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Abstract

In this paper, we propose a new learning paradigm

named multitask multiclass privileged information sup-

port vector machines. The starting point of our work is

mainly based on the success of multitask multiclass sup-

port vector machines which cast multitask multiclass

problems as a constrained optimization problem with

a quadratic objective function. Learning using priv-

ileged information is an advanced learning paradigm

integrated with the idea of human teaching in machine

learning. This paper mainly extends multitask multi-

class support vector machines to privileged information

learning strategy. Our approach can take full advan-

tages of the multitask learning and privileged informa-

tion. Experimental results show that our approaches

obtains very good results for multitask multiclass prob-

lems.

1. Introduction

The main goal of multitask learning (MTL) is to im-

prove the generalization performance by learning mul-

tiple related tasks simultaneously while using a shared

representation [1]. Past empirical work has shown that,

it is beneficial to learn different but related tasks simul-

taneously instead of single task learning (STL) [2, 3].

The MTL strategy for support vector machines (SVMs)

can be naturally extended to existing kernel-based on

learning methods [4–6]. There are also a lot of re-

searchers to theoretically study the MTL [4, 6]. The

multitask multiclass SVMs (M2SVMs) can solve mul-

titask multiclass problems by a constrained optimiza-

tion problem with a quadratic objective function [5].

With this strategy, M2SVMs can learn multitask multi-

class problems directly and effectively. Recently, Vap-

nik et al. [7] introduced a new learning model named

learning using privileged information (LUPI). Besides

learning with standard training data, the LUPI also sup-

plies classifiers with additional information which can

only be available for training instances [7]. In the opti-

mistic case, the LUPI model can improve the probabil-

ity bound of test errors from O
(

1√
n

)

to O
(

1
n

)

[7].

In this paper, we develop and discuss multitask mul-

ticlass privileged information SVMs (M2PiSVMs) on

the basis of M2SVMs in detail. Experimental results

demonstrate the effectiveness of the proposed method.

The rest of this paper is organized as follows. Sec-

tion 2 briefly reviews related work on multiclass SVMs

(MSVMs). Section 3 thoroughly describes M2SVMs.

Section 4 presents multiclass privileged information

SVMs (MPiSVMs). M2PiSVMs are given in Section

5. Experiments and discussions are reported in Section

6. Conclusions and future work are provided in Section

7.

2. MSVMs

Multiclass SVMs (MSVMs) are generalizations of

separating hyperplanes and margins to the scenario

of multiclass problems [8]. Input (xi, yi) belongs to

X × Y , where X = Rd, Y = {1, 2, 3, . . . ,K} and

i ∈ {1, . . . ,m}. This framework uses classifiers of the

form

HM (x) = arg
K

max
k

{Mkx} , (1)

where M is a matrix of size K × d, and Mk is the

kth row of M . The quadratic optimization problem of

MSVMs is defined as

min
M

1
2β ‖M‖

2
2 +

m
∑

i=1

εi

s.t. : ∀k, i,
Myi

xi + δyi,k −Mkxi ≥ 1− εi .

(2)

3. M2SVMs

In MTL settings, all data for T tasks come from the

same distribution P on X × Y where X = Rd, Y =



{1, 2, 3, . . . ,K}. For each task we have mt instances

sampled from Pt (t ∈ {1, 2, 3, . . . , T}). Assuming each

instance belongs to one task, φ (i) stands for the ith in-

stance’s task index. For each task, we use a shared rep-

resentation M0 which stands for the common informa-

tion between tasks while Mt stands for the tth task’s

classifier. Details of M2SVMs can be found in [5]. By

multiclass learning settings in [8], M2SVMs have the

following MTL model

HMt
(x) = arg

K
max

k
{Mt,kxt}

Mt = M0 + Vt ,
(3)

whereMt is a matrix of sizeK × d,Mt,k stands for the

kth row of Mt, and arg
K

max
k

{Mt,kxt} finds the class

having largest similarity score with the task’s instance

xt. Then M2SVMs will solve the following optimiza-

tion problem

min
Vt,M0

β
2

K
∑

k=1

[

T
∑

t=1
ρt‖Vt,k‖

2
+ ‖M0,k‖

2

]

+
T
∑

t=1

mt
∑

i=1

εt,i

s.t. : ∀t, k, i,
(Vt,yi

+M0,yi
)xt,i + δyi,k − (Vt,k +M0,k)xt,i

≥ 1− εt,i ,
(4)

where δp,q is equal to 1 if p = q and 0 otherwise, ρt
is the weighted parameter between Vt and M0 [5], and

β > 0 and ρt > 0 are regularization constants [5]. In-

stead of solving Eq. 4 directly, the usually strategy is to

solve Eq. 4’s dual problem. The derivation in detail can

be found in [5]. We may use the kernel trick to extend

the M2SVMs strategy to non-linear MTL. Then we can

get the dual problem as

min Q (a) =
∑

i,j,k

ai,kδyi,k

+ 1
2β

∑

i,j,k

[

(ai,k − δyi,k)
(

aj,k − δyj ,k

)

Kφ(i),φ(j) 〈xi, xj〉
]

s.t. : ∀i, j, k, ai,k ≥ 0,
∑

k

ai,k = 1 ,

(5)

where K is given as

Kϕ(i)ϕ(j) (xi, xj) =

(

1 +
δϕ(i),ϕ(j)

ρϕ(i)

)

〈xi, xj〉 . (6)

4. MPiSVMs

Firstly, we will extend MSVMs to MPiSVMs, then

we extend MPiSVMs to the M2PiSVMs. When we ex-

tend MSVMs Eq. 2 to the LUPI, some slack variables

are also used in our MPiSVMs which result in the fol-

lowing optimization problem

min
M,M∗

β
2 ‖M‖

2
2 +

γ
2 ‖M∗‖

2
2 +

∑

i

(εi + ςi)

+
∑

i,k

[

M∗
yi
· x∗

i + δyi,k −M∗
kx

∗
i

]

s.t. : ∀k, i,
Myi

xi + δyi,k −Mkxi

≥ 1−
(

M∗
yi
· x∗

i −M∗
kx

∗
i

)

− ςi
M∗

yi
· x∗

i + δyi,k −M∗
kx

∗
i ≥ 1− εi .

(7)

For k = yi, the inequality constraints become ςi ≥ 0
and εi ≥ 0. After adding a dual set of variables and the

derivation of the Lagrangian of the optimization prob-

lem, we can get Eq. 7’s dual problem as

max Q (a, b) =
∑

i,k

δyi,k (1− ai,k − bi,k)

− 1
2β

∑

i,j,k

[

(ai,k − δyi,k)
(

aj,k − δyj ,k

)

〈xi, xj〉
]

− 1
2γ

∑

i,j,k

ui,j,k ×
〈

x∗
i , x

∗
j

〉

s.t. : ∀i, k,
∑

k

ai,k = 1,
∑

k

bi,k = 1, ai,k ≥ 0, bi,k ≥ 0 ,

(8)

where ui,j,k is defined as

ui,j,k = [(1− ai,k − bi,k)− δyi,k (K − 2)]
×
[

(1− aj,k − bj,k)− δyj ,k (K − 2)
]

.
(9)

5. M2PiSVMs

In MTL settings, we just consider all tasks’ privi-

leged information are uncoupled from each other. This

means each task’s privileged information has no rela-

tionship with others’. Although this paper just consider

this situation, it is easy to extend our model to the situ-

ation that all tasks’s privileged information come from

the same distribution. After merging Eq. 4 and Eq. 7

together, we may get M2PiSVMs as

min
Vt,M0,M

∗

t

β
2

(

‖M0‖
2
2 +

∑

t

ρt ‖Vt‖
2
2

)

+γ
2

∑

t

ρt ‖M
∗
t ‖

2
2 +

∑

t,i

(ςt,i + εt,i)

+
∑

t,i,k

[

M∗
t,yi

· x∗
t,i + δyi,k −M∗

t,kx
∗
t,i

]

s.t. : ∀t, k, i ∈ {1, 2, . . . ,mt} ,
(Vt,yi

+M0,yi
)xt,i + δyi,k − (Vt,k +M0,k)xt,i

≥ 1−
(

M∗
t,yi

· x∗
t,i −M∗

t,kx
∗
t,i

)

− ςt,i

M∗
t,yi

· x∗
t,i + δyi,k −M∗

t,kx
∗
t,i ≥ 1− εt,i ,

(10)

where mt stands for the number of instances of the tth

task. Similar to the derivation in [5], we can get Eq. 10’s



dual problem as

max Q (a, b) =
∑

i,k

δyi,k (1− ai,k − bi,k)

− 1
2β

∑

i,j,k

[

(ai,k − δyi,k)
(

δyj ,k − aj,k
)

×
(

1 +
δϕ(i),ϕ(j)

ρϕ(i)

)

〈xi, xj〉

]

− 1
2γ

∑

i,j,k

ui,j,k ×
(

δϕ(i),ϕ(j)

ρϕ(i)

)

〈

x∗
i , x

∗
j

〉

s.t. : ∀i, j, k, i, j ∈

{

1, 2, . . . ,
T
∑

t=1
mt

}

∑

k

ai,k = 1,
∑

k

bi,k = 1, ai,k ≥ 0, bi,k ≥ 0 .

(11)

5.1. Non-linear M2PiSVMs

The kernel trick can be used to avoid computing

feature maps directly, and can also be applied to MP-

iSVMs. By the same strategy in [3], we will extend

M2PiSVMs to non-linear MTL as

max Q (a, b) =
∑

i,k

δyi,k (1− ai,k − bi,k)

− 1
2β

∑

i,j,k

[

(ai,k − δyi,k)
(

aj,k − δyj ,k

)

×Kδϕ(i),ϕ(j)
(xi, xj)

]

− 1
2γ

∑

i,j,k

ui,j,k ×
(

δϕ(i),ϕ(j)

ρϕ(i)

)

K∗
(

x∗
i , x

∗
j

)

s.t. : ∀i, j, k,
∑

k

ai,k = 1,
∑

k

bi,k = 1,

ai,k ≥ 0, bi,k ≥ 0 ,

(12)

where kernel function K is given in Eq. 6. The ker-

nel function K∗ for privileged information is a normal

kernel function. In the procedure of prediction, priv-

ileged information is not used, so the classifier is the

same as [5]. The classifier of the tth task is

Ht (x) = arg
K

max
k=1

{Mt,kx}

= arg
K

max
k=1

{

1
2β

m
∑

i=1

(δk,yi
− ak,i)Kϕ(i),t (xi, x)

}

.

(13)

6. Experiments

We compare MSVMs, MPiSVMs, M2SVMs and

M2PiSVMs with the LOQO1 as the solver. The LOQO

solver is based on interior point optimization algorithms

which give the best results among the off-the-shelf op-

timizers [7].

We may find that there are two kernel functions in

Eq. 12, one is a multitask kernel function while the other

one is a normal kernel function. We use radial basis

1 www.princeton.edu/˜rvdb/loqo/LOQO.html

function (RBF) for both kernel functions (also in Eq. 7).

Kernels can be written as

Kϕ(i)ϕ(j) (xi, xj) =
(

1 +
δϕ(i),ϕ(j)

ρt

)

k (xi, xj)

k (xi,xj) = exp
(

−σ‖xi − xj‖
2
)

, σ > 0

K∗
(

x∗
i , x

∗
j

)

= k
(

x∗
i , x

∗
j

)

.

(14)

σ is RBF kernel parameter. There are another three pa-

rameters ρt, β, γ for our model. We use the same search

strategy as [5]. We use a grid search strategy to select

the best parameters from training sets which are also

recommended in Libsvm.

6.1. Datasets

We test our algorithms on two datasets from UCI2,

the Isolet dataset and the spoken arabic digits (SAD)

dataset. Although these datasets have no privileged in-

formation for the respective of LUPI, we extract the

principal component information (98%)as privileged in-

formation by principal component analysis (PCA). De-

tails about these two datasets are listed in Table 1 where

x∗ stands for the dimensionality of privileged informa-

tion extracted by PCA.

The Isolet dataset with 7797 examples (three exam-

ples are historically missing) is collected from 150 sub-
jects uttering all English alphabet twice. One task has

30 speakers. The representation of Isolet lends itself

to the multitask multiclass learning [4] with T = 5
tasks and K = 26 labels. The SAD dataset with 8800
instances is collected from 88 speakers with 44 males

(Task 1) and 44 females (Task 2) Arabic native speakers

between ages 18 and 40 to represent ten spoken Arabic

digits from 0 to 9. Each instance in the dataset is a ma-

trix of size row × 13 (4 ≤ row ≤ 93). For simplicity,

we resize each matrix to 10 × 13. After the vectoriza-
tion of these matrices, we get a vector of size 1 × 130
to represent one instance.

Table 1. Details of datasets.

Name Attributes Instances Classes Tasks

Isolet 617(290∗) 7797 26 5

SAD 130(24∗) 8800 10 2

6.2. Results and Discussions

Error rates of our experiments are computed by av-

eraged results of 5-fold cross-validation. We compare

2 http://archive.ics.uci.edu/ml/datasets.html

www.princeton.edu/~rvdb/loqo/LOQO.html
 http://archive.ics.uci.edu/ml/datasets.html


M2PiSVMs with different baselines in Table 2 and Ta-

ble 3. In these tables, ALL means merging all tasks’

data together and taking these data with no task’s dif-

ferences. Results in Table 2 and Table 3 show that our

model gets the best results on the two datasets. We may

find that the LUPI can get higher accuracy.

Table 2. Error rates(%) on Isolet

STL MSVMs MPiSVMs

Task 1 8.66 8.14

Task 2 9.69 9.17

Task 3 10.71 10.31

Task 4 11.03 10.56

Task 5 11.23 9.97

ALL 7.67 6.79

– M2SVMs M2PiSVMs

MTL 5.39 4.52

Table 3. Error rates(%) on SAD

STL MSVMs MPiSVMs

Task 1 6.64 6.28

Task 2 11.66 11.19

ALL 9.34 7.79

– M2SVMs M2PiSVMs

MTL 4.85 4.45

We also compare these four methods with different

training sizes. If the dataset have T tasks, with n in-

stances for training, we randomly sample n
T

instances

from each task. Then we randomly sample n∗

T
testing

instances from the rest instances of each task. We set

n∗ = 1500 for Isolet dataset, n∗ = 1700 for SAD

dataset. Each result takes an average of 10 times the

repetition. MSVMs and MPiSVMs just train all n in-

stances together while ignore the information between

tasks. From Fig. 1 (performance on SAD has a simi-

lar trend with Isolet, and thus its figure is omitted), we

find that MTL learns better than STL. Fig. 1 also tells

us learners with privileged information perform better

than ones without this kind of information. Because of

making full use of MTL and LUPI, M2PiSVMs get the

best results on two datasets.

7. Conclusion

In this paper, we present two new models MPiSVMs

and M2PiSVMs which are based on the LUPI. Because

it can take full advantage of the multitask learning and
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Figure 1. Performance with different train-

ing sizes on Isolet

privileged information, M2PiSVMs get the best perfor-

mance. As mentioned in [7], a SMO type algorithm for

our model is valuable to study in the future. How to

deal with privileged information which is related across

different tasks is very interesting to study further. Ex-

tending M2PiSVMs to multiple spaces’ privileged in-

formation is also valuable for future investigation.
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