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Abstract

As the new generation of data analysis methods, kernels methods of which support
vector machines are the most influential are extensively studied both in theory
and in practice. This article provides a tutorial introduction to the foundations and
implementations of kernel methods, well-established kernel methods, computational
issues of kernel methods, and recent developments in this field. The aim of this
article is to promote the applications and developments of kernel methods through
the detailed survey of some important kernel techniques.

1 Glossary

Canonical correlation analysis: A method to find two linear transforma-
tions respectively for two representations such that the correlations between
the transformed variables are maximized.

Fisher discriminant analysis: A method for classification which seeks a
direction to maximize the distance between projected class means and simul-
taneously minimize the projected class variances.

Gaussian process: A collection of random variables, any finite number of
which have a joint Gaussian distribution.

Kernel trick: A method to extend any algorithm only involving computa-
tions of inner products from the original space to a feature space with kernel
functions.
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Multiple kernel learning: A learning mechanism which aims to learn a
combination of multiple kernels to capture more information or reduce the
computational complexity.

Principal component analysis: A method to find a set of orthogonal direc-
tions which forms a subspace to maximize data variances along the directions
in this subspace.

Reproducing kernel Hilbert space: A function space which is a Hilbert
space possessing a reproducing kernel.

Support vector machine: A method to learn a hyperplane induced from
the maximum margin principle, which has wide applications including classi-
fication and regression.

2 Nomenclature

X The data matrix with each row as an observation

κ(x, z) The kernel function with input vectors x and z

〈x, z〉 The inner product between two vectors x and z

φ(x) The mapping of x to the feature space F

In The n× n identity matrix

K The kernel matrix with entry Kij being the kernel function
value for the ith and jth inputs

‖w‖ The Euclidean norm of the vector w

trace(K) The trace of the matrix K

cov(x, u) The covariance between two random scalar variable x and u

var(x) The variance of the random scalar variable x

x � (�)z The vector x is larger (less) than the vector z elementwise

K � 0 The matrix K is positive semidefinite

3 Introduction

Data often possess some intrinsic regularities which, if revealed, can facili-
tate people to understand data themselves or make predictions about new
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data from the same source. These regularities are called patterns, and pattern
analysis, which has been studied broadly such as in statistics, artificial intel-
ligence and signal processing, deals with the automatic detection of patterns
in data.

The development of pattern analysis algorithms can be summarized with three
important stages (Shawe-Taylor and Cristianini, 2004). In the 1950s and 1960s,
efficient algorithms such as the perceptron (Rosenblatt, 1958) were used. They
are well understood and effective for detecting linear patterns, though were
shown to be limited in complexity. In the 1980s, with the introduction of
both the backpropagation algorithm for multi-layer networks (Hertz, Krogh
and Palmer, 1991) and decision trees (Breiman et al., 1984; Quinlan, 1993),
pattern analysis underwent a nonlinear revolution. These methods made a high
impact to efficiently and reliably detect nonlinear patterns, though they are
largely heuristical with limited statistical analysis and often get trapped with
local minima. In the 1990s, the emerging of kernel methods (Schölkopf and
Smola, 2002; Shawe-Taylor and Cristianini, 2004) for which support vector
machines (SVMs) (Boser, Guyon and Vapnik, 1992; Vapnik, 1995) are the
earliest and foremost influential finally enabled people to deal with nonlinear
patterns in the input space via linear patterns in high dimensional spaces.
This third generation of pattern analysis algorithms are well-founded just like
their linear counterparts, but wipe off the drawbacks of local minima and
limited statistical analysis which are typical for multi-layer neural networks
and decision trees. Since the 1990s, the algorithms and application scopes of
kernel methods have been extended rapidly, from classification to regression,
to clustering and many other machine learning tasks.

The approach of kernel methods has four key aspects: (i) Data are embedded
into a Euclidean feature space; (ii) Linear relations are sought in the feature
space; (iii) Algorithms are implemented so that only inner products between
vectors in the feature space are required; (iv) The products can be directly
computed from the original data by an efficient ‘short-cut’ known as a kernel
function (or kernel for short). This is also known as the kernel trick. The idea
of using kernel functions as inner products in a feature space is not new. It
was introduced into machine learning in 1964 with the method of potential
functions (Aizerman, Braverman and Rozonoer, 1964) and this work is men-
tioned in a footnote of Duda and Hart’s pattern classification book (Duda and
Hart, 1973). Through this route, the authors of (Boser, Guyon and Vapnik,
1992) noticed this idea, combined it with large margin hyperplanes in the later
SVMs and thus introduced the notion of kernels into the mainstream of the
machine learning literature.

Although basic kernel methods are rather mature techniques, research com-
bining them with other techniques is still going on, e.g., kernels have been
successfully applied to multi-view learning, semi-supervised learning and mul-
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titask learning problems (Evgeniou and Pontil, 2004; Farquhar et al., 2006;
Rosenberg et al., 2009; Sun and Shawe-Taylor, 2010; Ji and Sun, 2011; Sun,
2011). This forms a continual impetus along the line of research on kernel-
based learning methods. More importantly, recent work on multiple kernel
learning (Lanckriet et al., 2004) has promoted the study of kernel methods
to a new level. This article reviews both classical and some recent research
developments on kernel methods, with emphases on the ‘plug-and-play’ flavor
of kernel methods.

The rest of this article is organized as follows. Section 4 introduces the kernel
trick and properties and types of kernels, which constitute the foundations of
kernel methods. In addition to the kernel ridge regression method presented
in Section 4, Section 5 reviews some fundamental kernel methods including
kernel principal component analysis, kernel canonical correlation analysis, ker-
nel Fisher discriminant analysis, support vector machines, and Gaussian pro-
cesses. Section 6 discusses the computational issues of kernel methods and
algorithms towards their efficient implementations. Section 7 briefly surveys
the recent developments on multiple kernel learning. Section 8 presents some
practical applications of kernel methods and SVMs. Finally, open issues and
problems are discussed in Section 9 after a brief concluding summary of the
article.

4 Foundations of kernel methods

In this section, we first illustrate key concepts for kernel methods from kernel
ridge regression, and then discuss properties of valid kernels. Finally, kernel
design strategies are introduced.

4.1 The kernel trick: Ridge regression as an example

Consider the problem of finding a homogeneous real-valued linear function

g(x) = 〈w,x〉 = x>w =
n
∑

i=1

wixi, (1)

that best interpolates a given training set S = {(x1, y1), . . . , (xm, ym)} of
points xi ∈ R

n with corresponding labels yi ∈ R. A commonly chosen measure
of the discrepancy between a function output and the real observation is

fg ((x, y)) = (g(x) − y)2 . (2)
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Suppose the m inputs of S are stored in the matrix X as row vectors, and
the corresponding outputs constitute vector y with y = [y1, . . . , ym]>. Hence
we can write ξ = y − Xw for the vector of differences between g(xi) and
yi. Ridge regression corresponds to solving the following optimization with a
simple norm regularizer

min
w

Lλ(w, S) = min
w

λ‖w‖2 + ‖ξ‖2, (3)

where λ > 0 defines the relative tradeoff between the norm and loss. Setting
the derivative of Lλ(w, S) with respect to the parameter vector w equal to 0
gives

X>Xw + λw = (X>X + λIn)w = X>y, (4)

where In is the n×n identity matrix. Thus we get the primal solution (referring
to the explicit representation) for the weight vector

w = (X>X + λIn)−1X>y, (5)

from which the resulting prediction function g(x) can be readily given.

Alternatively, from (4) we get

w = X>
1

λ
(y − Xw) = X>α =

m
∑

i=1

αixi, (6)

where parameters α = [α1, . . . , αm]> , λ−1(y − Xw) are known as the dual
variables. Substituting w = X>α into α = λ−1(y − Xw), we obtain

α = (XX> + λIm)−1y, (7)

which is called the dual solution. The dual solution expresses the weight vector
w as a linear combination of the training examples. Denote the term XX>

by K. It follows that Ki,j = 〈xi,xj〉. Now the resulting prediction function is
formulated as

g(x) = x>w = x>X>α =

〈

x,
m
∑

i=1

αixi

〉

=
m
∑

i=1

αi〈x,xi〉. (8)

There are two ingredients embedded in the dual form of ridge regression:
computing vector α and evaluation of the prediction function. Both operations
only involve inner products between data inputs. Since the computation only
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involves inner products, we can substitute for all occurrences of 〈·, ·〉 a kernel
function κ that computes κ(x, z) = 〈φ(x), φ(z)〉 and we obtain an algorithm
for ridge regression in the feature space F defined by the mapping φ : x 7→
φ(x) ∈ F . This is an instantiation of the kernel trick for ridge regression and
results in the kernel ridge regression algorithm. Through kernel ridge regression
we can perform linear regression in very high-dimensional spaces efficiently,
which is equivalent to performing non-linear regression in the original input
space.

4.2 Properties of kernels

Definition 1 (Kernel function) A kernel is a function κ that for all x, z
from a nonempty set X (which need not be a vector space) satisfies

κ(x, z) = 〈φ(x), φ(z)〉, (9)

where φ is a mapping from the set X to a Hilbert space F that is usually
called the feature space

φ : x ∈ X 7→ φ(x) ∈ F. (10)

To verify whether a function is a valid kernel, one approach is to construct
a feature space for which the function value for two inputs corresponds to
first performing an explicit feature mapping and then computing the inner
product between their images. An alternative approach, which is more widely
used, is to investigate the finitely positive semidefinite property (Schölkopf and
Smola, 2002; Shawe-Taylor and Cristianini, 2004; Duda et al., 2001; Bishop,
2006; Theodoridis and Koutroumbas, 2008).

Definition 2 (Finitely positive semidefinite function) A function κ :
X × X → R satisfies the finitely positive semidefinite property if it is a
symmetric function for which the kernel matrices K with Kij = κ(xi,xj)
formed by restriction to any finite subset of X are positive semidefinite.

The feasibility of the above property for characterizing kernels is justified by
the following theorem (Aronszajn, 1950; Schölkopf and Smola, 2002; Shawe-
Taylor and Cristianini, 2004).

Theorem 3 (Characterization of kernels) A function κ : X × X → R

which is either continuous or has a countable domain, can be decomposed as
an inner product in a Hilbert space F by a feature map φ applied to both its
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arguments

κ(x, z) = 〈φ(x), φ(z)〉 (11)

if and only if it satisfies the finitely positive semidefinite property.

A Hilbert space F is defined as an inner product space that is complete where
completeness means that every Cauchy sequence of elements of F converges
to an element in this space. If the separability property is further added to the
definition of a Hilbert space, where a space is separable if there is a countable
set of elements from this space such that the distance between each element of
this space and some element of this countable set is less than any predefined
threshold, the existence of ‘kernels are continuous or the domain is countable’
in Theorem 3 is then necessary.

The Hilbert space constructed in proving Theorem 3 is called the reproducing
kernel Hilbert space (RKHS) because the following reproducing property of
the kernel resulting from the defined inner product holds

〈fF (·), κ(x, ·)〉 = fF (x), (12)

where fF is a function of the function space F , and function κ(x, ·) is the
mapping φ(x) which actually represents the similarity of x to all other points
in X , as shown in Fig. 1 (Schölkopf and Smola, 2002).

[Fig. 1 about here.]

By construction, fF (·) takes the form of an arbitrarily-weighted linear combi-
nation of countable images of the original inputs. For any two such functions

fF1(·) =
`1
∑

i=1

αiκ(xi, ·), fF2(·) =
`2
∑

j=1

βjκ(x
′

j, ·) (13)

where `1, `2 ∈ N, αi, βj ∈ R and xi,x
′
j ∈ X , the dot product is defined as

〈fF1(·), fF2(·)〉 ,

`1
∑

i=1

`2
∑

j=1

αiβjκ(xi,x
′

j). (14)

The inner product space or pre-Hilbert space formed by fF (·) is then com-
pleted to form the Hilbert space F where the mathematical trick ‘completion’
refers to adding all limit points of Cauchy sequences to the space (Schölkopf
and Smola, 2002).
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It should be noted that there are different approaches to constructing fea-
ture spaces for any given kernel. Besides the above construction, the Mercer
kernel map (Mercer, 1909), though not mentioned much here, is also widely
applicable, especially in the SVM literature. The feature spaces constructed
in different ways can even have different dimensions. However, since we are
only interested in dot products, these spaces can be regarded as identical.

For some kernels, the feature map and feature space can be explicitly built
with a simple form. For instance, consider the homogeneous quadratic kernel

κ(x, z) = 〈x, z〉2, (15)

which can be reformulated as

κ(x, z) = (x′z)2 = z′(xx′)z = 〈vec(zz′), vec(xx′)〉, (16)

where vec(A) stacks the column of matrix A on top of each other in the manner
that the first column situates at the top. The feature map corresponding to κ
would be φ(x) = vec(xx′). The feature space can be the Euclidean space with
dimensionality being the total number of entries of vec(xx′).

4.3 Types of kernels

The use of kernels provides a powerful and principled approach to modeling
nonlinear patterns through linear patterns in a feature space. Another benefit
is that the design of kernels and linear methods can be decoupled, which
greatly facilitates the modularity of machine learning methods.

Representative kernels include the linear kernel κ(x, z) = 〈x, z〉, inhomoge-
neous polynomial kernel

κ(x, z) = (〈x, z〉 +R)d (17)

where d is the degree of the polynomial and parameter R ∈ R, and the Gaus-
sian radial basis function (RBF) kernel (Gaussian kernel for short) with pa-
rameter σ > 0

κ(x, z) = exp

(

−‖x − z‖2

2σ2

)

. (18)
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The polynomial kernel (17) can be expanded by the binomial theorem as

(〈x, z〉 +R)d =
d
∑

s=0

(

d

s

)

Rd−s〈x, z〉s. (19)

Hence, the features for each component in the sum together form the features
of the kernel. In other words, we have a reweighting of the features of the
homogeneous polynomial kernel

κ(x, z) = 〈x, z〉s, s = 0, . . . , d, (20)

where one construction of the feature map corresponding to kernel (20) is us-
ing a vector with entries being all ordered monomials (e.g., x1x2 and x2x1 are
treated as separate features) of degree s, that is, each entry is an instantia-
tion of product xj1 . . . xjs

with j1, . . . js ∈ {1, . . . , n} (Schölkopf and Smola,
2002). The parameter R allows the control of the relative weightings of the

monomials with different degrees. The weight formulation
(

d
s

)

Rd−s indicates
that increasing R decreases the relative weighting of higher order monomi-
als (Shawe-Taylor and Cristianini, 2004).

For the Gaussian kernel (18) the images of all points have norm 1 in the
feature space as a result of κ(x,x) = 1. It can be obtained by normalizing
exp(〈x, z〉/σ2)

exp

(

−‖x − z‖2

2σ2

)

= exp

(

〈x, z〉
σ2

− 〈x,x〉
2σ2

− 〈z, z〉
2σ2

)

=
exp(〈x, z〉/σ2)

√

exp(‖x‖2/σ2) exp(‖z‖2/σ2)
. (21)

Because an exponential function can be arbitrarily closely approximated by
polynomials with positive coefficients

exp(x) =
∞
∑

i=0

1

i!
xi, (22)

the function exp(〈x, z〉/σ2) is arguably a kernel. Therefore, the Gaussian ker-
nel (18) is a polynomial kernel of infinite degree, and its features can be all
ordered monomials of input features with no restriction placed on the degrees.
However, with increasing degree the weighting of individual monomials falls
off as i! (Shawe-Taylor and Cristianini, 2004).

One appeal of using kernel methods is that kernels are not restricted to vec-
torial data, making it possible to apply the techniques to diverse types of
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objects. Not surprisingly, kernels can be designed for sets, strings, text doc-
uments, graphs and graph-nodes (Shawe-Taylor and Cristianini, 2004). For
these kernels, we would not elaborate here. However, an effective design of
kernels has to be embedded with some prior knowledge on how to character-
ize similarity between data.

We now focus on two types of kernels induced by probabilistic models, marginal-
ization kernels and Fisher kernels. These techniques are useful for combining
generative and discriminative methods for machine learning. The marginal-
ization kernels are defined as follows.

Definition 4 (Marginalization kernels) Given a set of data models M
and a prior distribution PM on M , the probability that an example pair x
and z is generated together can be computed as

PM(x, z) =
∑

m∈M

P (x|m)P (z|m)PM(m). (23)

If we consider the mapping function

φ : x 7→ (P (x|m))m∈M ∈ F (24)

in a feature space F indexed by M , PM(x, z) corresponds to the inner product

〈f, g〉 =
∑

m∈M

fmgmPM(m) (25)

between φ(x) and φ(z). PM(x, z) is referred to as the marginalization kernel
for the model class M .

The above computation can be viewed as a marginalization operation for the
probability distribution of triples (x, z,m) over m (with conditional indepen-
dence of x and z given a specific model m), and therefore comes the name
marginalization kernels. The assumption of conditional independence is a suf-
ficient condition for positive semi-definiteness. For an input, marginalization
kernels treat the output probability given one model as a feature. Since the
information from a single model is quite limited, they usually adopt multiple
different models to reach a representation of the input.

Fisher kernels, defined by Jaakkola and Haussler (1999a,b), are an alterna-
tive way of extracting information, usually from a single generative model,
however. The single model is required to be smoothly parameterized so that
derivatives of the model with respect to the parameters is computable. An
intuitive interpretation of Fisher kernels is that it describes data points by the
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variation of some quantity (say the log of the likelihood function) caused by
slight parameter perturbations.

Definition 5 (Fisher score and Fisher information matrix) For a given
setting of the parameters θ0 (e.g., obtained by the maximum likelihood rule)
the log-likelihood of a data point x with respect to the model m(θ0) is defined
to be logP (x|θ0). Consider the gradient vector of the log-likelihood

g(θ,x) =

(

∂ logP (x|θ)
∂θi

)N

i=1

, (26)

where θ ∈ R
N . The Fisher score of a data point x with respect to the model

m(θ0) is g(θ0,x). The Fisher information matrix with respect to the model
m(θ0) is given by

IFisher = E

[

g(θ0,x)g(θ0,x)>
]

, (27)

where the expectation is over the distribution of the data point x.

The Fisher score embeds a data point into the feature space R
N , and provides

direct constructions of kernels.

Definition 6 (Fisher kernel) The invariant Fisher kernel with respect to
the model m(θ0) for a given setting of the parameters θ0 is defined as

κ(x, z) = g(θ0,x)>I−1

Fisherg(θ0, z). (28)

The practical Fisher kernel is defined as

κ(x, z) = g(θ0,x)>g(θ0, z). (29)

The invariant Fisher kernel is computationally more demanding as it requires
the computation and inversion of the Fisher information matrix. It is named
‘invariant’ because the resulting kernel would not change if we reparameterize
the model with an invertible differentiable transformation ψ = ψ(θ). Suppose
κ̃ is the transformed kernel. It follows that

g(θ0,x)> =





(

∂ logP (x|ψ)

∂ψi

)N

i=1





>

J(ψ) = g(ψ0,x)>J(ψ0), (30)

where matrix J(ψ0) is the Jacobian of the transformation ψ evaluated at
ψ0 (Shawe-Taylor and Cristianini, 2004). Now we have
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κ̃(z1, z2)

=g(ψ0, z1)
>
E

[

(J(ψ0)−1)>g(θ0,x)g(θ0,x)>J(ψ0)−1
]−1

g(ψ0, z2)

=g(θ0, z1)
>
E

[

g(θ0,x)g(θ0,x)>
]−1

g(θ0, z2)

=κ(z1, z2). (31)

Hence, the invariant Fisher kernel is desirable if the choice of parameterizations
is somewhat arbitrary. But for this kernel there is a caveat when the natural
approximation of the Fisher information matrix by its empirical estimate is
used

ÎFisher = Ê

[

g(θ0,x)g(θ0,x)>
]

=
1

m

m
∑

i=1

g(θ0,xi)g(θ0,xi)
>, (32)

in which case ÎFisher is the empirical covariance matrix of the Fisher scores. The
invariant Fisher kernel is thus equivalent to whitening the scores. The negative
effect is that we may amplify noise if some parameters are not relevant for the
information, and therefore the signal to noise ratio is possibly reduced. This
can be regarded as the cost of the invariance.

Apart from the kernels introduced so far, more complicated kernels can be
constructed with them as building blocks. The following theorem (Shawe-
Taylor and Cristianini, 2004) lists some strategies for kernel constructions.

Theorem 7 (Kernel constructions) Let κ1, κ2 and κ3 be valid kernels, φ
any feature map to the domain of κ3, a ≥ 0, f(·) any real-valued function,
and B a positive semi-definite matrix. Then the following functions are valid
kernels:

• κ(x, z) = κ1(x, z) + κ2(x, z),
• κ(x, z) = aκ1(x, z),
• κ(x, z) = κ1(x, z)κ2(x, z),
• κ(x, z) = f(x)f(z),
• κ(x, z) = κ3(φ(x), φ(z)),
• κ(x, z) = x>Bz (for now x and z are vectorial data).

5 Fundamental kernel methods

In this section, we introduce some fundamental kernel methods ranging from
unsupervised learning to supervised learning. These methods have a large
popularity either because they are among the first uses of kernels or because
they address very fundamental learning problems.
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5.1 Kernel principal component analysis

Principal component analysis (PCA) finds a set of orthogonal directions which
forms a subspace to maximize variances. In this way, data can be reconstructed
with minimal quadratic error. Suppose the inputs of the data set S given in
Sec. 4.1 is centered with mean 0. The direction that maximizes the variance
can be found by solving the following problem

max
w

w>Cw

s.t. ‖w‖ = 1, (33)

where C = 1

m
X>X is the covariance matrix (strictly speaking, an empirical

estimate of the covariance) of the input data. The solution is given by the
eigenvector of C corresponding to the largest eigenvalue with the objective
value being the eigenvalue. The direction of the second largest variance can
be searched for in the subspace orthogonal to the direction already found.
This results in the eigenvector corresponding to the second largest eigenvalue.
It is readily provable that PCA projects data into the space spanned by the
k largest eigenvectors of C if we would like to find a k-dimensional subspace.
The new coordinates by which we represent the data are known as principal
components. Although centering data before performing PCA is not a must,
it has the advantage of reducing the overall sum of the eigenvalues and thus
removing irrelevant variance arising from data shift (Shawe-Taylor and Cris-
tianini, 2004).

The kernel PCA (Schölkopf, Smola and Müller, 1998) extends the linear PCA
algorithm to extracting nonlinear structures in terms of kernels. Now we pro-
vide a simple derivation of the kernel PCA by exploiting the relationship be-
tween X>X and XX> (Shawe-Taylor and Cristianini, 2004). It is easy to show
that these two matrices have the same rank. More interestingly, their eigen-
decompositions correspond to each other. Suppose that w, λ is an eigenvector-
eigenvalue pair for X>X, then Xw, λ is for XX>

(XX>)Xw = X(X>X)w = λXw, (34)

and conversely, if α, λ is an eigenvector-eigenvalue pair for the matrix XX>,
then X>α, λ is for X>X

(X>X)X>α = X>(XX>)α = λX>α. (35)

This gives a dual representation for the eigenvector of X>X from the eigen-
decomposition of XX>. XX> is actually a kernel matrix if we replace each
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row x>
i of X by its image φ(xi)

> in a feature space, and X>X would be the
scaled covariance matrix without centering.

Centering data in a feature space is not so simple as in the original space.
Suppose that a kernel κ is adopted with the kernel matrix K computed from
the original data. Centering data in the feature space corresponds to defining
a new feature map φ̂(x) = φ(x)− 1

m

∑m
i=1

φ(xi). The new kernel matrix for the
centered data would be

K̂ = K − 1

m
jj>K − 1

m
Kjj> +

1

m2
(j>Kj)jj>, (36)

where j is the all 1s vector (Shawe-Taylor and Cristianini, 2004). Suppose that
α̂, λ̂ is an eigenvector-eigenvalue pair for the kernel matrix K̂ = X̂X̂> where
‖α̂‖ = 1 and the ith row of X̂ is φ̂(xi)

>. Then X̂>α̂ is the eigenvector of the
covariance matrix 1

m
X̂>X̂ which has the same eigenvectors with X̂>X̂. Usually

we require that the final projection vector is normalized, that is, ‖X̂>α̂‖ = 1.
Because for ‖α̂‖ = 1 we have

‖X̂>α̂‖2 = α̂>X̂X̂>α̂ = α̂>K̂α̂ = λ̂, (37)

to meet ‖X̂>α̂‖ = 1, α̂ should be further divided by
√

λ̂. Hence, the k pro-
jection directions derived from kernel PCA should be







1
√

λ̂i

X̂>α̂i







k

i=1

, (38)

where {α̂i, λ̂i}k
i=1

are the k leading eigenvector-eigenvalue pairs for the kernel
matrix K̂ and the norms of {α̂i}k

i=1
are all 1. The projections of a new in-

put x would be the inner products between the above directions and φ(x) −
1

m

∑m
i=1

φ(xi).

5.2 Kernel canonical correlation analysis

Canonical correlation analysis (CCA), proposed by Hotelling (1936), works on
a paired dataset (i.e., data with two representations) to find two linear trans-
formations each for one of the two representations such that the correlations
between the transformed variables are maximized. It was later generalized
to more than two sets of variables in several ways (Bach and Jordan, 2002;
Kettenring, 1971). Here we only focus on the situation of two sets of variables.
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Suppose we have a paired dataset Sx,u = {(x1,u1), . . . , (xm,um)}. For exam-
ple, xi and the corresponding ui can be the representations of a same sematic
content in two different languages. CCA attempts to seek the projection di-
rections wx and wu to maximize the following empirical correlation

cov(w>
x x,w>

u u)
√

var(w>
x x)var(w>

u u)
=

w>
x Cxuwu

√

(w>
x Cxxwx)(w>

u Cuuwu)
, (39)

where covariance matrix Cxu is defined as (definitions for Cxx and Cuu can
be obtained analogously)

Cxu =
1

m

m
∑

i=1

(xi − mx)(ui − mu)
> (40)

with mx and mu being the means of the two representations, respectively

mx =
1

m

m
∑

i=1

xi, mu =
1

m

m
∑

i=1

ui. (41)

Because the scales of wx and wu have no effects on the value of (39), we can
constrain each of the two terms in the denominator to take value 1. Thus we
reach another widely used objective for CCA

max
wx,wu

ρ = w>

x Cxuwu

s.t. w>

x Cxxwx = 1, w>

u Cuuwu = 1. (42)

The solution is given by first solving the generalized eigenvalue problem (Shawe-
Taylor and Cristianini, 2004)







0 Cxu

Cux 0













wx

wu





 = λ







Cxx 0

0 Cuu













wx

wu





 , (43)

and then normalizing the resulting directions to comply with the constraints
of (42). Note that the eigenvalue λ for a particular eigenvector

(

wx

wu

)

gives the
corresponding correlation value

ρ = w>

x Cxuwu = w>

x (λCxxwx) = λ. (44)

Consequently, all eigenvalues lie in the interval [−1,+1]. Interestingly, if
(

wx

wu

)

,

λ is an eigenvector-eigenvalue pair, so is
(

wx

−wu

)

, −λ. Therefore, only half the
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spectrum, e.g., the positive eigenvalues, are necessary to be considered, and the
corresponding eigenvectors constitute desirable projection directions (as with
PCA, we often need more than one projection directions). The eigenvectors
with largest eigenvalues identify the strongest correlations.

Now we give the dual form of CCA to facilitate the derivation of kernel
CCA (Akaho, 2001; Fyfe and Lai, 2000; Melzer, Reiter and Bischof, 2001).
Assume that the dataset Sx,u is centered, that is, the mean value of each of
the two representations is zero. We consider expressing wx and wu as linear
combinations of training examples

wx = X>αx, wu = U>αu, (45)

where the rows of X and U are vectors x>
i and u>

i (i = 1, . . . ,m), respectively.
Substituting (45) into (42) results in

max
αx,αu

α>

x XX>UU>αu

s.t. α>

x XX>XX>αx = 1, α>

u UU>UU>αu = 1. (46)

Since the above formulation only involves inner products among training ex-
amples, we can write down the objective for kernel CCA simply as

max
αx,αu

α>

x KxKuαu

s.t. α>

x K2

xαx = 1, α>

u K2

uαu = 1, (47)

where Kx and Ku are the kernel matrices for the two representations, re-
spectively (if data are not centered in feature spaces, techniques similar to
centering for kernel PCA can be adopted).

It was shown that overfitting with perfect correlations which fail to distinguish
spurious features from those revealing the underlying semantics can appear
using the above versions of CCA and kernel CCA (Bach and Jordan, 2002;
Shawe-Taylor and Cristianini, 2004). In other words, some kind of regular-
ization is needed to detect meaningful patterns. Statistical stability analysis
shows that controlling the norms of the two projection directions is a good
way for regularization (Shawe-Taylor and Cristianini, 2004). Hence, we have
the regularized CCA whose objective is to maximize

w>
x Cxuwu

√

(

(1 − τx)w>
x Cxxwx + τx‖wx‖2

)(

(1 − τu)w>
u Cuuwu + τu‖wu‖2

)

, (48)
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where regularization parameters τx and τu vary in the interval [0, 1]. The kernel
regularized CCA corresponding to (47) is given by optimizing

max
αx,αu

α>

x KxKuαu

s.t. (1 − τx)α
>

x K2

xαx + τxα
>

x Kxαx = 1,

(1 − τu)α
>

u K2

uαu + τuα
>

u Kuαu = 1. (49)

5.3 Kernel Fisher discriminant analysis

The Fisher discriminant is a classification function

f(x) = sign(w>x + b), (50)

where the weight vector w is found through a specific optimization to well
separate different classes. In particular, a direction is found which maximizes
the distance between projected class means and simultaneously minimizes the
projected class variances. In this article, the binary case is considered. The
parameter b in the Fisher discriminant is usually determined by projecting
training data to w and then identifying the middle point of two class means.

Suppose examples from two different classes are given by S1 = {x1

1
, . . . ,x1

m1
}

and S2 = {x2

1
, . . . ,x2

m2
}. Fisher discriminant analysis (Fukunaga, 1990; Mika

et al., 1999) finds w which maximizes

J(w) =
w>SBw

w>SWw
, (51)

where

SB = (m1 − m2)(m1 − m2)
>,

SW =
∑

i=1,2

∑

x∈Si

(x − mi)(x − mi)
> (52)

are respectively the between and within class scatter matrices and mi is defined
by mi = 1

mi

∑mi

j=1 xi
j. The solution is the eigenvector corresponding to the

largest eigenvalue of the generalized eigen-decomposition

SBw = λSWw. (53)

Since the matrix SB has rank 1, only the leading eigenvector contains mean-
ingful information.
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Let φ be a nonlinear map to some feature space F . Kernel Fisher discriminant
analysis attempts to find a direction w ∈ F to maximize

J(w) =
w>Sφ

Bw

w>Sφ
Ww

, (54)

where

Sφ
B = (mφ

1 − mφ
2)(m

φ
1 − mφ

2)
>,

Sφ
W =

∑

i=1,2

∑

x∈Si

(

φ(x) − mφ
i

)(

φ(x) − mφ
i

)>

(55)

with mφ
i = 1

mi

∑mi

j=1 φ(xi
j).

Define S = S1∪S2 and denote its elements by {x1, . . . ,xm} with m = m1+m2.
We would like to find an expansion for w in the form w =

∑m
i=1

αiφ(xi). It
follows that

w>mφ
i =

1

mi

m
∑

j=1

mi
∑

k=1

αjκ(xj,x
i
k) = α>Mi, (56)

where vector Mi is defined as (Mi)j = 1

mi

∑mi

k=1
κ(xj,x

i
k) and the dot products

are replaced with kernels (Mika et al., 1999). Based on (56), the numerator
of (54) can be rewritten as

w>Sφ
Bw = α>Mα, (57)

where M = (M1 − M2)(M1 − M2)
>. And the denominator is rewritten as

w>Sφ
Ww = α>Nα, (58)

where N =
∑

j=1,2 Kj(I − 1mj
)K>

j , Kj is an m × mj matrix with (Kj)ik =

κ(xi,x
j
k), I is the identity matrix and 1mj

is the matrix with all entries
1

mj
(Mika et al., 1999).

Hence, (54) is reformulated as

J(α) =
α>Mα

α>Nα
. (59)

The problem can be solved similarly to (51). To enhance numerical stability
and perform capacity control in the feature space, N in the above formulation
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is usually replace by N + µI with positive µ. An alternative regularization is
penalizing ‖w‖2 as in kernel CCA instead of the current ‖α‖2 which corre-
sponds to the term µI.

5.4 SVMs for classification and regression

Given the training set S = {(x1, y1), . . . , (xm, ym)} of points xi ∈ R
n with cor-

responding labels yi ∈ {1,−1}, SVM classifiers attempt to find a classification
hyperplane induced from the maximum margin principle (Boser, Guyon and
Vapnik, 1992; Vapnik, 1995). In real applications data are usually not linearly
separable. Thus a loss on the violation of the linearly separable constraints
has to be introduced. A common choice is the hinge loss

max
(

0, 1 − yi(w
>xi + b)

)

, (60)

which can be represented by a slack variable ξi.

The optimization problem for SVM classification is formulated as

min
w,b,ξ

1

2
‖w‖2 + C

m
∑

i=1

ξi

s.t. yi(w
>xi + b) ≥ 1 − ξi, i = 1, . . . ,m,

ξi ≥ 0, i = 1, . . . ,m, (61)

where the scalar C controls the balance between the margin and empirical loss,
and ξ = [ξ1, . . . , ξm]>. The large margin principle is reflected by minimizing
1

2
‖w‖2 with 2/‖w‖ being the margin between two hyperplanes w>x+b = 1 and

w>x+b = −1 (For the linearly separable case, the concepts of the margin and
classification hyperplane are illustrated in Fig. 2). The SVM classifier would
be

cw,b(x) = sign(w>x + b). (62)

[Fig. 2 about here.]

The Lagrangian of problem (61) is

L(w, b, ξ,λ,γ) =
1

2
‖w‖2 + C

m
∑

i=1

ξi −
m
∑

i=1

λi

[

yi(w
>xi + b) − 1 + ξi

]

−
m
∑

i=1

γiξi, λi ≥ 0, γi ≥ 0, (63)
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where λ = [λ1, . . . , λm]> and γ = [γ1, . . . , γm]> are the associated Lagrange
multipliers. Using the superscript star to denote the solutions of the optimiza-
tion problem, according to the KKT (Karush-Kuhn-Tucker) conditions (Boyd
and Vandenberghe, 2004; Shawe-Taylor and Sun, 2011), we obtain

∂wL(w∗, b∗, ξ∗,λ∗,γ∗) = w∗ −
m
∑

i=1

λ∗i yixi = 0, (64)

∂bL(w∗, b∗, ξ∗,λ∗,γ∗) = −
m
∑

i=1

λ∗i yi = 0, (65)

∂ξi
L(w∗, b∗, ξ∗,λ∗,γ∗) = C − λ∗i − γ∗i = 0, i = 1, . . . ,m. (66)

From (64), the solution w∗ has the form

w∗ =
m
∑

i=1

λ∗i yixi. (67)

Since examples with λ∗i = 0 can be omitted from the expression, the training
examples for which λ∗i > 0 are called support vectors.

By substituting (64)∼(66) into the Lagrangian, we can finally get the dual
optimization problem (Shawe-Taylor and Sun, 2011)

max
λ
λ>j − 1

2
λ>Dλ

s.t. λ>y = 0,

λ � 0,

λ � Cj, (68)

where j is the vector with all entries being 1, y = [y1, . . . , ym]> and D is a
symmetric m × m matrix with entries Dij = yiyjx

>
i xj (Osuna, Freund and

Girosi, 1997; Shawe-Taylor and Cristianini, 2004).

The complementary slackness condition (also called the zero KKT-gap re-
quirement) (Schölkopf and Smola, 2002) implies

λ∗i
[

yi(x
>

i w∗ + b∗) − 1 + ξ∗i
]

= 0, i = 1, . . . ,m,

γ∗i ξ
∗

i = 0, i = 1, . . . ,m. (69)

Combining (66) and (69), we can solve b∗ = yi −x>
i w∗ for any support vector

xi with 0 < λ∗i < C. The existence of 0 < λ∗i < C is a reasonable assumption,
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though there lacks a rigorous justification (Osuna, Freund and Girosi, 1997).
Once λ∗ and b∗ are solved, the SVM classifier is given by

c∗(x) = sign

(

m
∑

i=1

yiλ
∗

i x
>xi + b∗

)

. (70)

Using the kernel trick, the optimization problem (68) for SVMs becomes

max
λ
λ>j − 1

2
λ>Dλ

s.t. λ>y = 0,

λ � 0,

λ � Cj, (71)

where the entries of D are Dij = yiyjκ(xi,xj). The solution for the corre-
sponding SVM classifier is formulated as

c∗(x) = sign

(

m
∑

i=1

yiλ
∗

iκ(xi,x) + b∗
)

. (72)

For regression problems, the labels in the training set S are real numbers, that
is yi ∈ R (i = 1, . . . ,m). In order to induce a sparse representation for the
decision function (i.e., some training examples can be ignored), Vapnik (1995)
devised the following ε-insensitive function and applied it to support vector
regression

|y − f(x)|ε = max{0, |y − f(x)| − ε}, ε ≥ 0. (73)

The standard form of support vector regression is to minimize

1

2
‖w‖2 + C

m
∑

i=1

|yi − f(xi)|ε, (74)

where the positive scalar C reflects the trade-off between the margin and the
empirical loss. An equivalent optimization that is commonly used is

min
w,b,ξ,ξ∗

1

2
‖w‖2 + C

m
∑

i=1

ξi + C
m
∑

i=1

ξ∗i

s.t. 〈w, φ(xi)〉 + b− yi ≤ ε+ ξi,

yi − 〈w, φ(xi)〉 − b ≤ ε+ ξ∗i ,

ξi, ξ
∗

i ≥ 0, i = 1, . . . ,m, (75)
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where φ(xi) is the image of xi in the feature space, and ξ, ξ∗ are defined
similarly as before. The prediction output of support vector regression is

c∗(x) = 〈w∗, φ(x)〉 + b∗, (76)

where w∗ and b∗ are the solution of (75). For support vector regression, the
derivation for the dual representation of solutions and the dual optimization
problem can consult the counterpart for classification, and thus is omitted
here.

5.5 Bayesian kernel methods: Gaussian processes

All the previous methods introduced in this section can be summarized into
the framework of risk minimization. The Bayesian learning approach differs
from them in several aspects. The key distinction is that the Bayesian ap-
proach intuitively incorporates prior knowledge into the process of estima-
tion (Schölkopf and Smola, 2002). Another benefit of the Bayesian framework
is the possibility of measuring the confidence of the estimation in a straightfor-
ward manner. However, algorithms designed by the Bayesian approach (e.g.,
with maximum a posterior estimation) can have similar counterparts originat-
ing from the risk minimization framework. Below we focus on the Gaussian
process approach for regression, which is a classical Bayesian kernel method.

The Gaussian process models have two kinds of equivalent representations,
namely the function-space view and the weight-space view (Rasmussen and
Williams, 2006). We will start with the weight-space view to illustrate the
explicit roles of kernels using the Bayesian treatment of linear regression, fol-
lowed by a very brief introduction of the function-space view.

Suppose the training set S is {(x1, y1), . . . , (xm, ym)} as defined in Sec. 4.1.
The standard linear regression model with Gaussian noise is

f(x) = w>x, y = f(x) + ε, (77)

where f is the function value, y is the noisy observed value, and the noise obeys
an independent, identically distributed Gaussian distribution with mean zero
and variance σ2

n

ε ∼ N (0, σ2

n). (78)

This gives rise to the likelihood of the independent observations in the training
set
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p(y|X,w) =
m
∏

i=1

p(yi|xi,w) =
m
∏

i=1

1√
2πσn

exp
(

− (yi − w>xi)
2

2σ2
n

)

=
1

(2πσ2
n)m/2

exp
(

− ‖y − Xw‖2

2σ2
n

)

= N (Xw, σ2

nI), (79)

where y = [y1, . . . , ym]> and X> = [x1, . . . ,xm]. Suppose we specify a Gaus-
sian prior on the parameters with mean zero and covariance matrix Σp (Ras-
mussen and Williams, 2006)

w ∼ N (0,Σp). (80)

According to Bayes’ rule, the posterior of the parameters is proportional to
the product of the prior and likelihood

p(w|X,y)∝ exp(−1

2
w>Σ−1

p w) exp
(

− 1

2σ2
n

(y − Xw)>(y − Xw)
)

∝ exp
(

− 1

2
(w − w̄)>A(w − w̄)

)

, (81)

where A = 1

σ2
n
X>X+Σ−1

p , and w̄ = 1

σ2
n
A−1X>y. It tends out that the posterior

is a Gaussian distribution with mean w̄ and covariance A−1.

The predictive distribution for a test example x is given by averaging the
outputs of all possible linear models from the above Gaussian posterior

p(f(x)|x,X,y) =
∫

p(f(x)|x,w)p(w|X,y)dw

=N (
1

σ2
n

x>A−1X>y,x>A−1x). (82)

Now suppose we use a function φ(·) to map the inputs in the original space to a
feature space, and perform linear regression there. The predictive distribution
would be

p(f(x)|x,X,y) = N
( 1

σ2
n

φ(x)>A−1Φ>y, φ(x)>A−1φ(x)
)

, (83)

where Φ> = [φ(x1), . . . , φ(xm)], and A = 1

σ2
n
Φ>Φ + Σ−1

p . Using matrix trans-

formations such as the matrix inversion lemma, we can rewrite (83) as

p(f(x)|x,X,y) =N
(

φ(x)>ΣpΦ
>(K + σ2

nI)
−1y,

φ(x)>Σpφ(x) − φ(x)>ΣpΦ
>(K + σ2

nI)
−1ΦΣpφ(x)

)

, (84)
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where K = ΦΣpΦ
> (Rasmussen and Williams, 2006). Notice that in the above

formulation the terms related to the images in the feature space can be rep-
resented in the form of φ(x)>Σpφ(x′) with x and x′ in either the training or
test sets (Rasmussen and Williams, 2006). Define κ(x,x′) = φ(x)>Σpφ(x′). By
Theorem 7, we know that κ(x,x′) is a valid kernel function. In the Gaussian
process literature, it is often called the covariance function.

The function-space view of the Gaussian processes is given by the follow-
ing definition which describes a distribution over functions (Rasmussen and
Williams, 2006).

Definition 8 (Gaussian processes) A Gaussian process is a collection of
random variables, any finite number of which have a joint Gaussian distribu-
tion.

A Gaussian process is specified by its mean function and covariance function.
If we define the mean function m(x) and the covariance function k(x,x′) of a
real process f(x) as

m(x) = E[f(x)],

k(x,x′) = E

[(

f(x) −m(x)
)(

f(x′) −m(x′)
)]

, (85)

the Gaussian process can be written as

f(x) ∼ GP
(

m(x), k(x,x′)
)

. (86)

Fig. 3 shows samples of functions drawn from a specific Gaussian process.

[Fig. 3 about here.]

The Bayesian linear regression model f(x) = w>φ(x) with parameter prior
w ∼ N (0,Σp) can be cast into the above function-space view. It is simple to
see that the function values f(x1), . . . , f(xq) corresponding to any number of
inputs q are jointly Gaussian, and the mean and covariance are given by

E[f(x)] = E[w>]φ(x) = 0,

E[f(x)f(x′)] =φ(x)>E[ww>]φ(x′) = φ(x)>Σpφ(x′), (87)

where the second equation recovers our definition of the kernel function for the
weight-space view. In other words, now m(x) = 0 and k(x,x′) = κ(x,x′) =
φ(x)>Σpφ(x′).
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6 Computational issues of kernel methods

Implementation of kernel methods often involve eigen-decomposition of kernel
matrices or inversion of the sum of a kernel matrix and a scaled identity
matrix. The computational complexity of this operation is typically O(m3)
with m being the number of training examples. This can be very demanding
for large training sets, and therefore approximation algorithms are desirable.

Good low-rank approximations of kernel matrices are usually enough to deal
with the above problems. For example, the matrix inversion lemma can use
the low-rank decomposition to invert the sum of the kernel matrix and a scaled
identity matrix efficiently. Eigen-decomposition of kernel matrices can also be
converted to do the same operation on much smaller matrices. Here we just
give a pointer to some of the approximation methods. Interested readers can
refer to the corresponding literature for detailed implementation techniques.

Partial Gram-Schmidt orthogonalization (Hardoon, Szedmak and Shawe-Taylor,
2004) and incomplete Cholesky decomposition (Bach and Jordan, 2002) are
good approaches for finding low-rank approximations of kernel matrices. These
two approaches are essentially equivalent, since performing a Cholesky de-
composition of the kernel matrix is equivalent to performing Gram-Schmidt
orthogonalization in the feature space (Shawe-Taylor and Cristianini, 2004).
In other words, incomplete Cholesky decomposition can be viewed as the dual
implementation of the partial Gram-Schmidt orthogonalization.

The sparse greedy matrix approximation (Smola and Schölkopf, 2000) and
the Nyström approximation (Williams and Seeger, 2001) are two alternative
approaches. The idea of the former is to select a collection of basis functions
to obtain an approximate kernel matrix K̃ whose distance to the original ker-
nel matrix K is small. The Nyström approximation is much simpler, which
randomly chooses r rows/columns of K without replacement, and then sets
K̃ = Km,rK

−1

r,rKr,m, where Km,r is the m × r block of K and similar def-
initions apply to the other blocks. For a given r, the sparse greedy matrix
approximation produces a better approximation to K, but computationally
more demanding (Williams and Seeger, 2001).

7 Multiple kernel learning

In practical problems, for a given decision-making task, there can be multiple
different data sources. These data can be heterogeneous, which means that
they represent different properties (e.g., visual features or lingual features) or
have different forms (e.g., continuous value or discrete value). Consequently,
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using a different kernel to account for each of the data sources and then com-
bining them is sensible. In other cases, even if the data are homogeneous, we
may still want to adopt multiple kernels to capture more information. This
problem of learning a combination of multiple kernels is termed multiple kernel
learning (Lanckriet et al., 2004) and now is an active research topic (Argyriou
et al., 2006; Girolami and Rogers, 2005; Li and Sun, 2010; Micchelli and Pon-
til, 2005; Ong, Smola and Williamson, 2005; Ying and Zhou, 2007; Zien and
Ong, 2007). Here we review some multiple kernel learning methods, several of
which have sparsity regularizations (Bach, Lanckriet and Jordan, 2004; Rako-
tomamonjy et al., 2007), to provide a brief outline of the research progress.

The kernel learning approach proposed by Lanckriet et al. (2004) is to add to
the original optimization problems some extra constraints on the symmetric
kernel matrix K, e.g., by

K =
t
∑

i=1

µiKi,

µi ∈ R, i = 1, . . . , t,

K � 0,

trace(K) ≤ c, (88)

or

K =
t
∑

i=1

µiKi,

µi ≥ 0, i = 1, . . . , t,

K � 0,

trace(K) ≤ c, (89)

where t is the number of individual kernels, and then formulate the problem
in terms of semidefinite programming (SDP) (Boyd and Vandenberghe, 2004;
Shawe-Taylor and Sun, 2011). The advantages of the second set of constraints
over the first include reducing computational burden and facilitating the study
of some statistical properties of kernel matrices (Lanckriet et al., 2004). How-
ever, the learning problem would become intractable when the number of
training examples or kernels grow large.

Bach, Lanckriet and Jordan (2004) reformulated the problem and proposed a
sequential minimal optimization (SMO) algorithm to improve the efficiency.
They used second-order cone programming (SOCP) and Moreau-Yosida reg-
ularization to derive the SMO algorithm and made multiple kernel learning
applicable for medium-scale problems. The corresponding KKT conditions not
only lead to support vectors, but also to ‘support kernels’ which means a sparse
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combination of candidate kernels can be expected. Sonnenburg et al. (2006)
adopted semi-infinite liner programming (SILP) to formulate the multiple ker-
nel learning problem, based on which they iteratively solved a standard SVM
problem with a single kernel and a linear program whose constraints increase
with iterations. This approach makes multiple kernel learning applicable to
large-scale problems. Later, Rakotomamonjy et al. (2007) further improved
the efficiency by using a formulation of a weighted 2-norm regularization with
sparsity considerations imposed on the weights. Evidence show that it is glob-
ally faster than the mentioned SILP approach but with more kernels selected.

Argyriou et al. (2006) considered multiple kernel learning with infinite num-
ber of basic kernels. In particular, kernels are selected from the convex hull of
continuously parameterized kernels. Making use of the conjugate function and
von Neumann minimax theorem (Micchelli and Pontil, 2005), they adopted a
greedy algorithm to solve the optimization problem, where the DC (difference
of convex functions) programming techniques that attempt to optimize a non-
convex function by the difference of two convex functions (Horst and Thoai,
1999) were used to optimize a subroutine of the algorithm. Experimental re-
sults indicated the advantage of working with a continuous parameterization
over a predesignated finite number of basic kernels.

For Bayesian multiple kernel learning, recently, Sun and Xu (2011) proposed a
new variational approximation for infinite mixtures of Gaussian processes. The
mixtures of Gaussian processes have the advantages of characterizing varying
covariances or multimodal data and reducing the cubic computational com-
plexity of the single Gaussian process model (Meeds and Osindero, 2006; Ras-
mussen and Ghahramani, 2002; Tresp, 2001). They used mean field variational
inference and a truncated stick-breaking representation of the Dirichlet pro-
cess to approximate the posterior of latent variables, and applied the approach
to traffic prediction problems.

8 Applications

The applications of kernel methods and SVMs are rather broad. Here we just
list some of its typical applications.

Biometrics refers to the identification of humans based on their physical or
behavioral traits, which can be used for access control. Typical methods for
biometrics include face recognition, signature recognition and EEG-based bio-
metrics (Sun, 2008). Over the past years, kernel methods and SVMs have been
successfully applied to this field (Tefas et al., 2001; Justino et al., 2005).

Intelligent transportation systems are an important application platform for
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machine learning techniques. Representative applications include pedestrian
recognition, traffic flow forecasting, and traffic bottleneck identification. Ker-
nel methods including Gaussian processes have achieved very good perfor-
mance in this area (Munder and Gavrila, 2006; Sun and Xu, 2011).

Research on brain-computer interfaces which aim to enable severely disabled
people to drive communication or control devices, arouses many interests re-
cently. The discrimination of different brain signals is essentially a pattern
classification problem, where SVMs have been shown to be a very useful
tool (Garrett et al., 2003; Sun et al., 2007).

Natural language processing, e.g., text classification and retrieval, is an active
research field which has used a lot of machine learning methods. Kernel tech-
niques applied to this task include kernel design, supervised classification and
semi-supervised classification (Collins and Duffy, 2001; Joachims, 1998; Sun
and Shawe-Taylor, 2010).

9 Open issues and problems

In this article, we have presented some key techniques for using kernel meth-
ods, such as how to derive the dual formulation of an original method, what
are essential conditions for valid kernels, typical kernel functions, and how
to construct new kernels. This constitutes the foundations of kernel methods.
Then, we introduced some fundamental kernel methods which are well-known
and now used widely for unsupervised or supervised learning. In particular,
as a representative of Bayesian kernel methods, Gaussian processes were in-
troduced.

The computational complexity of kernel methods is usually cubic with re-
spect to the number of training examples. Therefore, reducing the computa-
tional costs has been an important research topic. For this problem, we briefly
pointed out four methods—partial Gram-Schmidt orthogonalization, incom-
plete Cholesky decomposition, sparse greedy matrix approximation and the
Nyström approximation, and explained the idea on why they can be used to
alleviate the computational burden.

In addition, we have introduced the recent developments on multiple kernel
learning which has shown its merit over single kernel learning in the past
few years. However, for multiple kernel learning, we have to learn both the
combination coefficients for candidate kernels and other parameters inherited
from traditional single kernel learning. Therefore, there are various efforts to
reformulate the optimization problem to accelerate learning, and indeed people
have achieved some encouraging results.
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Studies on kernel methods can be further deepened in different aspects, e.g.,
the above mentioned multiple kernel learning, and combining kernel techniques
with other machine learning mechanisms. Another line of important open
problems would be performing theoretical analysis on the generalization errors
of newly emerging kernel methods, such as the multitask SVMs and multitask
multiclass SVMs. We hope this article is helpful to promote the applications
and theoretical developments of kernel methods in the future.
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Fig. 1. One instantiation of the feature mapping using a Gaussian kernel.
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Fig. 2. An illustration of the margin and classification hyperplane for the linearly
separable binary case.
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Fig. 3. Samples from a Gaussian process with zero mean and a Gaussian kernel as
the covariance function.
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