned two
shortcomings, in this paper we propose the idea of manifold-preserving sparse
graphs and the corresponding manifold-preserving graph reduction algorithm,
detailed in Section 2 and Section 3, respectively. After providing two case
studies to illustrate the performance of the algorithm, we also give some related
theoretical outcomes.

As an important application of manifold-preserving sparse graphs, we con-
sider the problem of semi-supervised learning [7,29]. Indeed, a family of recent
semi-supervised classification methods build themselves on the exploitation of
manifolds, such as Laplacian SVMs [6], co-Laplacian SVMs [22] and manifold
co-regularization [23]. They learn a classifier in a reproducing kernel Hilbert
space (RKHS) making use of the representer theorem [15]. As a result, the
classifier is a function of all labeled and unlabeled examples involved in the
training set. Considering the large number of unlabeled examples in semi-
supervised learning, kernel function evaluations would be very time-consuming
when inferring the label of a new example. Consequently, it is necessary to de-
vise semi-supervised learning methods with a less demanding computational
requirement.

In Section 4 we present sparse Laplacian SVMs where manifold-preserving
sparse graphs play a central role. By the use of sparse graphs, only a por-
tion of unlabeled examples are needed to evaluate kernel functions. Moreover,
outliers and noisy examples are expected to be eliminated by the manifold-
preserving graph reduction procedure. This would enhance the robustness of
the corresponding algorithm. In Section 5 we derive the empirical Rademacher
complexity of the function class induced by sparse Laplacian SVMs, which is
an important term in the margin bound of their generalization performance.
Experimental results on multiple synthetic and real-world data sets are re-
ported in Section 6 to evaluate the sparse Laplacian SVMs, followed by a
conclusion section at the end of this paper.
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2 Manifold-preserving sparse graphs

Since graphs are deemed as a discrete representation of manifolds, our defini-
tion of manifold-preserving sparse graphs naturally corresponds to sparsified
manifolds. To begin with, we present the definition of sparse graph candidates.

Definition 1 (Sparse graph candidates) Given a graph G(V,E,W ) cor-
responding to a manifold with vertex set V = {x1, . . . , xm}, edge set E, and
symmetric weight matrix W , the graph Gc(Vc, Ec,Wc) with Vc, Ec and Wc be-
ing respectively subsets of V , E, and W is called a sparse graph candidate of
the original graph G.

For a graph, the weight on each edge characterizes the similarity or closeness of
the linked pair of vertices where a large value corresponds to a high similarity.
In this paper, we do not investigate the distinctions of properties of graphs
constructed by different methods, but assume that a reasonable graph can be
constructed. For the sparse graph candidate Gc, the associated weight matrix
Wc is the subset of W defined on selected vertices. This inheritance of weights
can ensure the preservation of manifold structures, though to a very limited
extent, which is an important concern for manifold sparsification.

We give the following definition of graph distance as a characterization of
the loss between two graphs G and Gc. This concept would be beneficial in
gauging the degree of sparsification.

Definition 2 (Graph distance) Given a graph G(V,E,W ) and its sparse
graph candidate Gc(Vc, Ec,Wc), the graph distance between G and Gc is the
loss of weights from W to Wc, that is

∑

i∈V \Vc,j∈Vc
Wij, where V \Vc denotes

the set of vertices not included in Vc.

Suppose we call the percentage loss of weights the sparsity level, that is, the
above graph distance divided by the sum of weights in graph G. For real
applications, it is both common to find sparse graphs with a specific sparsity
level or a fixed number of retained vertices (usually these two approaches can
be interchangeably adopted).

Consequently, the problem of seeking manifold-preserving sparse graphs would
be to find sparse graph candidates with manifold-preserving properties. By
manifold-preserving properties, we mean that a point outside of the sparse
graphs should have a high connectivity with a point retained in the sparse
graphs. Thus, we reach the following definition of manifold-preserving sparse
graphs.

Definition 3 (Manifold-preserving sparse graphs) Given a graph G with
m vertices and the sparsity level or the number of vertices in the desired sparse
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graphs, the manifold-preserving sparse graphs Gs are those candidates Gc hav-
ing a high space connectivity with G. By a high space connectivity, we mean
that for a candidate with t vertices the quantity

1

m − t

m
∑

i=t+1

(

max
j=1,...,t

Wij

)

(1)

is maximized, where W is the weight matrix of G, and indices 1, . . . , t corre-
spond to an arbitrary ordering of the vertices in the sparse graph candidate.

The high space connectivity requirement tends to select important examples
and thus remove outliers and noisy points. Also, it is inclined to deemphasize
the domination of groups of close points and maintain the manifold structure.
This can be beneficial to many machine learning tasks, e.g., to classification
problems. From the definition of (1), we can assume that points outside of
the sparse graph Gs have high similarities to vertices in the graph, whereas
high similarities of examples indicate that high similarities of labels can be
expected. Consequently, should a good classifier be learned from the sparse
graph, it tends to generalize well to unseen points with a high possibility.

2.1 Related work

A related concept called graph sparsification differs from our manifold-preserving
sparse graphs both in motivation and technique. The task of graph sparsifi-
cation is to approximate a graph by a sparse graph with the motivation of
accelerating cut algorithms or solving linear equations in diagonally-dominant
matrices [2,25]. The features of this generic sparse graphs include: (1) Sparse
in the sense of the number of edges, not vertices; (2) Edge weights are usually
different from those of the original graph; (3) Almost all sparse graphs are
constructed by randomized techniques [2]. However, the manifold-preserving
sparse graphs we propose here concern reducing the number of vertices rather
than edges. The edge weights from the original graph to our sparse graphs
need not change. Furthermore, the manifold-preserving graph reduction al-
gorithm given in Section 3 is deterministic if the vertex with the maximum
degree in a graph is unique.

There is also a family of methods on sparse low-rank approximations of general
matrices which minimizes the Frobenius norm of the difference of the original
matrix and the sparse matrix [20,24]. Nevertheless, these approaches have no
considerations on manifold preservation, and thus address quite different issues
with our method.
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3 Manifold-preserving graph reduction algorithm

In this section, first we propose a greedy manifold-preserving graph reduc-
tion algorithm and show its performance on two case studies. Then, we give
theoretical results on the manifold-preserving property and its approximation
ratio.

3.1 Algorithm and case studies

Given a sparsity level or the number of retained vertices in sparse graphs,
the problem of exactly seeking manifold-preserving sparse graphs is NP-hard.
Here, we give a simple and efficient greedy algorithm to construct such sparse
graphs. Due to its simplicity and high efficiency, applying this algorithm to
large-scale data would be quite straightforward.

Define the degree d(i) associated with vertex i to be d(i) =
∑

i∼j Wij where
i ∼ j means (i, j) are connected by an edge (if two vertices are not linked,
their similarity is regarded as zero). Table 1 gives the pseudo code for the
manifold-preserving graph reduction algorithm, where we seek t vertices from
the original graph of m vertices. The manifold-preserving graph reduction
algorithm first chooses the vertex with the maximum degree (if more than one
vertex has the same maximum degree, we randomly pick one), and removes all
the edges and weights linked to this vertex from the original graph. This step
tends to select successive vertices with a high space connectivity. Then, it adds
the selected vertex and associated edges and weights to the sparse graph Gs

(which is null initially). The same procedure repeats on the resultant graphs
until a fixed number of sought vertices is found. The sparse graph obtained
only includes the selected vertices and edges linking these vertices, and the
weights on the edges are directly taken from the original graph. A similar
algorithm can be mimicked if the sparsity level rather than the number of
vertices is adopted to build the sparse graph.

[Table 1 about here.]

Suppose t vertices are sought from an original graph with m vertices. Let dE

be the maximum number of edges linked to a vertex in the original graph. The
computational complexity of our algorithm is less than

O
[

dE

(

m + (m − 1) + . . . + (m − t + 1)
)]

= O(dEmt), (2)

which is respectively linear with respect to dE, m and t. Thus the manifold-
preserving graph reduction algorithm is very efficient.
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We illustrate the performance of our algorithm with random uniform sam-
pling as a baseline on two synthetic graphs. The first graph, shown in Fig. 1,
includes 66 vertices with identical weights on the edges, and the number of
retained vertices (shown in red circles) in the sparse manifolds is fixed as
10. Clearly, the sparse graph found by the MP (manifold-preserving) graph
reduction algorithm preserves a better manifold structure.

[Fig. 1 about here.]

The second case study uses the synthetic data shown in Fig. 4(b) from Sec-
tion 6. Suppose we fix the sparsity level to be 50%. The selected examples by
the MP graph reduction algorithm and random sampling for the same number
of examples are given in Fig. 2, from which the superiority of our algorithm
for manifold preserving is quite clearly evident.

[Fig. 2 about here.]

3.2 Analysis

We now proceed to give a bound on the expected connectivity of a randomly
picked point outside of a sparse graph to the sparse graph. Before this theorem,
we give a lemma on McDiarmid’s inequality.

Lemma 1 (McDiarmid’s inequality) Let X1, . . . , Xn be independent ran-
dom variables taking values in a set A, and assume that f : An → R satisfies

sup
x1,...,xn,x̂i∈A

|f(x1, . . . , xn) − f(x1, . . . , x̂i, xi+1, . . . , xn)| ≤ ci, 1 ≤ i ≤ n.

Then for all ε > 0, we have

P
{

f(X1, . . . , Xn) − Ef(X1, . . . , Xn) ≥ ε
}

≤ exp

(

−2ε2

∑n
i=1 c2

i

)

.

Theorem 1 Suppose we have a deterministic graph construction algorithm to
build a graph G(V,E,W ) from a training set S with m i.i.d examples drawn
from a distribution D. Let t be the predetermined number of vertices for out-
put sparse graphs. Let Êm−t(G,Gt) =

∑m
i=t+1(maxj=1,...,t Wij) be the empirical

connectivity between an optimal sparse graph Gt(Vt, Et,Wt) and the m− t ver-
tices outside of the sparse graph. For all δ ∈ (0, 1], the expected connectivity
Em−t(Gt) with respect to the m vertices can be bounded, with probability at
least 1 − δ over random draws of samples of size m, as
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PrS∼Dm



Em−t(Gt) ≥ Êm−t(G,Gt) − (m − t)R

√

1

2
m ln

1

δ



 ≥ 1 − δ, (3)

where R is the supremum of possible values of degree d(i) for any vertex in
a constructed graph. Then the expected connectivity Ex\Vt

(Gt) of a randomly
picked point x outside of Gt to Gt, which equals 1

m−t
Em−t(Gt), can be bounded

with the same confidence as

Prx∼D



Ex\Vt
(Gt) ≥

ˆ̄
Em−t(G,Gt) − R

√

1

2
m ln

1

δ



 ≥ 1 − δ, (4)

where ˆ̄
Em−t(G,Gt) , 1

m−t
Êm−t(G,Gt) is the averaged empirical connectivity.

PROOF. Take f in Lemma 1 to be Êm−t(G,Gt), which is clearly a function
of examples {x1, . . . , xm} as a result of the application of a deterministic graph
construction algorithm. It is simple to see that here ci in Lemma 1 can be taken
as (m−t)R. Note that the structure of the graph can change significantly even
as a result of replacing one example. However, by the definition of R, we can
still get the above estimate for ci.

Given a confidence level we can apply Lemma 1 to the m vertices. For a specific
Gt, setting the right hand side of the final inequality in Lemma 1 equal to δ

results in ε = ci

√

1
2
m ln 1

δ
= (m − t)R

√

1
2
m ln 1

δ
. Hence, we have

PrS∼Dm



Em−t(Gt) ≤ Êm−t(G,Gt) − (m − t)R

√

1

2
m ln

1

δ



 ≤ δ . (5)

Negating this completes the proof of (3). The bound shown in (4) is directly
obtained by dividing terms in the bracket of the left hand side of (3) by
m − t. 2

When confined to binary weights for the edges of the graphs, the expected con-
nectivity Ex\Vt

(Gt) in this theorem is the expected number of edges a point
outside of the sparse graph links to the most similar vertex in the sparse
graph. Theorem 1 provides a guarantee of obtaining a good space connectiv-
ity. It indicates that for any point not in the sparse graph, its connectivity to
the sparse manifold is greater than some value with a high probability. Max-
imizing (1) as required by Definition 3 can enlarge the lower bound provided
in the theorem.
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As directly seeking manifold-preserving sparse graphs is NP-hard, in this paper
the algorithm in Table 1 is adopted to approximately maximize (1). It thus
makes sense to characterize the approximation ratio, which is given below.

Theorem 2 Given a graph G(V,E,W ) with m vertices, suppose Gs is the
sparse graph obtained by the manifold-preserving graph reduction algorithm
given in Table 1. Let dmax and wmax be the maximum degree and maximum
weight of vertices in graph G, respectively. Define the connectivity between
the sparse graph Gs and the remaining m − t vertices as Cm−t(G,Gs) =
∑m

i=t+1 (maxj=1,...,t Wij). Then we can bound the approximation as

Cm−t(G,Gs)

Êm−t(G,Gt)
≥

dmax − Cs,t

(m − t)wmax

, (6)

where Êm−t(G,Gt) was defined in Theorem 1, and Cs,t is the sum of weights
between the first selected vertex in Gs and the other t − 1 vertices in Gs.

PROOF. By the procedure of the algorithm in Table 1, we know that the
vertex with the maximum degree dmax is the first vertex selected to the sparse
graph Gs. Denote this vertex as V1. Therefore, the connectivity of the m − t
vertices out of Gs to V1 is equal to dmax − Cs,t. According to its defini-
tion, Cm−t(G,Gs) must be greater than or equal to this quantity. That is,
Cm−t(G,Gs) ≥ dmax − Cs,t.

On the other hand, we can bound Êm−t(G,Gt) from above by (m − t)wmax,
consulting the definition of wmax. Hence, the approximation ratio of our algo-
rithm is bounded from below as

Cm−t(G,Gs)

Êm−t(G,Gt)
≥

dmax − Cs,t

(m − t)wmax

, (7)

which is the required result by Theorem 2. 2

Note that the lower bound given in Theorem 2 can be very loose in some
cases. Take Fig. 3 as an example, where the sparse graph including four nodes
is shown with a dashed circle. For this example, the numerator of the lower
bound would be zero. As we do not know how to find a general tighter bound
now, we leave it open for further research.

[Fig. 3 about here.]

We now attempt to compare the theoretical connectivities obtained by our
algorithm in Table 1 and random sampling to assess the superiority of the
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proposed algorithm. As random sampling is a completely random algorithm,
the selected sparse graph can be any one of the

(

m
t

)

candidate sparse graphs.
On a specific instantiation, the connectivity of the selected sparse graph can
be the connectivity of any candidate sparse graph. Therefore, no guarantee is
granted to choose a sparse graph with a high connectivity.

The expected connectivity of sparse graphs chosen by random sampling is
the average of connectivities for all these candidate graphs. It is difficult to
compare this quantity with Cm−t(G,Gs) defined in Theorem 2. However, we
can take a closer view of the performances of these two algorithms on two
extreme situations. In the first case, if t = 1 which means that sparse graphs
should only include one vertex, the sparse graph found by the proposed al-
gorithm would be exactly the optimal sparse graph. But, random sampling
will randomly pick a vertex from all m vertices, which is far from optimal. In
the other case, suppose t in Table 1 is equal to tmax, where tmax is the num-
ber of iterations after which there are no edges left in the remaining graph.
This is reminiscent of the natural vertex cover algorithm for the well-studied
minimum vertex cover problem [12–14,17]. Now the sparse graph Gs has the
property that every vertex outside of Gs has a common edge with some vertex
in Gs. This indicates that the manifold would hardly change when Gs is used
to replace the original full graph. However, with the random sampling method
to choose tmax vertices, we cannot guarantee this appealing property. All the
aforementioned analysis shows the advantage of the manifold-preserving graph
reduction algorithm over random sampling.

In the remainder of this paper, we mainly consider the use of the sparse graphs
for semi-supervised learning.

4 Sparse Laplacian SVMs

The method proposed here is based on Laplacian SVMs and regularization on
sparse graphs. As a result of manifold-preserving graph reduction, the outliers
and noisy examples in the training data tend to be eliminated, and our method
will be fast in predicting the labels of new examples. As a related but different
approach, the sparse Laplacian core vector machine [27] adopts the idea of
sparsity in the decision rule. It adopts an error-insensitive regularizer to catch
sparsity which can not screen out outliers and noisy examples.
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4.1 Formulation

Here we show how the idea of using sparse graphs is elegantly combined with
Laplacian SVMs to reach the sparse Laplacian SVMs.

By including a penalty term on the intrinsic manifold smoothness, Belkin et
al. [6] introduced the Laplacian SVMs which solve the following problem

min
f∈H

1

l

l
∑

i=1

(1 − yif(xi))+ + γA‖f‖
2 +

γI

(l + u)2
f>Lf, (8)

where H is the RKHS induced by a kernel, l and u are respectively the numbers
of labeled and unlabeled examples, (·)+ = max{0, ·} is the hinge loss, γA and
γI are respectively ambient and intrinsic regularization parameters, vector
f = [f(x1), . . . , f(xl+u)]

>, and L is the graph Laplacian.

For sparse Laplacian SVMs, we essentially have the following objective func-
tion

min
f,L

1

l

l
∑

i=1

(1 − yif(xi))+ + γA‖f‖
2 +

γI

‖L‖2
0

f>Lf + γ0‖L‖0, (9)

where ‖L‖0 is the zero-norm of Laplacian matrix L and is related to the
number of examples adopted for graph construction. For symmetric matrices
as considered in the current context, ‖L‖0 is equal to the number of rows or
columns whose entries are not all zeros. Regularization parameter γ0 controls
the importance of the sparsity, namely, the number of training examples used
to construct the graph.

As optimizing the above problem with the norm ‖ · ‖0 is NP-hard, we in-
stead adopt the manifold-preserving graph reduction algorithm to find a sparse
graph Gr whose Laplacian is Lr, and then perform optimization on this smaller
graph. An alternative, which we will not try in this paper, is to replace the
zero-norm of L in (9) by the one-norm which is known to lead to sparse solu-
tions. Therefore, the objective of the sparse Laplacian SVMs becomes

min
f∈H

1

l

l
∑

i=1

(1 − yif(xi))+ + γA‖f‖
2 + γIf

>Lrf, (10)

where we have replaced γI

‖Lr‖2
0

with γI . Since (10) seems quite similar to (8),

this form of sparse Laplacian SVMs can be regarded as an application of the
Laplacian SVMs to a certain set of unlabeled data. As labeled examples are
usually few in semi-supervised learning settings, we include all the labeled
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examples in the sparse graph. In particular, we first construct a sparse graph
based on the original graph from both labeled and unlabeled data, and then
add the labeled examples to the sparse graph if they were removed during the
graph reduction process. Suppose the size of the sparse graph is l + r with
0 ≤ r ≤ u. Then Gr includes l+r vertices and the size of Lr is (l+r)× (l+r).

4.2 Optimization

By the representer theorem, the solution to (10) can be represented as f(·) =
∑l+r

j=1 αjk(xj, ·), where k is the kernel function. The primal problem can be
rewritten as:

min
α,ξ

P0 =
1

l

l
∑

i=1

ξi + γAα>Kα + γIα
>KLrKα

s.t.











yi

(

∑l+r
j=1 αjk(xj, xi)

)

≥ 1 − ξi, i = 1, . . . , l

ξi ≥ 0, i = 1, . . . , l ,

(11)

where yi ∈ {−1, +1}, γA ≥ 0, γI ≥ 0, α = [α1, . . . , αl+r]
>, and K is the kernel

matrix.

The Lagrangian Lag(α, ξ,λ,ν) can be written as

Lag = P0 −
l
∑

i=1



λi



yi





l+r
∑

j=1

αjk(xj, xi)



− 1 + ξi



+ νiξi



 , (12)

where λ = [λ1, . . . , λl]
> � 0, ν = [ν1, . . . , νl]

> � 0.

To obtain the Lagrangian dual function, function Lag should be minimized
with respect to primal variables α, ξ. For this purpose, we compute the corre-
sponding partial derivatives and set them to 0, and thus obtain the following
equalities

2(γAK + γIKLrK)α =
l
∑

i=1

λiyiK(:, i), (13)

λi + νi =
1

l
, (14)

where K(:, i) denotes the ith column of K.
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The Lagrangian is simplified as

Lag = γAα>Kα + γIα
>KLrKα − α>

(

l
∑

i=1

λiyiK(:, i)

)

+
l
∑

i=1

λi

=−
1

2
α>

(

l
∑

i=1

λiyiK(:, i)

)

+
l
∑

i=1

λi. (15)

Denote γAK+γIKLrK by J ,
∑l

i=1 λiyiK(:, i) by Λ. By (13) we have 2Jα = Λ.
Thus α = 1

2
J−1Λ. Now we see that the inverse of J involves a matrix sized

(l + r) × (l + r) rather than the original (l + u) × (l + u). Therefore, sparse
Laplacian SVMs can deal with large-scale data sets.

Thus, the Lagrange dual function g(λ,ν) is

g = inf
α,ξ

Lag = −
1

4
Λ>J−1Λ +

l
∑

i=1

λi. (16)

Note that Λ = KlY λ with diagonal matrix Y = diag(y1, . . . , yl), and Kl =
K(:, 1 : l).

Define Ã = 1
2
Y K>

l J−1KlY and 1 = (1, . . . , 1(l))
>. The Lagrange dual opti-

mization problem can be formulated as

min
λ

1

2
λ>Ãλ − 1>λ

s.t. 0 � λ �
1

l
1. (17)

This convex optimization problem can be readily solved by standard software.
Then we get α = 1

2
J−1KlY λ.

5 Empirical Rademacher complexity

The margin bound on the generalization performance for kernel-based classes
developed in [21] (see Theorem 4.17 in page 102 with γ = 1) can be applied
directly to the class of functions induced by sparse Laplacian SVMs corre-
sponding to (10), which is literally slightly modified here as follows.

Theorem 3 Fix δ ∈ (0, 1) and let F be the class of functions induced by
sparse Laplacian SVMs mapping from X to R. Let S = {(x1, y1), · · · , (xl, yl)}
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be drawn independently according to a probability distribution D. Then with
probability at least 1 − δ over samples of size l, every f ∈ F satisfies

PD
(

y 6= sgn(f(x))
)

≤
1

l

l
∑

i=1

ξi + 2R̂l(F) + 3

√

ln(2/δ)

2l
,

where ξi = (1− yif(xi))+, and R̂l(F) is the empirical Rademacher complexity
of F

R̂l(F) = Eσ

[

sup
f∈F

∣

∣

∣

∣

∣

2

l

l
∑

i=1

σif(xi)

∥

∥

∥

∥

∥

x1, . . . , xl

]

,

where σ = {σ1, . . . , σl} are independent uniform {±1}-valued (Rademacher)
random variables [1].

For R̂l(F), we give the following Theorem 4. Note that this result also ap-
plies to the Laplacian SVMs with their corresponding labeled and unlabeled
training examples. The technique used to prove Theorem 4 is given in the fol-
lowing of this section, which is analogical to that adopted in [18] for analyzing
least-squares co-regularization.

Theorem 4 Suppose U2 = tr[Kl2(γAK + γIK
>
r LrrKr)

−1K>
l2 ] where Kl2 and

Kr are the first l and last r rows of K, respectively, and Lrr is the graph
Laplacian of the graph only including r unlabeled examples. The empirical
Rademacher complexity R̂l(F) is bounded as

√
2U
l

≤ R̂l(F) ≤ 2U
l
.

Suppose Q(f) is the objective function in (10). Plugging in the trivial predic-
tors f ≡ 0 gives minf∈H Q(f) ≤ Q(0) = 1.

We have

f>Lrf=
1

2

l+r
∑

i,j=1

Wij(f(xi) − f(xj))
2

≥
1

2

l+r
∑

i,j=l+1

Wij(f(xi) − f(xj))
2 = f>r Lrrfr

where fr = [f(xl+1), . . . , f(xl+r)]
>, and Lrr is the graph Laplacian of the sparse

graph including only the r unlabeled examples. Since all terms in Q(f) are
nonnegative, we conclude that any f ∗ minimizing Q(f) is contained in H̃ =
{f : γA‖f‖

2 + γIfr
>Lrrfr ≤ 1}.

Therefore, the complexity R̂l(F) is

R̂l(F) = Eσ

[

sup
f∈H

∣

∣

∣

2

l

l
∑

i=1

σif(xi)
∣

∣

∣ : f ∈ H̃

]

, (18)
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which can be bounded as shown in the following two subsections.

5.1 Supremum conversion

Since f ∈ H̃ implies −f ∈ H̃, we can drop the absolute sign in (18). Define L =
span{k(xi, ·)}

l+r
i=1 ∈ H. We know that the supremum in R̂l(F) is unchanged if

we restrict the domain of the supremum to f ∈ L ∩ H̃.

The class of functions L ∩ H̃ can be formulated as

L ∩ H̃= {fα : γAα>Kα + γIα
>K>

r LrrKrα ≤ 1}

= {fα : α>Nα ≤ 1}, (19)

where Kr = K(l + 1 : l + r, :) is the last r rows of K, and N = γAK +
γIK

>
r LrrKr. Now we can write R̂l(F) = 2

l
Eσ supα∈Rl+r{σ>Kl2α : α>Nα ≤

1} with Kl2 = K(1 : l, :) being the first l rows of K.

For a symmetric positive definite matrix Θ, it is simple to show that [18]

sup
α:α>Θα≤1

v>α = ‖Θ−1/2v‖.

Without loss of generality, suppose positive semi-definite matrix N is positive
definite. Thus, we can evaluate the supremum as described above to get

R̂l(F) =
2

l
Eσ‖N

−1/2K>
l2σ‖.

5.2 Bounding R̂l(F)

Lemma 2 (Kahane-Khintchine inequality [16]) For any vectors a1, · · · ,an

in a Hilbert space and independent Rademacher random variables σ1, · · · , σn,
the following holds

1

2
E‖

n
∑

i=1

σiai‖
2 ≤

(

E‖
n
∑

i=1

σiai‖

)2

≤ E‖
n
∑

i=1

σiai‖
2.

By Lemma 2 we have
√

2U
l

= 2U√
2l
≤ R̂l(F) ≤ 2U

l
where

U2 = Eσ‖N
−1/2K>

l2σ‖2

= tr
[

Kl2(γAK + γIK
>
r LrrKr)

−1K>
l2

]

, (20)
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from which we see that the roles of γA and γI are parallel, taking effect only
through the term γAK + γIK

>
r LrrKr. The proof of Theorem 4 is now com-

pleted.

5.3 Discussion

From Theorem 3 and Theorem 4, we can relate the quantity U to the general-
ization bound, and also characterize the potential impact of other quantities.
The expression of U shows that the two regularization terms in (10) related
to γA and γI play parallel roles in the generalization bound. Moreover, these
roles have different dependencies on matrices K and Lrr as reflected by (20).

In addition, U is a nonlinear function of K and Lrr. Although it can be hard to
determine the exact ranges of K and Lrr for which U would be monotonically
increasing or decreasing, the expression of U indeed raises the possibility of
motivating new models, e.g., using U as a regularization term in the objective
function. We does not investigate this issue further in this paper.

An open problem is concerned with the possibility of relating U to the con-
nectivity given in Definition 3. For instance, if high connectivities correspond
to low values of U , the rigorous theoretical justification of Definition 3 for
classification would be found in terms of generalization bounds.

5.4 Related work

There are some other theoretical works on graph-based semi-supervised learn-
ing in the literature. Here we briefly review these works to provide readers a
better understanding of this field.

Zhang and Ando [28] and Johnson and Zhang [11] gave a generalization bound
for graph-based transductive learning, which can be used to analyze the effect
of different kernels. Although different from our theoretical result, the com-
plexity term in their bound also relies on the trace of some related matrices.
Belkin et al. [3] derived a bound on the generalization error of transductive
learning using the notion of algorithmic stability, where the smallest nontriv-
ial eigenvalue of the smoothness matrix (e.g., the graph Laplacian) plays an
important role. This result indicates that a larger value of this eigenvalue can
lead to a lower error bound while the size of the graph is relatively unimpor-
tant. Johnson and Zhang [10] investigated the theoretical effect of Laplacian
normalization in multi-class transductive learning on graphs, which reveals the
limitations of the standard degree-based normalization method. They further
proposed a remedy to overcome the limitations. El-Yaniv and Pechyony [8]
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defined the transductive Rademacher complexity based on which they derived
a generalization bound for transductive learning. For specific algorithms, this
complexity can be bounded from the unlabeled-labeled data decomposition
which applies to many graph-based algorithms [8,9].

Some other related work from the perspective of reducing noise from graphs
include [4] and [5]. They used the Laplace-Beltrami operator to produce an
eigenfunction basis, and then conducted learning in the submanifold consti-
tuted by some leading eigenfunctions. This kind of noise reduction is imple-
mented in terms of dimension reduction, while we carry out noise reduction
by removing examples in this paper.

6 Experiments

In this section, we report experimental results of the sparse Laplacian SVMs
on four data sets. For graph adjacency construction, the k-nearest-neighbor
rule is used where k is set to 10. For graph weight computation on the first
two data sets, the Gaussian RBF (radial basis function) kernel is used

Wij =











exp(−‖xi−xj‖2

2σ2 ), xi, xj are neighbors,

0, otherwise .
(21)

On the other two data sets, the polynomial kernel is adopted

Wij =











(x>
i xj)

p, xi, xj are neighbors,

0, otherwise .
(22)

The kernels used for graph weight computation also serve as the kernel function
for the classifiers of sparse Laplacian SVMs. For the manifold-preserving graph
reduction algorithm, we fix the number of unlabeled examples retained in
sparse manifolds with a proportion from 0.1 to 1. The baseline method is
choosing at random the same number of unlabeled examples, since there are
no other methods proposed so far for manifold-preserving graph reduction.

For each data set, given the number of labeled examples we choose them at ran-
dom for 20 times, and report the averaged accuracies (for clarity, the standard
deviations are omitted as the manifold-preserving graph reduction algorithm
only gets slightly lower variances than the random sampling algorithms in our
experiments) on test sets. The regularization parameters in sparse Laplacian
SVMs are selected from the set {10−6, 10−4, 10−2, 1, 10, 100} by validation sets.
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For comparison, we also report the performance of supervised SVMs under the
same setting.

6.1 Noise-free synthetic data

[Fig. 4 about here.]

[Fig. 5 about here.]

This data set includes a training set of 200 examples (shown in Fig. 4(a)),
a validation set of 100 examples, and a test set of 100 examples. For graph
weight computation and sparse Laplacian SVMs, an RBF kernel with kernel
parameter σ = 0.35 is used following the setting in [6]. The number of labeled
examples in the training set is fixed as four (two from each class); the other
examples in the training set are treated as unlabeled. Note that in this paper
we use many more labeled examples in validation sets than in training sets,
since model selection with few labeled examples for semi-supervised learning
is still an open problem.

Fig. 5 shows the classification accuracies of sparse Laplacian SVMs with the
manifold-preserving graph reduction (MPGR) algorithm and random sam-
pling (Ran), and supervised SVMs. We see that the manifold-preserving graph
reduction algorithm outperforms the other algorithms, and as expected for
noise-free data more unlabeled examples retained in the graph would help.

We also perform another experiment different to that shown in Fig. 5, which
uses the validation set to choose the best proportions of unlabeled examples
retained where if two proportions hit the same accuracy the smaller propor-
tion would be chosen. The result shows that the average value of the best
proportions is 21.00% with an averaged test accuracy 99.65%.

6.2 Noisy synthetic data

[Fig. 6 about here.]

This data set differs to the noise-free data only in the addition of Gaussian
white noise (shown in Fig. 4(b)). The experimental result is given in Fig. 6
where the same experimental setting is adopted. We get a similar conclusion
with the noise-free data: basically the MPGR algorithm leads to the best
performance. We also get a new insight from Fig. 6: keeping as many unlabeled
examples in the noisy training set is not optimal. Our algorithm exhibits its
effectiveness on the removal of outliers and noisy points.
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Using the validation set to select the best proportions of unlabeled examples
retained in sparse graphs shows that the averaged best proportion is 33.00%
with a test accuracy 92.00%.

6.3 USPS data

Digits 3 and 8 from the USPS digital image data set are used. The training
set and validation set include 700 and 100 digits, respectively, with halves of
them being digit 3. The test set includes 424 digits of 3 and 308 digits of
8. Two examples from each class of the training set are randomly chosen as
labeled ones, and the other examples are regarded as unlabeled. The training,
validation and test sets are randomly selected for each of the 20 runs.

[Fig. 7 about here.]

For graph weight computation and sparse Laplacian SVMs, we use a poly-
nomial kernel with degree p = 3 as in [6] for digit recognition. The classifi-
cation results of different algorithms are given in Fig. 7, which indicates the
superiority of our graph reduction algorithm. In addition, the averaged test
accuracy provided by the best proportions of unlabeled examples is 93.83%
which corresponds to the averaged proportion of 36.50%. The advantage of
semi-supervised learning using partial unlabeled data is again justified.

6.4 MNIST data

Here a larger data set is used to evaluate algorithms, which includes digits 3
and 8 randomly selected from the MNIST digital image data. The training
set and validation sets include 1900 and 100 digits, respectively, where digits
3 and 8 have an equal proportion. The test set consists of 1984 digits with
1010 of them being digit 3. The experimental setting including the number
of labeled training examples and kernel functions is identical to that for the
USPS data.

[Fig. 8 about here.]

Fig. 8 shows the classification accuracies of different algorithms. Clearly, MPGR
gives the best performance, which outperforms the other methods greatly espe-
cially when the number of retained unlabeled examples is small. Experiments
also show that the averaged best proportion of unlabeled examples retained
is 28.00%, which corresponds to the averaged test accuracy 91.00%.
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7 Conclusion

In this paper, we proposed manifold-preserving sparse graphs and a simple
and efficient graph reduction algorithm to construct the sparse graphs. Ap-
plying them to Laplacian SVMs, we further proposed sparse Laplacian SVMs
for semi-supervised learning. The main theoretical contributions of this paper
are: presenting a theorem on the expected connectivity of a randomly picked
point outside of a sparse graph to the sparse graph; bounding the approxi-
mation ratio of the proposed graph reduction algorithm; giving the empirical
Rademacher complexity of the function class induced by the sparse Laplacian
SVMs.

Experimental results on multiple data sets have shown that the sparse Lapla-
cian SVMs using the manifold-preserving sparse graphs outperform those
based on random sampling, and get a good sparsity level (a large portion
of the examples can be removed without sacrificing the accuracy much). Es-
pecially when training data include outliers and noisy examples, the manifold-
preserving graph reduction algorithm can effectively remove them and even
improve performance.

A general trend from the graphs in experiments is that the classification accu-
racy often first increases and then decreases as the proportion of unlabeled ex-
amples retained increases. We conjecture that this is due to the fact that when
a small number of unlabeled examples are retained, the manifold structures
can be well approximated, and when a large number of them are kept, there
would be a large possibility that examples from different categories gather and
overlap and thus the manifold structures are damaged. These examples lead-
ing to a bad manifold representation act like outliers and noisy examples to
some extent. Our proposed manifold-preserving graph reduction algorithm has
the capability to select partial data that are important to represent manifold
structures and thus obtain good classification performance.

Application of the manifold-preserving sparse graphs to other learning con-
texts would be interesting future work. For example, by manually labeling the
unlabeled examples retained in sparse graphs, it is likely to get a promising
active learning method.
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Fig. 1. Points retained in sparse manifolds with different methods.
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Fig. 2. Points retained in sparse manifolds with different methods.
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Fig. 3. A graph and its sparse graph with four nodes.
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Fig. 4. Training examples of the synthetic data sets.
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Fig. 5. Classification performance of different algorithms on the noise-free data.
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Fig. 6. Classification performance of different algorithms on the noisy data.
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Fig. 7. Classification performance of different algorithms on the USPS data.
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Fig. 8. Classification performance of different algorithms on the MNIST data.
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Table 1
Manifold-Preserving Graph Reduction Algorithm

Input: Graph G(V, E, W ) with m vertices;

t for the number of the vertices in the desired sparse graph Gs.
1: for j = 1, . . . , t

2: compute degree d(i) (i = 1, . . . , m − j + 1)

3: pick one vertex v with the maximum degree

4: remove v and associated edges from G; add v to Gs

5: end for
Output: Manifold-preserving sparse graph Gs with t vertices.
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