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Abstract
Gaussian Processes (GPs) are powerful tools for
machine learning which have been applied to both
classification and regression. The mixture mod-
els of GPs were later proposed to further improve
GPs for data modeling. However, these mod-
els are formulated for regression problems. In
this work, we propose a new Mixture of Gaus-
sian Processes for Classification (MGPC). Instead
of the Gaussian likelihood for regression, MGPC
employs the logistic function as likelihood to ob-
tain the class probabilities, which is suitable for
classification problems. The posterior distribution
of latent variables is approximated through vari-
ational inference. The hyperparameters are opti-
mized through the variational EM method and a
greedy algorithm. Experiments are performed on
multiple real-world datasets which show improve-
ments over five widely used methods on predic-
tive performance. The results also indicate that for
classification MGPC is significantly better than the
regression model with mixtures of GPs, different
from the existing consensus that their single model
counterparts are comparable.

1 Introduction
Gaussian Processes (GPs) specify a collection of latent
random variables f which have a joint Gaussian distribu-
tion [Rasmussen and Williams, 2006]. GP is a powerful tool
for probability modeling in machine learning and has been
applied to both classification and regression problems with
different kinds of likelihood p(y|f) where variables y are out-
puts. Gaussian likelihood is the typical choice for regression
models, which leads to convenience in derivation. Logistic
and probit functions are commonly used in GP classification
models where inferences are not in closed form. In general,
both GP regression and classification models are discrimina-
tive models, i.e., only the conditional distribution p(f |X) is
formulated.

GP-based mixture models have been proposed for over-
coming the limitations of single GP models: First, GP is
incapable of handling multi-modality in data. Second, the
computational complexity for calculating the inverse kernel

matrix is O(N3) with N being the number of training points.
Tresp [2001] proposed the mixture of GP regression mod-
els with finite mixture components. Rasmussen and Ghahra-
mani [2002] introduced a Dirichlet Process (DP) based gating
network and extended the mixture of GPs to accommodate an
infinite number of components. The first limitation is over-
come by incorporating multiple GPs. The cubic computa-
tional complexity is resolved through replacing the inversion
of a large kernel matrix by inversions of multiple small matri-
ces. For each component, only a subset of training set is used
for calculating the kernel matrix, which leads to lower com-
putational complexity. In Meeds and Osindero [2006], inputs
are assumed to be Gaussian distributed. The distribution of
inputs is involved in gating network for effective estimations
of mixture weights. This modification adapts previous dis-
criminative models to generative ones. Markov Chain Monte
Carlo (MCMC) methods are adopted for approximate poste-
rior inference in the above work. However, MCMC methods
demand expensive time for both training and prediction. The
convergence of these methods is also difficult to identify.

Variational inference is a deterministic approximate tech-
nique which is a commonly used alternative for MCMC meth-
ods [Bishop, 2006]. The idea of variational inference is
approximating intractable true posterior distribution p(z|X)
with a variational distribution q(z) by minimizing the KL di-
vergence between q(z) and p(z|X). It presents an analytical
formulation of approximate posterior distribution, which sim-
plifies the integrals in model training and prediction.

A finite mixture model of GP experts which employs vari-
ational inference has been proposed in [Yuan and Neubauer,
2009]. Recently, Sun and Xu [2011] proposed a new varia-
tional approximation algorithm for the infinite mixture model
of GPs and applied it to traffic prediction problems. In the
above work, the variational distribution of latent variables
is assumed to have a fully factorized form, i.e., latent vari-
ables are independent of each other. Thus, the expecta-
tions taken with respect to q(z) are decoupled, which sim-
plifies calculations greatly. Following this assumption, the
technique is known as mean field variational inference. Al-
though with simple posterior assumptions, mean field varia-
tional inference is a good choice for approximate posterior
inference [Blei et al., 2016] and commonly used in recent
work [Gal et al., 2015; Hensman et al., 2015].

All of the previous work about mixtures of GPs only fo-



cuses on regression problems, i.e., the Gaussian likelihood is
employed. Inspired by the GP classification model and mix-
tures of GPs, we propose a generative Mixture of Gaussian
Processes for Classification (MGPC) which extends mixtures
of GP regression models to a classification model. Similar
with Sun and Xu [2011], a linear GP model is employed.
The linear GP model is equivalent to GPs and breaks the
dependencies among outputs. This property enables mean
field variational inference for mixtures of GPs feasible. We
validate our model on multiple binary classification datasets.
Because binary classification problems can be regard as re-
stricted regression problems whose outputs only take values
in {−1,+1}. The mentioned regression models, including
the GP regression model and mixture model of GPs, are also
amenable for classification. The signs of outputs of such
models are used for making predictions. The experiments are
performed with both classification and regression models for
comprehensive comparisons.

The rest of this paper is organized as follows. Section 2 in-
troduces our model with a brief overview of necessary back-
ground. Then, Section 3 gives the details of variational infer-
ence and optimization algorithms. In Section 4, we present
classification performances on real-world datasets and pro-
vide interesting discussions. Finally, we give conclusion in
Section 5.

2 The Proposed Model
The GP jointly models outputs as a multivariate Gaussian dis-
tribution. The linear GP model is an equivalent parametric
representation to the GP, which introduces an intermediate
variable for breaking the dependencies among outputs. The
conditional independencies not only facilitate derivations of
variational inference but also simplify the predictive distribu-
tion, which we will show in Section 3. In this section, we first
introduce the GP and linear GP model with their equivalence.
Then we give a brief introduction about the stick-breaking
construction of DPs. Finally, we show the graphical repre-
sentation and details of our model.

2.1 Gaussian Processes
A noise-free GP f is specified as

f ∼ GP(0, κ(·, ·)) (1)

where κ(·, ·) is the kernel function (a.k.a., covariance func-
tion). For inputs X = {xn}Nn=1, the joint distribution of out-
puts is given by a multivariate Gaussian distribution,

p(f |X) = N (0,Kxx) (2)

where Kxx is the N × N kernel matrix obtained by κ(·, ·).
We can see that the dependencies among f are specified by
Kxx implicitly.

Now we introduce the intermediate variable w to formulate
the linear GP model. Variable w is Gaussian distributed as
N (0,K−1

xx ). The linear GP model is specified by a univariate
Gaussian distribution as follows,

p(f |x,w, r) = N (w>φ(x), r−1) (3)

where r is the inverse variance and φ(x) is a vector defined
by covariance function

φ(x) = [κ(x,x1), κ(x,x2), ..., κ(x,xN )]
>
. (4)

Actually, Kxx = [φ(x1), φ(x2), ...φ(xN )]. We recover f =
[f1, f2, ...fN ]> through f = Kxxw + ξ where ξ has a Gaus-
sian distribution N (0, r−1). It shows that f has a multivarate
Gaussian distribution N (0,Kxx + r−1E) which is equiva-
lent to GP with independent noise N (0, r−1E), where E is
the identity matrix. Further, given {x,w, r}, the outputs are
conditional independent.

Now, we introduce the mixture of GPs. Each component
in our model has the formulation of Eq. (3) with different pa-
rameters and is assumed to have a support set It of M train-
ing instances, which is a subset of the complete training set.
z is a variable which indicates the corresponding component
that the instance belongs to. Given z = t, f is distributed as
N (w>t φt(x), r−1

t ). φt(x) and Kt are calculated over support
set It through covariance function κt(·, ·). Variable wt has a
Gaussian distribution N (0,U−1

t ) where Ut = Kt + σ2
tbE.

The additional term σ2
tbE aims to avoiding matrix singularity.

We assume that rr has a gamma distribution Γ(rt|a0, b0).
We choose the radial basis function kernel with automatic

relevance determination [Rasmussen and Williams, 2006] for
each component, whose formulation is

κt(xi,xj) = σ2
tf exp

[
−1

2
(xi − xj)

>Λ−1(xi − xj)

]
(5)

where Λ = diag(σ2
t1, σ

2
t2, ..., σ

2
td) with d denoting the

dimension of x. The hypermeters that define the kth
GP component are covariance function parameter θt =
{σtb, σtf , σt1, σt2, ..., σtd} and support set It.

2.2 Dirichlet Processes
The DP [Ferguson, 1973] is a commonly used prior model
for Bayesian nonparametric modeling. A draw from a DP is
a discrete distribution over countably infinite atoms. Thus,
the DPs have been adopted to extend finite mixture models
to accommodate countably infinite components, where each
atom represents a mixture component. The stick-breaking
construction of DPs [Sethuraman, 1994] is adopted for our
model.

Suppose that H is a base distribution. Φ =
{Φ1,Φ2, ...,Φ∞} and ν = {ν1, ν2, ..., ν∞} are two infinite
sets of independent random variables which are drawn from
H and Beta(1, α0), respectively. Correspondingly, infinite
proportion variables π = {π1, π2, ..., π∞} are introduced for
representing the probabilities for atoms in Φ. For the kth
atom, πi = νi

∏i−1
j=1(1 − νj). The stick-breaking construc-

tion of the DP G is formulated as

G =

∞∑
i=1

πiδΦi (6)

where δΦi
is the delta function at Φi. This construction is

analogous to breaking a stick with unit length for infinite
times. First, we break the stick into two parts at position ν1,
i.e., π1. The stick of length-π1 is the current stick and the



rest is the remaining stick which has length-(1 − ν1). Then
we repeat breaking the remaining stick, infinitely. Clearly,∑∞
i=1 πi = 1, and G is a discrete distribution.
The distribution of component indicator variable z is re-

garded as a categorical distribution Cat(π). More formally,
given ν, the distribution p(z|ν) is

p(z|ν) =

∞∏
t=1

(1− νt)1[z>t]
ν

1[z=t]
t (7)

where 1[z > t] and 1[z = t] are indicator functions.

2.3 Mixtures of Gaussian Processes for
Classification

In this section, we will introduce the details of MGPC.
First, suppose that training set D is {(xn, yn)}Nn=1. The
complete latent variable set is Ω = {ν,µ,R,w, r, z, f},
where ν = {ν1, ν2, ..., ν∞}, µ = {µ1,µ2, ...,µ∞},
R = {R1,R2, ...,R∞}, w = {w1,w2, ...,w∞},
r = {r1, r2, ..., r∞}, z = {z1, z2, ..., zN}, and f =
{f1, f2, ..., fN}. The complete hyperparameter set Θ is
{θ, I, α0,µ0,R0,W0, ν0, a0, b0}, where θ = {θ1, ...,θ∞}
and I = {I1, ..., I∞}. In the following, we will explain the
details of these terms.

Figure 1 shows the graphical representation of MGPC. We
demonstrate the model in a top-down order. For clarity, the
indices of inputs and outputs are omitted. We use +1/ − 1
labels for output y. Given f , the probability p(y = +1|f) =
σ(f) where σ(·) is the logistic function. As the symmetry
of the logistic function, the above probability can be written
as p(y|f) = σ(yf). The latent variable f is given by the
mixture of GPs and σ(·) is deterministic. Therefore, y also
has multi-modality. For the kth component, we have a Gaus-
sian distribution N (w>k φk(x), r−1

k ), i.e., a linear GP model
as described previously. Given the mixture component k, the
input x is Gaussian distributed where µk and Rk are corre-
sponding mean and inverse covariance, respectively. Further,
µk is Gaussian distributed N (µ0,R

−1
0 ), and Rk is Wishart

distributedW(W0, ν0). z is the latent variable that indicates
the component assignment for instance {x, y}.

The joint distribution of our model is

p(D,Ω|Θ) =

∞∏
k=1

p(νk)p(wk)p(rk)

×
N∏
n=1

p(zn|ν)p(xn|zn,µ,R)p(fn|xn, zn,w, r)p(yn|fn)

(8)
where xn and fn obey the mixture of Gaussian distributions
and mixture of GPs, respectively,

p(xn|zn,µ,R) =

∞∏
k=1

p(xn|zn = k,µk,Rk)1[zn=k], (9)

p(fn|xn, zn,w, r) =

∞∏
k=1

p(fn|zn = k,xn,wk, rt)
1[zn=k].

(10)
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Figure 1: Graphical model representation of MGPC.

Note that xn and fn share the infinite components. Thus,
given an input x, the mixture weight of the kth component is
dependent on x, which is given by

p(z|x) =
p(z)p(x|z)∑
z p(z)p(x|z)

. (11)

The details of the inference and optimization of our model
will be introduced in the next section.

3 Variational Inference and Optimization
Algorithms

The posterior distribution p(Ω|D) is not in closed form be-
cause

∫
p(Ω,D)dΩ is intractable. So we resort to mean field

variational inference to approximate p(Ω|D).
For general latent variables z and observation X, the ob-

jective function, i.e., the lower bound, is given by

L(q) =

∫
q(z) ln{p(X, z|θ)

q(z)
}dz. (12)

With the mean field assumption of variational distributions,
the optimization algorithm for maximizing the lower bound
is an iterative procedure. Each factor is updated in turn while
fixing the others, which is known as the coordinate ascent
algorithm. For the ith latent variable zi, the solution is

q(zi) ∝ exp{Eq(z−i) log[p(zi, z−i,X)]} (13)

In our model, the solutions of updating q(ν), q(µ), q(R),
q(w), q(r) and q(z) are in closed form. For q(f), we adopt
a gradient-based method to optimize it by maximizing the
lower bound. A specific form of q(f) is required . Then the
parameters are updated according to their gradients.

All of the hyperparameters except θ in the covariance func-
tion and support set I are fixed because such hyperparameters



are generic without the need for further estimation. We set
such hyperparameters following [Bishop and Svenskn, 2003;
Blei and Jordan, 2006; Yuan and Neubauer, 2009; Sun and
Xu, 2011]. The variational EM algorithm is employed for
learning θ where the expectation is calculated over variational
distribution and a greedy algorithm is used to update support
set I.

3.1 Variational Inference
Following the fully factorization assumption and truncated
stick-breaking representation of DPs, the variational distri-
bution is formulated as

q(Ω) =

T−1∏
t=1

q(νt)

T∏
k=1

q(wk)q(rk)q(Rk)q(µk)

N∏
n=1

q(zn)q(fn)

(14)
where T is the truncation level of the DP.

When optimizing variational distribution according to
Eq. (13), all of the solutions are in closed form except
q(f) [Blei et al., 2016]. The derivations of variational dis-
tributions in closed form is standard and analogous to the
Gaussian likelihood situation [Yuan and Neubauer, 2009;
Sun and Xu, 2011]. Thus, the details of such solutions are
omitted in this paper.

Now, we present the details of updating q(fn). Each fn is
given by a mixture of Gaussian distributions and output yn is
generated by the weighted average of T components. We as-
sume that q(fn) has a Gaussian distributionN (µn, σn), i.e., a
best single Gaussian distribution is desired for approximating
the original mixture of Gaussian distributions. Substituting
the Gaussian probability density function into Eq. (12) and
absorbing independent terms into the constant, we obtain the
following objective function,

L(q(fn)) =

T∑
t=1

q(zn = t)Eq(wt)q(rt)q(fn) ln p(fn|wt,xn, rt)

+ Eq(fn) ln p(yn|fn)− Eq(fn) ln q(fn) + const.
(15)

However, the second integral, namely, Eq(fn) ln p(yn|fn),
is not in closed form. A Monte Carlo-based approximate
method [Gal et al., 2015] has been proposed to handle
such situation with the cost of sampling. Instead, we opti-
mize a lower bound of such integral which is obtained by
E ln

[
1 + e−ynfn

]
6 lnE

[
1 + e−ynfn

]
. The first integral is

analytical and the last one is the entropy of the Gaussian dis-
tribution. Thus, the surrogate objective function is formulated
as follows,

L̂(q(fn))

=
1

2

T∑
t=1

q(zn = t)[E ln rk − Erk(Ef2
n − 2EfnEw>t φt(x)

+ Ew>t φt(x)φt(x)>wt)] − E ln
[
1 + e−ynfn

]
+

1

2
ln 2σ2

neπ + const.
(16)

All the expectations are calculated with respect to the vari-
ational distribution. The derivatives of parameters are pro-
vided below,

∂L̂(q(fn))

∂µn
=

T∑
t=1

q(zn = t)Ert
[
µn − Ew>t φt(xn)

]
− yne

1
2yn(−2µn+ynσ

2
n)

1 + e
1
2yn(−2µn+ynσ2

n)
,

(17)

∂L̂(q(fn))

∂σn
=

T∑
t=1

q(zn = t)Ertσn

+
y2
nσne

1
2yn(−2µn+ynσ

2
n)

1 + e
1
2yn(−2µn+ynσ2

n)
+

1

σn
.

(18)

With the gradients of the parameters, the conjugate gradi-
ent method is employed for maximizing the surrogate objec-
tive function given by Eq. (16).

3.2 Optimization for Hyperparameters
Let Θ̂ = {θ1:T , I1:T } be the hyperparameters to be opti-
mized. The other hyperparameters are fixed to generic values.
For covariance function variables θ, we adopt the variational
EM algorithm to maximize Eq(Ω) ln p(D,Ω|θ). For support
sets I, we follow the method in [Smola and Bartlett, 2001;
Yuan and Neubauer, 2009; Sun and Xu, 2011].

When optimizing θ, the objective function is

E{
T∑
t=1

ln p(wt) +

N∑
n=1

ln p(fn|xn, zn,w, r)} (19)

where the irrelevant terms to θ are omitted. Suppose the
variational distributions of wt and fn are N (µ,Σ) and
N (µn, σn), respectively. Substituting the corresponding
probability density functions and calculating the expecta-
tions, the objective function with respect to each θk is simpli-
fied as

ln(|Ut|)− tr(UkA)− b
N∑
n=1

q(zn = t)[φt(xn)>Aφt(xn)

− 2µnφt(xn)>µ]
(20)

where A = (Σ+µµ>), b = Ert. Then we maximize the ob-
jective function through the conjugate gradient method. The
derivation of gradients are omitted.

The support sets I are optimized by a greedy algo-
rithm [Smola and Bartlett, 2001; Yuan and Neubauer, 2009].
For each support set It, the objective is the density of q(wt)
at its mean. As wt has a Gaussian distribution, the above ob-
jective is equivalent to maximizing the determinant of the in-
verse covariance matrix. The instances are greedily selected
for maximizing the objective from candidate sets which are
randomly sampled from the training set.

Now, we introduce the whole procedure of model training.
First, the hyperparameters Θ̂ are initialized. The support sets
are initialized by the K-means algorithm which clusters the



training set into T components. Then variational inference is
run to obtain the approximate posterior distribution q(Ω). The
variational EM algorithm is performed to update θ. Fixing θ
and variational distributions except q(w), each support set It
is filled by the greedy algorithm in turn. Based on the updated
support sets, the above steps are repeated until the variations
of the support sets are under a predefined threshold or the
maximum iteration number is reached.

3.3 Predictive Distribution
The predictive distribution for a new input x∗ is given by

p(y∗ = +1) =

∫
σ(f∗)p(f∗|x∗,D,Ω,Θ)df∗. (21)

Approximations are necessary for computations of both
p(f∗|x∗,D,Ω,Θ) and the integral. For p(f∗|x∗,D,Ω,Θ),
we approximate it as follows,

p(f∗|x∗,D,Ω,Θ) =

∫
p(f∗|x∗,Ω,Θ)p(Ω|D,Θ)dΩ

'
∫
p(f∗|x∗,Ω,Θ)q(Ω)dΩ

'
∫
p(f∗|x∗, f , Ω̂\f ,Θ)q(f)df

=

T∑
t=1

p(z∗ = t|x∗, Ω̂)

∫
p(f∗|x∗, z∗ = t, f , Ω̂\f ,Θ)q(f)df

(22)
where the true posterior distribution is approximated by the
variational distribution and then posterior means Ω̂ are further
employed. As the parametric representation of GPs, we have
the conditional independence property of the outputs f . Thus
the predictive distribution is simplified as,

T∑
t=1

p(z∗ = t|x∗, Ω̂)

∫
σ(f∗)N (f∗|ŵ>t φt(x), r̂−1

t )df∗.

(23)
Because the integral in Eq. (23) is intractable, we adopt the

approximate method from [Bishop, 2006] as∫
σ(f∗)N (f∗|ŵ>t φt(x), r̂−1

t )df∗

'σ((1 + πr̂−1
t /8)−1/2ŵ>t φt(x)).

(24)

The mixture weight p(z∗ = t|x∗, Ω̂) is calculated as in
Eq. (11) with posterior means of the variational distribution.

4 Experiments
In this section, we evaluate our proposed model MGPC on
multiple real-world datasets and compare it with existing
classification models including Gaussian Process Classifica-
tion models (GPC), SVM and Logistic Regression (LR). As
mentioned in Section 1, regression models can also perform
binary classification. We evaluate classification performances
of Gaussian Process Regression models (GPR) and Mixtures
of Gaussian Processes for Regression (MGPR) [Sun and Xu,
2011]. We report the experimental results with correspond-
ing analyses from three viewpoints: comparisons of classifi-
cation performances, classification versus regression models,
and mixture versus single models.

Dataset # of instances # of features
Blood 748 3
Fertility 100 9
Haberman 306 3
Housevotes 435 16
Mammographic 830 5
Parkinsons 195 22
Pima 768 8
Heart 270 13
Iris 150 4

Table 1: Dataset description.

4.1 Datasets and Setups
Table 1 shows the information about the used datasets. All of
the datasets are available on UCI data repository [Lichman,
2013]. The iris dataset has 3 classes in total. We perform
experiment on the instances of label “Versicolour” and “Vir-
ginica” because the classification accuracies are consistently
100% on other combinations for each model.

All of the datasets are randomly split into the training, val-
idation and test set by a ratio of 4:3:3. The truncation level
T and the initializations for variance parameters of q(fn) are
selected using the validation set. T is set to range from 2 to
4, and the corresponding size of the support set for each com-
ponent is set to Ntrain/T . The variance σn are initially set
to range in 0.005× [1, 2, 4, 8, 16, 32]. We run experiments on
randomly split datasets for 10 times and report the average
accuracies in percentage with corresponding standard devi-
ations in Table 2. The comparisons of predictive log likeli-
hoods of MGPC, MGPR, GPC and GPR on the test sets are
also provided in Figure 2.

4.2 Classification Performances
From Table 2, we can see that MGPC outperforms all of the
other models on 7/9 datasets. For the rest of the datasets, GPC
and GPR obtain the best performance, respectively. We also
run paired t-test on average accuracies over all datasets for
further comparisons of MGPC and other models. The results
are reported in Table 3. As we can see, all of the p-values are
less than 5%, which indicates the significant improvements
of MGPC.

4.3 Classification versus Regression Models
For binary classification, regression models are also
amenable. Empirical results show that the classification
performances of GPC and GPR are typically compara-
ble [Kapoor et al., 2010]. For further evaluating performance
differences between classification and regression models, we
evaluate regression models including MGPR and GPR and
compare the performances with MGPC and GPC, respec-
tively. The classification accuracies have been shown in Ta-
ble 2 as well as the average predictive log likelihoods with
standard deviations in Figure 2. For clarifying the perfor-
mance differences between classification and regression mod-
els, paired t-test results are indicated for each datasets with
arrows, respectively.



Dataset Mixture Model Single Model
MGPC MGPR GPC GPR SVM LR

Blood 78.50± 2.53(0.4681) 77.63± 2.49 77.92± 3.36 77.79± 3.55 77.78± 2.43 77.74± 3.25
Fertility 88.00± 4.83(0.0575) 84.67± 5.26 85.67± 4.98 85.33± 5.49 86.67± 4.71 80.33± 6.56
Haberman 75.41± 4.67(0.1724) 73.68± 3.04 72.80± 2.88 72.13± 2.23 73.13± 2.48 72.68± 2.34
Housevotes 95.33± 1.96(0.0386) 93.27± 3.97 94.48± 2.37 94.33± 2.28 95.10± 2.27 94.33± 1.83
Mammographic 83.49± 2.31(0.6380) 83.21± 1.81 84.02± 2.62 84.62± 2.26 81.57± 1.91 82.37± 2.51
Parkinsons 87.56± 2.49(0.0276) 82.92± 4.17 86.59± 5.38 83.34± 5.79 85.89± 5.27 75.23± 8.43
Pima 76.91± 3.34(0.0014) 73.57± 1.45 75.28± 3.18 74.80± 3.47 76.33± 2.15 76.11± 1.67
Heart 80.62± 3.19(0.0437) 76.05± 5.15 80.74± 4.20 78.77± 4.50 80.59± 3.79 75.56± 5.91
Iris 96.00± 3.06(0.3938) 95.00± 2.83 93.67± 4.29 92.33± 3.53 94.67± 4.77 94.33± 3.87

Table 2: Classification accuracies for UCI datasets. The p-values of the paired t-test over accuracies obtained by MGPC and
MGPR are listed. For single models, such results are not shown because there are no significant differences on all datasets with
threshold 5%.

MGPR GPC GPR SVM LR
MGPC 0.0020 0.0132 0.0063 0.0026 0.0247

Table 3: P-values of paired t-test.
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Figure 2: Average predictive log likelihoods. The average
predictive log-likelihoods with deviations are plotted in the
same order as Tabel 1. For clarity, the names of the datasets
are omitted. In the right figure, four points which have ex-
tremely small values are omitted for GPR.

As shown in Table 2, the performances of GPC and GPR
are not significantly different, which is in accordance with
previous empirical consensus. However, this phenomenon is
not preserved for MGPC and MGPR. Significant improve-
ments are obtained by MGPC on 4/9 datasets.

Additionally, as shown in Figure 2, the predictive log like-
lihoods for classification models are much larger than that
for regression models. The regression models make predic-
tions according to the signs of outputs and do not evaluate
probabilities of predicted labels directly, which leads to in-
ferior estimations of the distribution of the test data. When
the predictive distributions are highly aggregated at wrong
labels (i.e., wrongly classifying test instances in high con-
fidence), the likelihoods will be close to 0, which leads to
small log likelihoods. Another outcome from Figure 2 is that
mixture models have a lower variance of predictive log like-
lihoods over single models across the used datasets.

4.4 Mixture versus Single Models
We further compare the differences of mixture and single
models. The classification accuracies of MGPC are higher
than GPC on 8/9 datasets, which shows the advantage of our
model. But for average log likelihoods, the differences are not

conclusive other than that generally a lower variance on each
dataset is obtained with mixture models. MGPR and GPR
are not significantly different for classification performances,
and the mixture model has a lower variance of predictive log
likelihoods across different datasets as stated before.

4.5 Discussion

We have presented comparisons of MGPC against other mod-
els. Now, we turn to discuss the behaviours of different trun-
cation level T . In the experiments, we set the size of the sup-
port set to Ntrain/T and select appropriate truncated level
T according to the performances on the validation set rather
than inferring it from data. Actually, this setting for support
sets could hinder the capability of DPs to converge to appro-
priate T . Because different T leads to different sizes of sup-
port sets. When the dataset is small, large T leads to small
support sets which are insufficient for learning each compo-
nent. Thus, a small T will be preferred for comparatively
small datasets. Only when a sufficient support set is provided,
large T will be possible. Although more refined methods of
specifying support sets could be tried, the current experimen-
tal results have already shown the advantages of MGPC.

5 Conclusion

In this paper, we have presented MGPC with mean field varia-
tional inference learning algorithms. MGPC is constructed in
a fully generative way where inputs and outputs are modeled
by the mixture of Gaussian distributions and mixture of GPs,
respectively. Different from previous mixture models of GPs,
MGPC employs the logistic likelihood which is suitable for
binary classification. The improvements of MGPC have been
shown from the experiments on multiple real-world datasets,
from which we also get some interesting findings.
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