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Abstract. Multi-label learning is an important machine learning task.
In multi-label classification tasks, the label space is larger than the tradi-
tional single-label classification, and annotations of multi-label instances
are typically more time-consuming or expensive to obtain. Thus, it is
necessary to take advantage of active learning to solve this problem.
In this paper, we present three active learning methods with the con-
ditional Bernoulli mixture (CBM) model for multi-label classification.
The first two methods utilize the least confidence and approximated en-
tropy as the selection criteria to pick the most informative instances,
respectively. Particularly, an efficient approximated calculation via dy-
namic programming is developed to compute the approximated entropy.
The third method is based on the cluster information from the CBM,
which implicitly takes the advantage of the label correlations. Finally,
we demonstrate the effectiveness of the proposed methods through ex-
periments on both synthetic and real-world datasets.

Keywords: Active Learning ·Multi-label Classification ·Machine Learn-
ing.

1 Introduction

Multi-label classification is an important machine learning task and has been
used in many aspects of the applications. For many real-world data, one object
can be assigned into multiple categories, and the category number of the object
is not fixed. This kind of problem is often called multi-label classification. For
example, in educational text categorization, the educational news could cover
several topics such as preschool, primary school, high school and university. In
music information retrieval, a piece of symphony could convey various message
such as blue, jazz and classical music. Formally, let X denote the instance space
and Y = {y1, y2, . . . , yl} denote the label space, the task of multi-label learning
is to learn a function h : X → P(Y) from the training set D = {(xi,yi)},
where the power set P(Y) is the set of all subsets of Y, including the empty
set ∅ and Y itself. Early multi-label learning mainly focuses on the problem of
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multi-label text categorization [1–3]. During the past decade, multi-label learning
has gradually attracted significant attentions from machine learning and related
communities, and has been widely applied to diverse problems such as image
automatic annotation [4], web mining [5], tag recommendation [6, 7] etc.

Early researchers on multi-label classification attempt to tackle the task as
some well-established learning scenarios. The binary relevance (BR) method de-
composes the multi-label learning problem into several independent binary clas-
sification problems, where each binary classification problem corresponds to a
possible label in the label space [4, 8, 9]. One advantage of the BR method is
that the algorithm is easy to implement. The disadvantage is that it ignores the
dependence among labels so that the individual label predictions can often be
conflicting. For example, in image tagging tasks, an image may be tagged as a
cat but not an animal when using the BR method. For dealing with this problem,
the power set (PS) method treats each label subset as a class and trains it as
a multi-class learning problem [10]. As a consequence, it would be restricted to
predicting the label subsets only seen in the training set, and would not predict
the labels unseen. Another disadvantage is that the method is often infeasible
for the exponential number of labels sets. Recently, the conditional Bernoulli
mixtures (CBM) [11] was proposed to be a state-of-the-art multi-label learning
method. It is a probabilistic model, which can construct dependencies between
labels appropriately.

Given a powerful multi-label learning method, another key point to obtain
good performance is to have enough training data or necessary training data. In
supervised learning, labeling data is inevitable and tedious. Especially for multi-
label learning, the labeling process is much more expensive and time-consuming
than single-label problems. Specifically, in the single-label cases, a human an-
notator only needs to identify a single category to complete labeling, whereas
in the multi-label cases, the annotator must consider all the possible labels for
each instance, even if the resulting labels are sparse. Thus, if we cannot access
the labeled data as many as possible, we can choose the instances to label as
necessary as possible. Active learning is to make appropriate instance selection
strategies, which aims to choose the most informative instances to obtain the
best classification performance. Our work focuses on developing effective active
learning methods based on the CBM for solving multi-label learning problems.

There is some existing work on active learning. For example, Gaussian pro-
cess with manifold-preserving graph reduction (MPGR)-based active leaning
(GPMAL) and support vector machine (SVM)-based margin sampling active
learning (SVMMAL) are two kinds of active learning methods for binary clas-
sification, which provide two kinds of basic guidelines for further research [12].
The GPMAL first applies the MPGR to select a subset and then employs the
prediction mean and prediction variance of GP to reselect the most informative
instances from the subset. The SVMMAL selects the instances according to the
distances from the points to the classification boundary. Besides binary classifi-
cation active learning methods, some multi-label active learning methods were
also developed. Bin-Min [13] was proposed to use the one-versus-all strategy for
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multi-label classification with SVM as the base classifier and select the most un-
certain instances from the unlabeled set. The mean max loss (MML) or 1DAL
strategy [14] selected the instances which had the maximum mean loss value
over the predicted classes. In this method, one SVM was trained for each label,
and a threshold cutting method was used to decide the target labels. The overall
loss value was averaged over the labels. This strategy selected instances only
according to the sample correlations, and it did not take advantage of the label
correlations. 2DAL [15] considered both relationships between samples and be-
tween labels, in which sample-label pairs are chosen to minimize the multi-label
Bayesian error bound. More recently, some multi-label active learning methods
based on label ranking models were also developed [16–18].

Despite the excellent performance of active learning algorithms, there are
still some shortcomings that we should not omit. For example, in the process of
active selection, we usually take all the unlabeled instances into account without
considering the structural information and spatial diversity among them. This
will lead to a result that in the same area there are more than one point to
be selected, and thus it is possible to produce redundancy which can decrease
the classification accuracy. This phenomenon is also called sampling bias. We
will develop effective active learning methods based on CBM with additional
sampling bias correction procedure. In addition, In order to avoid the influence
of noisy points and simultaneously consider the space connectivity among in-
stances, we introduce a method called cluster-based entropy (CBE) based on
CBM. By using CBM, we can construct several clusters which can represent
the global distribution structure using fewer instances. This can eliminate the
influence of noisy points and promote the selection quality.

In this paper, we propose three principled multi-label active learning meth-
ods based on the CBM. The first two multi-label active learning strategies are
based on the least confidence and approximated entropy, respectively. The third
strategy is made according to the CBE. We evaluate our methods on both the
synthetic data and real-world data. The promising experimental results demon-
strate the effectiveness of the proposed multi-label active learning methods, and
the detailed performance difference among the three proposed methods are also
analyzed to give guidance for later researchers.

2 Bernoulli Mixtures and Conditional Bernoulli Mixtures

Bernoulli Mixtures (BM) is a classical model for multi-dimensional binary vari-
able density estimation, where the learnability is realized by assuming inde-
pendence of variables within each mixture component. Thus, each component
density is simply a product of Bernoulli densities, and the overall model has the
form

p(y) =

K∑
k=1

πk

L∏
l=1

Bern(yl;µlk), (1)
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where µlk represents the parameters of the lth Bernoulli distribution in the kth
component. BM provides an effective approach to model the dependency among
different binary variables but with the formulation that is easy to compute.

For multi-label learning, the analysis in [19] depicts that labels could be con-
ditionally independent given input features. With this assumption, conditional
Bernoulli mixtures (CBM) [11] extends the BM with both mixture coefficients
and Bernoulli distributions conditional on x. The distribution of the labels con-
ditional on the input is expressed as

p(y|x) =

K∑
k=1

πk(x;αk)

L∏
l=1

Bern(yl|x;βkl), (2)

where αk represents the parameters of function πk(·), and βkl represents the
parameters of the lth Bernoulli distribution in the kth component.

The structure of CBM is similar to mixture of experts (ME) [20], where
a gate function divides the input space into disjoint regions probabilistically,
and an expert model generates the output for their region. We can view CBM
as a multi-label extension of mixture of experts with a particular factorization
of labels inside each expert. Thus, CBM tackles the multi-label problem as a
multi-class problem and several binary problems. The categorical distribution
πk(x;αk) also called gating function assigns each instance x to the kth com-
ponent with probability πk(x;αk), which divides the input space into several
regions such that each region only contains conditional independent labels. The
gating function πk(x;αk) can be instantiated by any multi-class classifier which
provides probabilistic estimate, such as multinomial logistic regression, and the
label prediction function Bern(yl|x) can be instantiated by any binary classifier
with probabilistic outputs.

In addition, the prediction of CBM is a notable problem, as making the op-
timal prediction in terms of subset accuracy requires finding the most probable
label subset y∗ = arg maxy p(y|x). There are 2L label subset candidates, and
it is intractable to evaluate the probability for each of them. Many multi-label
methods suffer from this intractability for exact inference. CBM [11] uses the
ancestor sampling strategy for the prediction, where the component index k ac-
cording to the mixture coefficient πk(x;αk) is first sampled, and then each label
yl is independently sampled with probability Bern(yl|x;βkl). The procedure can
be repeated multiple times to generate a set of y candidates, from which we pick
the most frequent one. Sampling is easy to implement, but does not guarantee
that the predicted y is the global optimal.

3 Methods

3.1 Learning Framework

In order to select queries, an active learner must have a way of assessing how
informative each instance is. Let x∗ be the most informative instance according
to some query strategy φ(x), which is a function used to evaluate each instance
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x in the unlabeled pool U . Moreover, let X = Rd denote the d-dimensional
instance space and Y = {y1 . . . yl} denote the label space, the task of multi-label
learning is to learn a function h : X → P(Y), where the power set P(Y) is the
set of all subsets of Y including the empty set and Y itself.

In many real-world learning problems, lots of unlabeled data are collected
at once, and we assume that there is a small set of labeled data L and a large
pool of unlabeled data U . We query a batch of data from unlabeled pool and
add them to the labeled set. The overall active learning procedure is described
in Algorithm 1.

Algorithm 1 Pool-based active learning.

Input: Labeled set L, unlabeled set U , batch size B and informative function φ(x)
1: repeat
2: Train classifier C with labeled set L.
3: for b = 1 . . . B do
4: Query the most informative instance xb

∗ = arg maxx∈U φ(x).
5: Labeled set L = L ∪ (xb

∗,y∗b ).
6: Unlabeled set U = U \ xb

∗.
7: end for
8: until Enough instances are queried

3.2 Selection Criteria

In this section, we will introduce three criteria to select a bunch of informative
instances, in which the instance uncertainty or label dependence are considered.

Maximize Least Confidence (LC) For problems with multiple labels, an
intuitive selection strategy is to query the instance whose prediction has the
least confident:

φLC(x) = 1− arg max
y∈P(Y)

p(y|x). (3)

This approach queries the instance for which the current model has the least
confidence in its most likely label. However, this criterion only considers infor-
mation about the most probable label and throws away information about the
rest of labels.

Maximize Approximate Entropy (AE) Another uncertainty-based measure
of informativeness is entropy [21]. For a discrete random variable X, the entropy
is given by

H(X) = −
∑
X

p(X) ln p(X). (4)

In active learning, we wish to employ the entropy of our model’s prediction
distribution over its labels. Thus, we have

φE(x) = −
∑

y∈P(Y)

p(y|x) ln p(y|x). (5)
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However, the number of possible labels grows exponentially with the element
number of Y. Empirically, only a few labels contribute to the entropy, and the
probabilities for the rest of labels are almost zero which can be ignored. Note
that limp→0 p ln p = 0, and we shall take p(y|x) ln p(y|x) = 0. Thus, we have the
form of approximate entropy as

φAE(x) = −
∑

y∈N (Y)
p(y|x) ln p(y|x) ≤ φE(x), (6)

where N (Y) = {y1, . . . ,yN} is the set of the N most possible labels in the
power set. It is worth noting that the number N here is not a fixed number,
which indicates a threshold making sure that the sum of probabilities in most
possible labels

∑N
i=1 p(yi|x) is very close to 1. In addition, φAE(x) is the lower

bound of φE(x), and it will become a tighter bound as
∑N

i=1 p(yi|x) is closer
to 1. Inspired by the dynamic programming prediction method in CBM [11],
we present an algorithm for finding the labels with higher probabilities, and
calculate the approximate entropy to measure the uncertainty.

To calculate the approximate entropy for p(y|x), we need to find the labels
with higher probability p(y|x). There must exist a component k for which the

component probability
∏L

l=1Bern(yl;µk) is high. Thus, we can drop those la-
bels with lower probabilities in each component. We iterate on finding the next
label y with the highest probability and add it to the label set until the reset
subset candidates will never produce a high probability. The overall procedure
is described in Algorithm 2.

Maximize Cluster-Based Entropy (CBE) The two strategies mentioned
above only consider the instance uncertainty and do not take advantages of the
label correlations. Taking advantages of the simplicity of CBM, we can implic-
itly capture label correlations rather than directly model such correlations. The
labels for the data point x whose mixing coefficients in some components ac-
count for a particular proportion often contain correlations. We can verify it by
computing the following covariance matrix.

Cov[y|x] =

K∑
k=1

πk[Σk + µkµk
>]− E[y|x]E[y|x]>

=

K∑
k=1

πkΣk +

K∑
k=1

πk(1− πk)µkµk
> −

∑
i<j

πiπjµiµj
>, (7)

where E[y|x] =
∑K

k=1 πkµk,Σk = diag{µlk(1−µlk)}. Because Σk is a diagonal
matrix, the non-diagonal elements come from the rest part in Equation (7). Those
data points only belonging to a single component can be considered as having
no dependent labels. Accordingly, we can calculate the entropy of probabilistic
gating functions to model such correlations. In order to take account of both least
confidence and label correlation and avoid introducing new parameters, we start
with the points with highest entropy of πk(x) from each clusters, respectively.
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Algorithm 2 Approximate Entropy Calculation by Dynamic Programming

Input: Trained CBM model C and corresponding parameters π,µ.
1: Initialize candidate component set S = {1, 2, . . . ,K}, label setN (Y) and maximum

marginal probability M
2: for k = 1, 2, . . . ,K do
3: Initialize the maximum component probability Gk.
4: end for
5: while S 6= ∅ do
6: for k ∈ S do
7: Find the next highest probability label y unseen in N (Y) in component k.
8: Add label y and corresponding p(y|x) to the label set N (Y).
9: Let p =

∑K
m=1 πm

∏L
l=1Bern(yl;µm) and q =

∏L
l=1Bern(yl;µk).

10: if p > M then
11: Set M = p.
12: end if
13: if πkq ≤M/K or πkq +

∑
m 6=k πmGm ≤M then

14: Remove k from S.
15: end if
16: end for
17: end while
18: Calculate the approximate entropy φ = −

∑
y∈N (Y) p(y|x) ln p(y|x)

Output: The approximate entropy φ.

Then, we reselect the least confident points from each cluster and add those to
the labeled set. This method also considers the cluster information and prevents
the selected data point far away from the underlying distribution.

3.3 Sampling Bias Correction

In the analysis of [22], the labeled points are always not the representatives of
the underlying distribution, because in the setting of active learning, querying
the unlabeled point closest to the boundary (or most uncertain, or most likely
to decrease overall uncertainty) is very easy to be far away from the underlying
distribution due to the presence of noise.

Sampling bias is also one of the most fundamental challenge posed by active
learning. LC and AE methods are unable to handle such problem. In this paper,
we present a random heuristic method to solve it. Specifically, we equivalently
divide the instances in the unlabeled set up into several clusters, and select the
most uncertain instance from each cluster and add them to the labeled set. With
the benefit of CBM, CBE method inherently contains clustering information and
prevents the selected data point far away from the underlying distribution.

4 Experiments

In this section, we present the evaluation on a synthetic dataset and a real-world
dataset. We compared the following approaches in our experiments:
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– Random, the baseline using random selection strategy.
– LC, the active learning method based on the strategy of maximizing least

confidence.
– AE, the active learning method based on the strategy of maximizing ap-

proximate entropy.
– CBE, the active learning method based on the strategy of maximizing

cluster-based entropy.

4.1 Experimental setting

In our experiments, we split the training set and testing set once, randomly
select some labeled data point from the training set and let the rest of it become
the unlabeled set. We proceed to randomly select the labeled set as the starting
training size for ten times and record the average result. CBM is used to train
a multi-label classifier for all the comparing active learning methods, in which
the gating function πk(z|x;αk) is instantiated by multinomial logistic regression
and Bern(yl|x, z;βk) is instantiated by logistic regression. We set the number
of components to K = 30 and the variance of Gaussian prior to σ = 10. As a
baseline, the method of random selection is performed. The real-world dataset
used in our experiments is available from the Mulan1.

We use two metrics to measure the performance of our methods, hamming
loss and F1 score. The definitions are as follows.

– Hamming loss:

1

NL

N∑
n=1

L∑
l=1

XOR(ynl,ynl
∗),

where XOR is exclusive (or exclusive disjunction) operation that outputs
true only when inputs differ. In practice we substitute true value for one.
Hamming loss evaluates the fraction of misclassified instance-label pairs, i.e.
a relevant label is missed or an irrelevant is predicted.

– F1 Score:

F1 = 2× precision× recall
precision+ recall

.

The F1 score can be interpreted as a weighted average of the precision and
recall, where an F1 score reaches its best value at 1 and worst score at 0. In
our experimental settings, we use micro-F1 metric, which counts the total
true positives, false negatives and false positives for each label.

4.2 Datasets and Results

Synthetic Dataset We first consider a simple synthetic dataset with a two-
dimensional input x = (x1, x2) which are sampled from a mixture of Gaussian
distributions with two components. The mean of the two Gaussian distributions

1 http://mulan.sourceforge.net/datasets-mlc.html
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Fig. 1. The distribution of the synthetic 500 instances, where the two labels are ren-
dered with different colors and markers, and the data are linear separable with two
linear decision boundaries (x1 = 0 and x2 =

√
3x1).
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Fig. 2. The average results over 10 runs regarding hamming loss and F1 score on the
synthetic dataset.

lies in the second quadrant and the fourth quadrant, respectively. The two labels
y1, y2 are as follows. The first label is set to one for positive values of x1, and
to zero for negative values, i.e., y1 = [x1 > 0]. The second label is defined in the
same way, but the decision boundary (x1 = 0) is rotated by an angle α = π/3.
The two decision boundaries partition the input space into four regions. It is
a two-label classification problem on this dataset. We generate 500 example
from the mixture of Gaussian distributions, and we use 250 examples as the
training set, 250 examples as the test set. Figure 1 depicts the distribution of
the generated data. In the beginning, we randomly select five examples as the
labeled set and the rest of examples as the unlabeled set. Figure 2 shows the
average results over ten runs regarding F1 score and hamming loss. Table 1 and
Table 2 compares the performance on F1 score and hamming loss after selecting
10 unlabeled instances each time, showing the mean and standard deviation
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Table 1. Performance in terms of F1 score on the synthetic dataset.

# of selected instances CBE AE LC RND

20 93.49± 2.33 95.37± 1.83 94.99± 1.2 92.79± 1.56
30 97.33± 1.77 96.49± 1.85 96.44± 1.8 93.33± 1.61
40 97.72± 0.85 97.53± 0.94 97.17± 1.41 94.91± 1.89
50 98.01± 0.34 97.67± 0.46 97.37± 1.53 95.81± 1.64
60 97.96± 0.18 97.68± 0.61 97.51± 1.09 96.33± 1.95
70 97.93± 0.18 97.93± 0.82 97.85± 0.95 96.57± 1.58

Table 2. Performance in terms of hamming loss on the synthetic dataset.

# of selected instances CBE AE LC RND

20 4.62± 1.59 3.32± 0.94 3.72± 1.22 5.34± 1.68
30 1.68± 1.09 2.34± 1.26 2.52± 1.25 4.60± 1.51
40 1.34± 0.44 1.58± 0.62 1.84± 0.90 3.52± 1.14
50 1.14± 0.23 1.38± 0.26 1.62± 1.02 2.76± 0.99
60 1.10± 0.17 1.36± 0.51 1.54± 0.78 2.32± 1.13
70 1.10± 0.14 1.22± 0.61 1.42± 0.59 2.30± 0.91

of ten-time experiments. The proposed CBE strategy outperforms the other
strategies on the whole.

According to Figure 2, we find that CBE obtains slight improvement while
the other two methods make a big step at the first selection. It is because that at
the beginning the classifier with inadequate data cannot capture the label corre-
lations. CBM overtakes other methods and demonstrates its superiority after the
second selection. According to Table 1 and Table 2, it is worthwhile to mention
that AE and CBE are more stable than LC, which have lower standard devia-
tion. This is attributed to the integrated consideration of all label combinations
in AE and the additional cluster information in CBE.

Scene Dataset We also consider the real-world dataset for evaluation. SCENE
is an multi-label image dataset which has 6 labels (beach, sunset, fall foliage,
field, mountain, urban). The features are extracted after conversion from raw
images to LUV space and are divided into 49 blocks using a 7 × 7 grid. We
compute the first and second moments (mean and variance) of each band, cor-
responding to a low-resolution image and computationally inexpensive texture
features, respectively. The result is a 49×2×3 = 294-dimensional feature vector
per image. We use the default training/test split set for the dataset. In the begin-
ning, we randomly select 80 examples as the labeled set and the rest of examples
as the unlabeled set. The experiments are repeated for 10 times and the average
results are reported in Figure 3. The classifier achieves high performance with
much fewer iterations by our proposed active learning approach. Table 3 and
Table 4 compares the performance on F1 score and Hamming loss after selecting
20 unlabeled instances each time. Seen from the over trends of the curve, the
proposed cluster-based entropy strategy outperforms the other strategies.

According to the Figure 3, we find that CBE obtains slight improvement at
the start again and overtakes other methods after more iterations and CBE is
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Fig. 3. The average results over 10 runs regarding hamming loss and F1 score on the
SCENE dataset.

Table 3. Performance in terms of F1 score on the SCENE dataset.

# of selected instances CBE AE LC RND

70 60.64± 3.84 58.58± 4.08 59.94± 3.14 59.69± 4.05
90 63.02± 2.72 60.28± 3.52 62.27± 3.76 60.98± 2.66
110 64.12± 2.10 62.48± 1.89 62.86± 4.24 61.20± 1.81
130 65.66± 2.20 63.25± 2.21 63.33± 3.24 62.85± 1.74
150 65.51± 1.38 63.65± 1.63 63.47± 3.24 62.55± 2.48
170 65.67± 2.03 63.79± 2.44 64.18± 2.35 63.71± 2.60
190 65.70± 2.74 64.21± 3.19 64.11± 1.22 63.82± 2.57
210 66.37± 1.50 65.16± 2.57 65.02± 1.52 63.84± 2.27
230 67.60± 0.81 65.77± 1.50 66.03± 1.76 64.63± 2.89
250 67.36± 1.75 65.67± 2.72 66.72± 1.39 64.84± 2.41
270 67.75± 2.38 66.89± 2.18 67.10± 1.09 65.13± 1.95
290 67.66± 2.36 66.96± 1.53 66.80± 1.28 65.02± 2.93

the most efficient method among them. Being different from the one in synthetic
dataset, the report in scene dataset shows that LC is more effective than AE
and encounter some difficulties at the beginning. It is because the entropy can
be inaccurate when the label space is very large and the classifier is not well
developed. In general, the CBE is the most effective and stable method among
the three methods.

4.3 Discussion

From the above two experiments, we observe that the proposed CBE strategy
has a slight improvement at the beginning compared to other two methods but
has a more significant improvement after several iterations. This phenomenon
can be attributed to the fact that at the beginning the classifier with inadequate
data cannot capture the label correlations. After several iterations, the classifier
has constructed label dependence to a certain extent and is more likely to select
such informative instances that contain more than one label. Therefore, it is
reasonable to employ the least confidence or the entropy strategy at the start
and shift to the cluster-based entropy strategy when the classifier has captured
label dependence. The combining method may boost the performance, and the
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Table 4. Performance in terms of hamming loss on the SCENE dataset.

# of selected instances CBE AE LC RND

70 14.09± 1.19 14.74± 1.31 14.25± 1.03 14.48± 1.41
90 13.37± 0.80 14.06± 1.26 13.60± 1.19 13.99± 0.94
110 13.02± 0.84 13.32± 0.69 13.20± 1.37 13.84± 0.74
130 12.49± 0.76 13.07± 0.68 13.10± 1.02 13.37± 0.69
150 12.38± 0.35 12.82± 0.55 12.97± 1.01 13.39± 0.90
170 12.22± 0.57 12.78± 0.77 12.67± 0.76 13.12± 0.65
190 12.31± 0.76 12.59± 1.10 12.63± 0.44 12.96± 0.66
210 12.04± 0.36 12.32± 0.81 12.52± 0.60 12.80± 0.66
230 11.68± 0.30 12.11± 0.47 12.20± 0.61 12.63± 0.85
250 11.69± 0.53 12.10± 0.97 11.74± 0.49 12.52± 0.66
270 11.54± 0.77 11.65± 0.73 12.06± 0.54 12.35± 0.57
290 11.58± 0.75 11.64± 0.55 11.86± 0.63 12.39± 0.88

conjecture also need more experiments to verify. Besides, it also needs a strategy
to find the appropriate time to shift. Finally, for most cases, we observe that
CBE is comparable to AE and LC, which means that the performance of CBE
is more stable.

5 Conclusion and Future Work

In this paper, we present three active learning algorithms for multi-label classifi-
cation with CBM. It utilizes least confidence, approximated entropy and cluster-
based entropy as the uncertainty measure to pick the most informative data
points. Experimental results on synthetic and real-world datasets show that our
methods outperform random selection. In the future, we plan to perform theo-
retical analysis on the methods and extend our work to multiview multi-label
active learning [23–25].
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