
Multitask Centroid Twin Support Vector Machines

Xijiong Xie, Shiliang Sun∗

Department of Computer Science and Technology, East China Normal University,
500 Dongchuan Road, Shanghai 200241, P.R. China

Abstract

Twin support vector machines are a recently proposed learning method for bi-

nary classification. They learn two hyperplanes rather than one as in conven-

tional support vector machines and often bring performance improvements.

However, an inherent shortage of twin support vector machines is that the

resultant hyperplanes are very sensitive to outliers in data. In this paper, we

propose centroid twin support vector machines to overcome this disadvan-

tage. Furthermore, inspired by the recent success of multitask learning which

trains multiple related tasks simultaneously, we also extend them to the mul-

titask learning scenario and propose multitask centroid twin support vector

machines. Experimental results demonstrate that our proposed methods are

effective.

Key words: Twin support vector machine, Support vector machine,

Multitask learning, Kernel method

∗Corresponding author. Tel.: +86-21-54345186; fax: +86-21-54345119.
Email address: slsun@cs.ecnu.edu.cn (Shiliang Sun)

Preprint submitted to Neurocomputing April 21, 2014

1. Introduction

Support vector machines (SVMs) have been developed rapidly during re-

cent years [1, 2]. They are a powerful tool for pattern classification and

regression. The SVM method outputs a hyperplane that has the largest

distance to the nearest training data, whose optimization involves the min-

imization of a quadratic programming (QP) problem. By the use of the

kernel trick, SVMs can learn a nonlinear decision function which is linear in

a potentially high-dimensional feature space [3]. SVMs have been applied to

a variety of practical problems such as object detection, text categorization,

bioinformatics and image classification [4].

Recently, the research of nonparallel hyperplane classifiers has been a new

hot spot. Mangasarian and Wild [5] proposed generalized eigenvalue proxi-

mal SVMs (GEPSVMs) for binary classification. Instead of finding a single

hyperplane as in SVMs, GEPSVMs find two nonparallel hyperplanes such

that each hyperplane is as close as possible to examples from one class and

as far as possible to examples from the other class. The two hyperplanes

are obtained by eigenvectors corresponding to the smallest eigenvalues of t-

wo related generalized eigenvalue problems. Particularly when data consist

of points that are close to one of two intersecting “cross planes”, the perfor-

mance of GEPSVMs is better than the performance of SVMs [5]. Jayadeva et

al. [6] proposed another nonparallel hyperplane classifier called twin SVMs

(TSVMs), which aim to generate two nonparallel hyperplanes such that one

of the hyperplanes is closer to one class and has a certain distance to the oth-

2

er class. The formulation of TSVMs is different from that of GEPSVMs and

is similar to SVMs. TSVMs solve a pair of QP, whereas SVMs solve a single

QP. The strategy of solving two smaller sized QP rather than one large QP

makes TSVMs work faster than standard SVMs [7]. Experimental results

[6] show that nonparallel hyperplane classifiers given by TSVMs can indeed

improve the performance of traditional SVMs. Researchers also proposed

some improved versions of TSVMs such as TBSVMs [8, 9]. The significan-

t advantage of TBSVM over TSVMs is that the structural risk minimiza-

tion principle is implemented by introducing the regularization term. Least

squares twin support vector machines (LS-TSVM) [10] and least squares twin

parametric-margin support vector machines [11] have been proposed, which

can lead to simple and fast algorithms for generating binary classifiers by

replacing inequality constraints with equality constraints. Recently, some

works [12, 13, 14] commonly attempted to use the centroid of the class, such

that the examples of one class are closest to its class centroid while the ex-

amples of different classes are separated as far as possible. However in this

paper, we use the centroid of the class in a more convenient way, such that

we can tradeoff two distances, one distance between the obtained hyperplane

and its class centroid and another distance between the obtained hyperplane

and examples.

In many practical problems, a learning task can involve multiple related

tasks. The standard methodology in machine learning is to learn those tasks

separately. But solving them together is expected to be more advantageous

because the knowledge from some tasks can help to improve the generaliza-

3

tion ability of the other tasks [15, 16, 17, 18, 34]. Consequently, multitask

learning, whose principal purpose is to improve the overall generalization

performance by leveraging the knowledge contained in multiple related tasks

[20, 21, 22, 23, 24], has been investigated extensively and emerged as a very

promising research direction [25, 26, 27, 28]. One approach to multitask

learning, which is also exploited in this paper, assumes that the tasks share

a common underlying representation and each task further has its own bias

[29, 30]. Past empirical work has shown that this kind of multitask learning

mechanism usually improves over its single task counterpart, e.g., the recent

multitask SVMs outperform traditional single-task SVMs [24, 31, 32].

In this paper, after reviewing related work in Section 2, we analyze short-

comings of TSVMs and propose centroid TSVMs (CTSVMs) that are based

on class centroids in Section 3.1 and kernel CTSVMs in Section 3.2. We

then extend CTSVMs to multitask CTSVMs (MCTSVMs) in Section 3.3.

MCTSVMs are easy to implement by an appropriate modification of the op-

timization problem in CTSVMs, which casts MCTSVMs as a constrained

optimization problem with a quadratic objective function. Section 4 gives

kernel MCTSVMs which combine the kernel trick and MCTSVMs. After

reporting experimental results in Section 5, we give conclusions and future

work in Section 6.

2. Related work

In this section, we briefly review SVMs, TSVMs, multitask SVMs and

multitask TSVMs. They constitute the foundation of our subsequent pro-

4

posed methods.

2.1. SVMs and TSVMs

SVMs have been introduced in the framework of structural risk minimiza-

tion and in the theory of VC bounds [1, 2]. Suppose there are m examples

represented by T = {(x1, y1), ..., (xm, ym)}. Let yi ∈ {1,−1} denote the class

to which the ith example belongs. First we review the linearly separable

case. Classifier parameters w ∈ Rd and b ∈ R need to satisfy

yi(w
Txi + b) ≥ 1.

The hyperplane described by wTx+ b = 0 lies midway between the bounding

hyperplanes given by wTx + b = 1 and wTx + b = −1. The margin of

separation between the two classes is given by 2
∥w∥2 , where ∥w∥2 denotes the

L2 norm of w. Support vectors are those training examples lying on the

above two hyperplanes. The standard SVMs are obtained by solving the

following problem

min
w,b

1

2
wTw

s.t. ∀i : yi(wTxi + b) ≥ 1.

(1)

The decision function is

f(x) = sign(wTx+ b). (2)

When the two classes are not strictly linearly separable, classifier parameters

w and b need to satisfy

yi(w
Txi + b) ≥ 1− ξi.

5

The optimization problem of (1) can be modified to

min
w,b

1

2
wTw + c

m∑
i=1

ξi

s.t. ∀i : yi(wTxi + b) ≥ 1− ξi, ξi ≥ 0,

(3)

where c is a penalty parameter and ξi are the slack variables. The Wolfe dual

of (3) can be expressed as

min
α

1

2

m∑
i=1

m∑
j=1

yiyj(xi · xj)αiαj −
m∑
i=1

αi

s.t.
m∑
i=1

yiαi = 0,

0 ≤ αi ≤ c, i = 1, · · · ,m,

(4)

where αi are Lagrangian multipliers. The optimal solution is

w =
m∑
i=1

α∗
i yixi, b =

1

Nsv

(yj −
Nsv∑
i=1

α∗
i yi(xi · xj)), (5)

where α∗ is the solution of the dual problem (4), and Nsv represents the

number of support vectors satisfying 0 < α < c. The decision function is

f(x) = sign(wTx+ b). (6)

Then we introduce TSVMs. Suppose examples belonging to classes 1

and −1 are represented by matrices A+ and B−, and the size of A+ and B−

are (m1 × d) and (m2 × d), respectively. We define two matrices A, B and

four vectors v1, v2, e1, e2, where e1 and e2 are vectors of ones of appropriate

dimensions and

A = (A+, e1), B = (B−, e2), v1 =

w1

b1

 , v2 =

w2

b2

 .

6

TSVMs obtain two nonparallel hyperplanes

wT
1 x+ b1 = 0 and wT

2 x+ b2 = 0 (7)

around which the examples of the corresponding class get clustered. The

classifier is given by solving the following QP separately

(TSVM1)

min
v1,q1

1

2
(Av1)

T (Av1) + c1e
T
2 q1

s.t. − (Bv1) + q1 ≥ e2, q1 ≥ 0,

(8)

(TSVM2)

min
v2,q2

1

2
(Bv2)

T (Bv2) + c2e
T
1 q2

s.t. (Av2) + q2 ≥ e1, q2 ≥ 0,

(9)

where c1, c2 are nonnegative parameters and q1, q2 are slack vectors of ap-

propriate dimensions. The label of a new example x is determined by the

minimum of |xTwr + br| (r = 1, 2) which are the perpendicular distances of

x to the two hyperplanes given in (7).

2.2. Multitask SVMs

Suppose there are T related learning tasks and all data come from the

same space Rd×{−1, 1}. The input-output pair (xit, yit) (i ∈ {1, 2, · · · ,m}, t

∈ {1, 2, · · · , T}) stands for the ith example of the tth task’s training data.

Regularized multitask learning learns T classifiers w1, · · · , wT . All wt can be

written as wt = w0 + vt, where w0 is described as the common vector and

vt is described as the own bias vector of each hyperplane. The vectors vt

7

are “small” when the tasks are similar to one another. Multitask SVMs [23]

solve the following optimization problem

min
w0,vt,ξit

T∑
t=1

m∑
i=1

ξit +
λ1

T

T∑
t=1

||vt||22 + λ2||w0||22

s.t. ∀t, i : yit(w0 + vt)
Txit ≥ 1− ξit,

ξit ≥ 0,

(10)

where λ1 and λ2 are nonnegative parameters controlling the tradeoff among

tasks and ξit are slack variables. The dual optimization problem tends out

to be

max
αit

m∑
i=1

T∑
t=1

αit −
1

2

m∑
i=1

T∑
s=1

m∑
j=1

T∑
t=1

αisyisαjtyjtGst(xis, xjt)

s.t. 0 ≤ αit ≤ c,

(11)

where

Gst(xis, xjt) = (
1

u
+ δst)Kst(xis, xjt),

u =
Tλ2

λ1

, c =
T

2λ1

,
(12)

and δst is the Kronecker delta kernel

δst =

1 if s = t,

0 if s ̸= t.
(13)

The decision function for each task is given by

ft(x) = sign(
m∑
i=1

T∑
s=1

αisGst(xis, x)). (14)

8

2.3. Multitask TSVMs

In [33], we have extended TSVMs to multitask learning and call the re-

sultant method direct multitask TSVMs (DMTSVMs). Suppose there are a

total of T tasks which are assumed to be related. Here examples of class 1

from the tth task are represented by Ãt and examples of class −1 from this

task are represented by B̃t. Examples of class 1 from all tasks are collectively

represented by Ã and examples of class −1 from all tasks are represented by

B̃. For simplicity, suppose e is a vector of ones of appropriate dimensions

At = (Ãt, e), Bt = (B̃t, e), A = (Ã, e), B = (B̃, e).

We consider that all tasks have two common vectors v =

w1

b1

, u =

w2

b2


corresponding to two hyperplanes. Suppose that vt, ut mean the deviation

between task t and common vectors. The classifier parameter of class 1 of the

tth task is (v+vt), where (v+vt) =

w1t

b1t

. The classifier parameter of class

−1 of the tth task is (u + ut), where (u + ut) =

w2t

b2t

. The optimization

problems can be written as

min
vt,v,q1t

1

2

T∑
t=1

ρt∥Atvt∥22 +
1

2
∥Av∥22 + c1

T∑
t=1

eT1tq1t

s.t. ∀t : −Bt(v + vt) + q1t ≥ e1t, q1t ≥ 0,

(15)

min
ut,u,q2t

1

2

T∑
t=1

λt∥Btut∥22 +
1

2
∥Bu∥22 + c2

T∑
t=1

eT2tq2t

s.t. ∀t : At(u+ ut) + q2t ≥ e2t, q2t ≥ 0,

(16)

9

where c1, c2, ρt, λt are nonnegative parameters and e1t, e2t are vectors of

ones of appropriate dimensions. If ρt ≫ 0 and λt ≫ 0, it will tend to make

the models to be the same model. If ρt → 0 and λt → 0, it will tend to make

all the tasks unrelated.

3. Our proposed methods

3.1. Centroid twin support vector machines

In this section, we present a method to improve TSVMs. The optimiza-

tion problem of TSVMs is to minimize the sum of squared distances from

the hyperplane to examples of one class and a regularized term. In normal

situations, the obtained optimal hyperplanes are usually close to the respec-

tive class centroids and examples and give good performance. If there exist

outliers which are far from the respective class, the obtained hyperplanes

will deviate far from the ideal locations and lead to poor performance. In

order to eliminate this defect in TSVMs, we propose CTSVMs to weight the

distances from class centroids to hyperplanes.

Now we formally introduce the optimization problem of CTSVMs. Sup-

pose examples of class 1 are represented by Ã and examples of class −1 are

represented by B̃. The centroid of class 1 is defined as s and the centroid of

class −1 is defined as h. We define two matrices E,F and four vectors u, v,

e1, e2, where u = z1s, v = z2h (z1 and z2 are nonnegative parameters to be

adjusted), e1 and e2 are vectors of ones of appropriate dimensions and

A =

 Ã

uT

 , B =

 B̃

vT

 , H = (A, e1), G = (B, e2).

10

CTSVMs obtain two nonparallel hyperplanes

wT
1 x+ b1 = 0 and wT

2 x+ b2 = 0 (17)

around which the examples of the corresponding class get clustered. The

optimization problems can be written as

(CTSVM1)

min
v1,q1

1

2
(Hv1)

T (Hv1) + c1e
T
2 q1

s.t. − (Gv1) + q1 ≥ e2, q1 ≥ 0,

(18)

(CTSVM2)

min
v2,q2

1

2
(Gv2)

T (Gv2) + c2e
T
1 q2

s.t. (Hv2) + q2 ≥ e1, q2 ≥ 0,

(19)

where c1, c2 are parameters and q1, q2 are slack vectors of appropriate di-

mensions.

The Lagrangian of the problem CTSVM1 is given by

L(v1, q1, α, β) =
1

2
(Hv1)

T (Hv1) + c1e
T
2 q1 − αT (−Gv1 + q1 − e2)− βT q1,(20)

where α = (α1, α2 · · · , αm2+1)
T , β = (β1, β2 · · · , βm2+1)

T are the vectors of

Lagrange multipliers. The Karush-Kuhn-Tucker (KKT) optimality condi-

11

tions for (CTSVM1) are given by

HTHv1 +GTα = 0, (21)

c1e2 − α− β = 0, (22)

−Gv1 + q1 ≥ e2, q1 ≥ 0, (23)

αT (−Gv1 + q1 − e2) = 0, βT q1 = 0, (24)

α ≥ 0, β ≥ 0. (25)

Since β ≥ 0, from (22), we have 0 ≤ α ≤ c1. From (21), v1 can be given by

v1 = −(HTH)−1GTα. (26)

To avid ill-conditioning of HTH, we use a regularization term ϵI, where

ϵ > 0, I is an identity matrix of appropriate dimensions. Therefore, (26) is

modified to

v1 = −(HTH + ϵI)−1GTα. (27)

Using (20), (26) and the KKT conditions, the Wolfe dual is

max
α

eT2 α− 1

2
αTG(HTH)−1GTα

s.t. 0 ≤ α ≤ c1.

(28)

Similarly, we consider CTSVM2 and obtain its dual as

max
γ

eT1 γ − 1

2
γTH(GTG)−1HTγ

s.t. 0 ≤ γ ≤ c2.

(29)

The augmented vector v2 is given by

v2 = (GTG)−1HTγ. (30)

12

The label of a new example x is determined by the minimum of |xTwr + br|

(r = 1, 2) which are the perpendicular distances of x to the two hyperplanes

given in (17).

3.2. Kernel centroid twin support vector machines

We also extend CTSVMs to kernel CTSVMs. We deal with the examples

and define

E = (K{A,CT}, e), F = (K{B,CT}, e),

where for example, K{A,CT} is the kernel matrix defined by K{xi, xj} =

(Φ(xi),Φ(xj)) with xi being the ith row of A and xj being the jth column

of CT . Φ(·) is a nonlinear mapping from a low-dimensional feature space to

a high-dimensional feature space and C denotes all training examples, that

is, C = (AT , BT)T . The optimization problems can be written as

min
v1,q1

1

2
(Ev1)

T (Ev1) + c1e
T
2 q1

s.t. − (Fv1) + q1 ≥ e2, q1 ≥ 0,

(31)

min
v2,q2

1

2
(Fv2)

T (Fv2) + c2e
T
1 q2

s.t. (Ev2) + q2 ≥ e1, q2 ≥ 0,

(32)

where c1 , c2 are parameters and q1, q2 are slack vectors of appropriate di-

mensions. Then we can get the classifier parameters from the above deriva-

tion. The label of a new example x is determined by the minimum of

|K{x,CT}wr + br| (r = 1, 2).

13

3.3. Multitask centroid twin support vector machines

In this part, we extend CTSVMs to multitask learning. The centroid of

class 1 of all tasks is defined as g1 and the centroid of class 1 of the tth task

is defined as g1t. The centroid of class −1 of all tasks is defined as f1 and the

centroid of class −1 of the tth task is defined as f1t. We define four vectors

g, f, gt, ft, where g = p1g1, gt = p1tg1t, f = q1f1 and ft = q1tf1t (p1, p1t,

q1 and q1t are nonnegative parameters which need to be adjusted). We use

matrices E, F , Et, Ft as

A =

 Ã

gT

 , B =

 B̃

fT

 , At =

Ãt

gTt

 , Bt =

B̃t

fT
t

 ,

E = (A, e), F = (B, e), Et = (At, e), Ft = (Bt, e).

The optimization problems can be written as

min
vt,v,q1t

1

2

T∑
t=1

ρt∥Etvt∥22 +
1

2
∥Ev∥22 + c1

T∑
t=1

eT1tq1t

s.t. ∀t : −Ft(v + vt) + q1t ≥ e1t, q1t ≥ 0,

(33)

min
ut,u,q2t

1

2

T∑
t=1

λt∥Ftut∥22 +
1

2
∥Fu∥22 + c2

T∑
t=1

eT2tq2t

s.t. ∀t : Et(u+ ut) + q2t ≥ e2t, q2t ≥ 0,

(34)

where ρt, λt, c1, c2 are nonnegative parameters and e1t, e2t, e are vectors of

ones of appropriate dimensions. The Lagrangian of (33) is given by

L(v, vt, q1t, αt, βt) =
1

2

T∑
t=1

ρt∥Etvt∥22 +
1

2
∥Ev∥22 + c1

T∑
t=1

eT1tq1t

−
T∑
t=1

αT
t [−Ft(v + vt) + q1t − e1t]−

T∑
t=1

βT
t q1t,

(35)

14

where αt and βt are the vectors of Lagrange multipliers. We take partial

derivatives of the above equation and let them be zero

∂L

∂v
= ETEv +

T∑
i=1

F T
t αt = 0, (36)

∂L

∂vt
= ρtE

T
t Etvt + F T

t αt = 0, (37)

∂L

∂q1t
= c1e1t − αt − βt = 0. (38)

From the above equations, we obtain

v = −(ETE)−1

T∑
t=1

F T
t αt, (39)

vt = − 1

ρt
(ET

t Et)
−1F T

t αt. (40)

We substitute (39), (40) into (35) using α = (αT
1 , α

T
2 , · · · , αT

t)
T , M = (ET

1 ,

· · · , ET
t)

T , N = (F T
1 , · · · , F T

t)
T and get

L(v, vt, α, ρt) =
1

2

T∑
t=1

ρtv
T
t E

T
t Etvt +

1

2
vTETEv +

T∑
t=1

αT
t e1t +

T∑
t=1

αT
t Ft(v + vt)

=
T∑
t=1

αT
t e1t −

1

2

T∑
t=1

T∑
s=1

αT
t Ft(E

TE)−1F T
s αs −

1

2ρt

T∑
t=1

αT
t Ft(E

T
t Et)

−1F T
t αt

= αT e1t −
1

2
αT

[
N(ETE)−1NT +


F1(ET

1 E1)−1FT
1

ρ1
· · · 0

...
. . .

...

0 0
Ft(ET

t Et)−1FT
t

ρt


]
α.

(41)

The Wolfe dual is

max
α

αT e1t −
1

2
αT

[
N(ETE)−1NT +


F1(ET

1 E1)−1FT
1

ρ1
· · · 0

...
. . .

...

0 0
Ft(ET

t Et)−1FT
t

ρt


]
α

s.t. 0 ≤ α ≤ c1.

(42)

15

The classifier parameter of class 1 of the tth task can be obtained. Similarly,

we can deal with the other QP

L(u, ut, γ, λt) =
1

2

T∑
t=1

λtu
T
t F

T
t Ftut +

1

2
uTF TFu+

T∑
t=1

γT
t e2t +

T∑
t=1

γT
t Et(u+ ut)

=
T∑
t=1

γT
t e2t −

1

2

T∑
t=1

T∑
s=1

γT
t Et(F

TF)−1ET
s γs −

1

2λt

T∑
t=1

γT
t Et(F

T
t Ft)

−1ET
t γt

= γT e2t −
1

2
γT

[
M(F TF)−1MT +


E1(FT

1 F1)−1ET
1

λ1
· · · 0

...
. . .

...

0 0
Et(FT

t Ft)−1ET
t

λt


]
γ,

(43)

where γt are the vectors of Lagrange multipliers, γ = (γT
1 , γ

T
2 , · · · , γT

t)
T . The

Wolfe dual is described by

max
γ

γT e2t −
1

2
γT

[
M(F TF)−1MT +


E1(FT

1 F1)−1ET
1

λ1
· · · 0

...
. . .

...

0 0
Et(FT

t Ft)−1ET
t

λt


]
γ

s.t. 0 ≤ γ ≤ c2.

(44)

Then we can get the classifier parameter of class −1 of the tth task. The

label of a new example x of the tth task is determined by the minimum of

|xTwrt + brt| (r = 1, 2).

Now we compare the time complexities of MSVMs,, DMTSVMs and

MCTSVMs. Suppose the number of samples from all tasks is equal to l.

MSVMs solve a single QP and has the computational complexity of O(l3),

while DMTSVMs and MCTSVMs solve a pair of QP and have the compu-

tational complexity of O(2 × (l/2)3) and O(2 × ((l + T)/2)3), respectively.

16

Generally speaking, l ≫ T . Therefore, MCTSVMs and DMTSVMs are more

efficient for multi-task learning in computational complexity.

4. Kernel multitask centroid twin support vector machines

Now we extend MCTSVMs to nonlinear classification via the kernel trick.

In some situations, a liner classifier may not be suitable when training sets are

not linearly separable. The kernel trick can be used for solving this problem.

We deal with the examples and define

E = (K{A,CT}, e), Et = (K{At, C
T}, e),

F = (K{B,CT}, e), Ft = (K{Bt, C
T}, e),

where C denotes training examples of all tasks, that is, C = (AT
1 , B

T
1 , A

T
2 , · · · ,

AT
t , B

T
t)

T . The optimization problems can be written as

min
vt,v,q1t

1

2

T∑
t=1

ρt∥Etvt∥22 +
1

2
∥Ev∥22 + c1

T∑
t=1

eT1tq1t

s.t. ∀t : −Ft(v + vt) + q1t ≥ e1t, q1t ≥ 0,

(45)

min
ut,u,q2t

1

2

T∑
t=1

λt∥Ftut∥22 +
1

2
∥Fu∥22 + c2

T∑
t=1

eT2tq2t

s.t. ∀t : Et(u+ ut) + q2t ≥ e2t, q2t ≥ 0,

(46)

where ρt, λt, c1, c2 are nonnegative parameters and e1t, e2t are vectors of

ones of appropriate dimensions. Then we can get the classifier parameters of

every task from the above derivation. The label of a new example x of the

tth task is determined by the minimum of |K{x,CT}wrt + brt| (r = 1, 2).

17

5. Experimental results

In this section, first, we perform experiments on a toy data which shows

CTSVMs are less susceptible to the impact of outliers compared to TSVMs.

Then we implement experiments of binary classification problems using real-

world datasets Isolet spoken alphabet recognition and Monk taken from the

UCI Machine Learning Repository and Landmine detection based on Air-

borne Radar Data 1. Details about the three datasets are listed in Table 1.

5.1. Toy data

The datasets are created according to two Gaussian distribution for two

classes. For the two classes, the first class has 200 points and the second class

has 194 points and six outliers. The means are (2.5, 4.5), (5, 2.5) and co-

variance matrices are
∑

1 =
(
0.35 0.2
0.2 0.35

)
and

∑
2 =

(
0.3 0.2
0.2 0.3

)
, respectively. We

conduct experiments using TSVMs and CTSVMs on this dataset. We use

a grid search strategy to select best parameters (c1, c2, z1, z2) in the region

[2−7, 27] with exponential growth 0.5. When z1 and z2 are zeros, CTSVMs

are equivalent to TSVMs. In Figure 1(a), ‘*’ represents the first class. ‘+’

represents the second class. We choose 194 points as training examples with-

out outliers and 200 points as test examples. The two lines are very close

to the respective class centroid and class examples and the test accuracy is

1. In Figure 1(b) and Figure 1(c) where outliers exist, we choose 200 points

as training examples and 200 points as test examples. As can be seen from

1http://www.ece.duke.edu/∼lcarin/LandmineData.zip

18

Figure 1, the classifiers obtained by TSVMs on training examples with out-

liers are largely different from that obtained on training examples, while for

CTSVMs, the difference is much less. The test accuracies for Figure 1(b)

and Figure 1(c) are 0.87 and 0.94, respectively. From this experiment, we

conclude that CTSVMs can improve performance compared to TSVMs.

[Table 1 about here.]

[Figure 1 about here.]

5.2. Speech recognition

The Isolet dataset is collected from 150 subjects speaking each letter of

the alphabet twice. Hence, we have 52 training examples from each speaker.

Due to the lack of three examples, there are 7797 examples in total. These

speakers are grouped into five sets of 30 speakers each. These groups are

referred to as isolet1-isolet5. Each of these datasets has 26 classes. We treat

each of the subsets as its own classification task. Therefore, there are five

tasks that are highly related with each other because they are taken from

the same utterances. They are different from each other because they come

from different groups that vary largely in the way of speaking the English

alphabets. The attribute information include spectral coefficients, contour

features, sonorant features, pre-sonorant features and post-sonorant features.

In Isolet dataset, we choose two classes (m, n) from them for classifica-

tion, since TSVMs are designed for binary classification while Isolet contains

26 classes and (m, n) is hard to discriminate in practical communications.

19

Then we capture 98% of the data variance while reducing the dimensionality

from 617 to 276 with PCA. “1-NN” represents the algorithm of one nearest

neighbor. “MSVM” represents multitask SVMs. “MTGP” represents mul-

titask Gaussian process [34]. We use three-fold cross-validation to get the

average classification accuracy rates and employ a polynomial kernel function

with degree two. The kernel can be written as

K(xi, xj) = (1 + xT
i xj)

2. (47)

It is often necessary to choose other best parameters. We use a grid search

strategy to select best parameters for all involved methods in the region

[2−7, 27] with exponential growth 0.5. For example, in MCTSVM, various

pairs of (p1, p1t, q1, q1t, c1, c2, ρt, λt) are considered. From the experimental

results in Table 2, we can find that DMTSVM outperforms TSVM. MCTSVM

is a little better than DMTSVM and outperforms CTSVM. Although the

performance of SVM is a little better than TSVM, the performance of our

proposed CTSVM is better than SVM and TSVM. However, MSVM is worse

than DMTSVM and MCTSVM. DMTSVM and MCTSVM perform better

than the corresponding single task learning methods. MTGP has the worst

performance on this dataset.

[Table 2 about here.]

5.3. Landmine detection

The Landmine detection dataset is collected from a real landmine field.

There are a total of 19 datasets for which 1-10 are collected at foliated regions

20

and 11-19 are collected at regions that are bare earth or desert. It is collected

from various landmine fields by an actual synthetic-aperture radar system.

Each example is represented by a 9-dimensional feature vector extracted from

radar images and the corresponding binary label (1 for landmine and 0 for

clutter).

In Landmine dataset, we choose two tasks from foliated regions. Due

to the unbalanced labels in Landmine dataset, for each task, we select 150

examples for which the number of positive examples is almost the same as one

of negative examples in our experiments. We use three-fold cross-validation

to get the average classification accuracy rates and employ an RBF kernel.

The kernel can be written as

K(xi, xj) = exp(−∥xi − xj∥22
2σ2

0

). (48)

We use a grid search strategy to select best parameters for all involved meth-

ods in the region [2−7, 27] with exponential growth 0.5. The experimental

setting and parameters selection are the same as in the above experimen-

t. From the experimental results in Table 3, we can find that DMTSVM

outperforms TSVM. MCTSVM is a little better than DMTSVM and out-

performs CTSVM. Although the performance of SVM is a little better than

TSVM, the performance of our proposed CTSVM is better than SVM and

TSVM. However, MCTSVM gives almost the same performance as MSVM

and MTGP, and is a little better than DMTSVM. DMTSVM and MCTSVM

outperform the corresponding single task learning methods.

[Table 3 about here.]

21

5.4. Monk

The Monk dataset is the basis of a first international comparison of learn-

ing algorithms. There are a total of three problems corresponding to three

tasks. In Monk dataset, for each task, we select 120 examples in our exper-

iments. We use three-fold cross-validation to get the average classification

accuracy rates and employ an RBF kernel. We use a grid search strategy to

select best parameters for all involved methods in the region [2−7, 27] with

exponential growth 0.5. The experimental setting and parameters selection

are the same as in the above experiment. From the experimental result-

s in Table 4, we can find that DMTSVM outperforms TSVM. MCTSVM

is a little better than DMTSVM and outperforms CTSVM. Although the

performance of SVM is a little better than TSVM, the performance of our

proposed CTSVM is better than SVM and TSVM. However, MCTSVM is a

little better than DMTSVM and MSVM. DMTSVM and MCTSVM outper-

form the corresponding single task learning methods. MTGP has the best

performance on this dataset.

[Table 4 about here.]

6. Conclusion and future work

In this paper, we have proposed CTSVMs and MCTSVMs. CTSVMs

overcome the shortage of TSVMs by introducing class centroids to reduce

the sensitivity of classifiers with respect to outliers. MCTSVMs are an ex-

tension of CTSVMs to the multitask learning scenario. Experimental results

22

on synthetic data indicate that CTSVMs can be more robust to outliers than

TSVMs. Experimental results on real-world data validate the good perfor-

mance of CTSVMs and MCTSVMs. It would be interesting for future work

to consider the extension of MCTSVMs to the situation that uses different

feature spaces for different tasks and even for different hyperplanes from the

same task.

Acknowledgements

This work is supported by the National Natural Science Foundation of

China under Projects 61370175 and 61075005, and Shanghai Knowledge Ser-

vice Platform Project (No. ZF1213).

References

[1] J. Shawe-Taylor, S. Sun, A review of optimization methodologies in

support vector machines, Neurocomputing, 74 (2011) 3609-3618.

[2] V.N. Vapnik, The Nature of Statistical Learning Theory, New York:

Springer-Verlag, 1995.

[3] B. Scholkopf, A. Smola, Learning with Kernels, Cambridge: MIT Press,

2003.

[4] Q. Song, W. Hu, W. Xie, Robust support vector machine with bullet

hole image classification, IEEE Transactions on Systems, 32 (2002) 440-

448.

23

[5] O.L. Mangasarian, E.W. Wild, MultisurFace proximal support vector

machine classification via generalized eigenvalues, IEEE Transactions

on Pattern Analysis and Machine Intelligence, 28 (2006) 69-74.

[6] R. Jayadeva, S. Khemchandani, Chandra, Twin support vector machines

for pattern classification, IEEE Transactions on Pattern Analysis and

Machine Intelligence, 74 (2007) 905-910.

[7] S. Ghorai, Mukherjee, P.K. Dutta, Nonparallel plane proximal classifier,

Signal Processing, 89 (2009) 510-522.

[8] Y. Shao, C. Zhang, X. Wang, N. Deng, Improvements on twin support

vector machines, IEEE Trans on Neural Networks, 22 (2011) 962-968.

[9] S. Ding, Y. Zhao, B. Qi, H. Huang, An overview on twin support vector

machines, Artificial Intelligence Review, 2012.

[10] M.A. Kumar, M. Gopal, Least squares twin support vector machines

for pattern classification, Expert Systems with Applications, 36 (2009)

7535-7543.

[11] Y.H. Shao, Z. Wang, W.J. Chen, N.Y. Deng, Least squares twin

parametric-margin support vector machines for classification, Applied

Intelligence, 39 (2013) 451-464.

[12] Y.H. Shao, N.Y. Deng, Z.M. Yang, Least squares recursive projection

twin support vector machine for classification, Pattern Recognition, 45

(2012) 2299-2307.

24

[13] Y.H. Shao, Z. Wang, W.J. Chen, N.Y. Deng, A regularization for the

projection twin support vector machine, Knowledge-Based Systems, 37

(2013) 203-210.

[14] X. Chen, J. Yang, Q. Ye, J. Liang, Recursive projection twin support

vector machine via within-class variance minimization, Pattern Recog-

nition, 44 (2011) 2643-2655.

[15] T. Kato, H. Kashima, M. Sugiyama, Multi-task learning via conic pro-

gramming, Advances in Neural Information Processing Systems, 20

(2008) 737-744.

[16] S. Ben-David, R. Schuller, Exploiting task relatedness for multiple task

learning, in: Proceedings of the International Conference on Learning

Theory, 2003, pp. 567-580.

[17] S. Parameswaran, K.Q. Weinberger, Large margin multi-task metric

learning, Advances in Neural Information Processing Systems, 23 (2010)

1867-1875.

[18] A. Argyriou, T. Evgeniou, M. Pontil, Convex multi-task feature learn-

ing, Machine Learning, 73 (2008) 243-272.

[19] S. Sun, Multitask learning for EEG-based biometrics, in: Proceedings

of the 19th International Conference on Pattern Recognition, 2008, pp.

1-4.

[20] R. Caruana, Multitask learning, Machine Learning, 28 (1997) 41-75.

25

[21] T. Evgeniou, C.A. Micchelli, Learning multiple tasks with kernel meth-

ods, Journal of Machine Learning Research, 6 (2005) 615-637.

[22] R.K. Ando, T. Zhang, A framework for learning predictive structures

from multiple tasks and unlabeled data, Journal of Machine Learning

Research, 6 (2005) 1817-1853.

[23] O. Chapelle, P. Shivaswamy, S. Vadrevu, K. Weinberger, Boosted multi-

task learning, Machine Learning, 85 (2011) 149-173.

[24] Y. Ji, S. Sun, Multitask multiclass support vector machines: Model and

experiments, Pattern Recognition, 46 (2012) 914-924.

[25] X. Yuan, S. Yuan, Visual classification with multi-task joint sparse repre-

sentation, in: Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2010, pp. 3493-3500.

[26] Z. Zhang, J. Yan, T. Li, B. Rao, S. Fang, K. Sungeun, S.L. Risacher,

A.J. Saykin, L. Shen, Sparse Bayesian multi-task learning for predicting

cognitive outcomes from neuroimaging measures in Alzheimer’s disease,

in: Proceedings of the IEEE Conference on Computer Vision and Pat-

tern Recognition, 2012, pp. 940-947.

[27] T. Zhang, B. Ghanem, S. Liu, N. Ahuja, Roubst visual tracking via

multi-task sparse learning, in: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2012, pp. 2042-2049.

26

[28] X. Wang, C. Zhang, Z. Zhang, Boosted multi-task learning for face verifi-

cation with applications to web image and video search, in: Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition,

2009, pp. 142-149.

[29] J. Baxter, A model for inductive bias learning, Journal of Artificial

Intelligence Research, 12 (2000) 149-198.

[30] B. Bakker, T. Heskes, Task clustering and gating for Bayesian multitask

learning, Journal of Machine Learning Research, 4 (2003) 83-99.

[31] T. Evgeniou, M. Pontil, Regularized multi-task learning, in: Proceed-

ing of the 10th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, 2004, pp. 109-117.

[32] T. Jebara, Multi-task feature and kernel selection for SVMs, in: Pro-

ceedings of the 21th International Conference on Machine Learning,

2004, pp. 1-8.

[33] X. Xie, S. Sun, Multitask twin support vector machines, in: Proceeding

of the 19th International Conference on Neural Information Processing,

2012, pp. 341-348.

[34] G. Skolidis, G. Sanguinetti, Bayesian multitask classification with Gaus-

sian process priors, IEEE Tranctions on Neural Networks, 22 (2011)

2011-2021.

27

List of Figures

1 The training examples and classifiers obtained by different methods 29

28

−4 −2 0 2 4 6 8 10
0

1

2

3

4

5

6

7

x

y

(a)

−4 −2 0 2 4 6 8 10
0

1

2

3

4

5

6

7

x

y

(b)

−4 −2 0 2 4 6 8 10
0

1

2

3

4

5

6

7

x

y

(c)

Figure 1: The training examples and classifiers obtained by different methods : (a) TSVMs
without outliers (b) TSVMs with outliers (c) CTSVMs with outliers

29

List of Tables

1 Datasets. 31
2 Classification accuracies (%) on Isolet. 32
3 Classification accuracies (%) on Landmine. 33
4 Classification accuracies (%) on Monk. 34

30

Table 1: Datasets.
Name Attributes Instances Classes Tasks
Isolet 276 7977 26 5

Landmine 9 9674 2 19
Monk 7 432 2 3

31

Table 2: Classification accuracies (%) on Isolet.

Method Task1 Task2 Task3 Task4 Task5 All Tasks
1-NN 88.33 85.83 85.00 83.33 76.67 83.83±1.43
SVM 95.00 95.83 90.83 90.00 85.83 91.50±1.08
MSVM 95.00 95.83 94.17 92.5 88.33 93.17±0.62
TSVM 95.00 95.00 90.83 87.5 85.83 90.83±1.03

DMTSVM96.67 97.50 95.83 91.67 90.83 94.50±1.63
MTGP 79.13 80.25 76.75 80.13 80.62 79.38±18.47
CTSVM 95.83 95.00 90.83 88.33 90.00 92.00±1.63
MCTSVM 95.83 97.50 96.67 98.33 92.5 96.17±0.47

32

Table 3: Classification accuracies (%) on Landmine.

Method Task1 Task2 All Tasks
1-NN 72.67 68.00 70.33±10
SVM 82.67 74.67 78.67±2.87
MSVM 84.67 76.67 80.67±5.25
TSVM 82.67 72.00 77.33± 6.85

DMTSVM 85.33 75.33 80.33± 7.59
MTGP 81.33 80.00 80.67±2.00
CTSVM 82.67 76.00 79.33±6.18
MCTSVM 84.67 76.67 80.67±7.32

33

Table 4: Classification accuracies (%) on Monk.

Method Task1 Task2 Task3 All Tasks
1-NN 67.50 52.50 53.33 57.78±4.11
SVM 69.17 57.50 79.17 68.61±3.47
MSVM 69.17 60.83 76.67 68.89±2.93
TSVM 67.50 60.00 76.67 68.06±3.94

DMTSVM 73.33 59.17 78.33 70.28±4.88
MTGP 94.17 54.17 87.5 78.6±0.48
CTSVM 69.17 60.83 80.83 70.28±4.27
MCTSVM 73.33 59.17 79.10 70.55±4.73

34

