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Abstract. Kernel regression is a popular non-parametric fitting technique. It aims at
learning a function which estimates the targets for test inputs as precise as possible.
Generally, the function value for a test input is estimated by a weighted average of
the surrounding training examples. The weights are typically computed by a distance-
based kernel function and they strongly depend on the distances between examples. In
this paper, we first review the latest developments of sparse metric learning and kernel
regression. Then a novel kernel regression method involving sparse metric learning,
which is called kernel regression with sparse metric learning (KR SML), is proposed.
The sparse kernel regression model is established by enforcing a mixed (2, 1)-norm
regularization over the metric matrix. It learns a Mahalanobis distance metric by a gra-
dient descent procedure, which can simultaneously conduct dimensionality reduction
and lead to good prediction results. Our work is the first to combine kernel regression
with sparse metric learning. To verify the effectiveness of the proposed method, it is
evaluated on 19 data sets for regression. Furthermore, the new method is also applied
to solving practical problems of forecasting short-term traffic flows. In the end, we
compare the proposed method with other three related kernel regression methods on
all test data sets under two criterions. Experimental results show that the proposed
method is much more competitive.

Keywords: Kernel regression, sparse metric learning, mixed norm regularization, gra-
dient descent algorithm, traffic flow forecasting.

1. Introduction

One of the oldest and most commonly used algorithms for regression is kernel regression.
Kernel regression is a non-parametric technique rooting in statistics for estimating the condi-
tional expectation of a random variable. In non-parametric regression, the conditional expec-
tation of a variable Y given a variable X is written as E(Y|X) = m(X), where the unknown
function m is approximated by a locally weighted average, using a kernel as the weighting
function [1–3]. The standard regression task is to estimate an unknown function based mere-
ly on a training set of evaluations that are possibly noisy. The target value of a test input is a
real number and it is computed using a weighted average of the function values observed at
its k nearest neighbors in the training set. The weight of each training point is obtained by a
kernel function, which typically decays rapidly with the distance between itself and the test
point. This is also the reason why the target value of a test point has a strong dependence on
its nearby training points [4].

The traditional kernel regression (KR) combines the Euclidean metric with Gaussian k-
ernels [5]. Using Euclidean as its learning metric, KR is popular for its simplicity. However,
there exist two important drawbacks in KR. Firstly, KR adopts Euclidean metric on the input
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space, which may preclude its usage on some data sets. For example, if a data set whose
features represent completely disparate quantities, the Euclidean metric is meaningless to it.
Secondly, Euclidean metric assigns the same weight 1 to all the features. It’s known that
on most of data sets, some features are possibly irrelevant to the regression task. These fea-
tures ideally should not contribute to this distance metric at all. Therefore, learning a proper
distance metric for kernel regression becomes an important issue.

As a well-established nonlinear regression method being widely used in statistics, kernel
regression has attracted much attention from researchers. In 2006, Takeda et al. proposed
a novel kernel regression algorithm for image denoising [6]. They learn a Mahalanobis ma-
trix from statistics of the local pixel space. However, their algorithm is restricted to specific
applications in some sense and cannot be generalized to all cases. At the same year, Keller
et al. applied neighborhood component regression to function approximation for reinforce-
ment learning [7]. Among all the algorithms related to kernel regression, the most popular
one is proposed by Weinberger et al., which they refer to as Metric Learning for Kernel Re-
gression (MLKR) [4]. Their work can be interpreted as learning a Mahalanobis matrix for a
Gaussian regression kernel via minimization of loss function. However, MLKR just learns
a Mahalanobis metric for kernel regression, which does not involve sparse metric learning.
Currently, sparse metric learning is a hot issue in machine learning and data mining. Its ob-
jective is to learn a sparse metric which is capable of removing redundancy or noise in data
and improving the performance of supervised or unsupervised learning algorithms [8–10,13].
Over the past several years, many sparse metric learning algorithms have been proposed, in-
cluding sparse metric learning via linear programming, sparse metric learning via smooth
optimization, and so on [11–13]. Unluckily, all the currently published algorithms on sparse
metric learning are about classification. Classification refers to an algorithmic procedure for
assigning a given piece of input data into one of a given number of categories. The number
of categories is finite and the categories are discrete. As to regression, it deals with approxi-
mating the probability distribution underlying the data and finding out the most precise target
values for the input data. Currently, few sparse metric learning methods are proposed basing
on kernel regression issues.

Inspired by the latest innovations on sparse metric learning for classification [12], we
propose a novel kernel regression method to learn a sparse metric over the input space. This
metric gives rise to an appropriate kernel function with parameters determined completely
from the data. In addition to performing regression, our algorithm can also remove redun-
dancy or noise in data leading to dimensionality reduction. We target the objective of sparse
metric learning directly by enforcing a mixed (2, 1)-norm regularization over the metric ma-
trix. A Mahalanobis metric is learnt by minimizing the loss function and the metric matrix’s
mixed (2, 1)-norm regularization. Experiments on 19 data sets for regression are performed.
The proposed method is also applied to forecast short-term traffic flows to verify its effec-
tiveness. Because KR SML has the capability of dimensionality reduction, we therefore add
another KR model into the comparison. The KR model is referred to as KR PCA, which
first conducts dimensionality reduction on the regressors via principal component analysis
(PCA) [36] and then runs KR on the leading principal components. Comparisons with three
related kernel regression algorithms under two criterions reveal the competitiveness of the
proposed method. In addition, our work is the first to combine kernel regression with sparse
metric learning.

A preliminary study of the proposed kernel regression method applied to low-dimensional
traffic flow forecasting was presented at a conference [14]. In this paper, we introduce the
detailed framework, provide theoretical justifications, and evaluate the proposed method on
more standard regression data sets as well as high-dimensional traffic flow forecasting. The
paper is organized as follows. In the next section, some related works about kernel regression
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are briefly reviewed. The notations establishment and kernel regression problem settings are
also presented in this section. In Section 3, we thoroughly introduce the proposed method,
namely kernel regression with sparse metric learning(KR SML). Section 4 reports the exper-
imental results on 19 benchmark data sets for regression, including comparisons with other
three related kernel regression methods. In Section 5, the proposed method is applied to
forecasting short-time traffic flows. Finally, conclusions and future work are presented in
Section 6.

2. Kernel Regression and Distance Metric Learning

Our work integrates kernel regression and sparse metric learning. In this section, we will give
a brief review on related works including the traditional kernel regression algorithm with the
Euclidean metric (KR), Mahalanobis metric learning for kernel regression (MLKR) and latest
developments in distance metric learning. In the following subsections, some notations used
in this paper will be introduced before presenting these specific techniques.

2.1. Basic Notations

Let (x⃗, y) represent an example with input x⃗ = (x1, x2, . . . , xd) ∈ Rd and its correspond-
ing target value y. In regression case, the target value y ∈ R and y is continuous. As
for a classification issue, y is the label information of an example and it belongs to an in-
teger set (to simplify the classification task, we adopt an integer set to represent the label
information). A data set with n examples is denoted by Z = {(x⃗i, yi)

n
i=1}. The space of

symmetric d by d matrices is denoted by Sd. If S ∈ Sd is positive semi-definite, we write
it as S ≥ 0. The cone of positive semi-definite matrices is denoted by Sd

+ and we denote
the set of d by d orthonormal matrices by Od. The trace operation for matrices is denoted
by Tr(·), which is the sum of all the diagonal elements of a matrix [15]. For any matrix
X,Y ∈ Rn×d, ⟨X,Y ⟩ := Tr(XTY ). In addition, any d by d diagonal matrix is denoted by
diag(D11, D22, . . . , Ddd), where D11, D22, . . . , Ddd are the diagonal elements of the matrix.

A Mahalanobis metric is a generalization of the Euclidean metric, in which the squared dis-
tance between two examples x⃗i and x⃗j is defined as

d(x⃗i, x⃗j) = ∥x⃗i − x⃗j∥2 = (x⃗i − x⃗j)
TM(x⃗i − x⃗j), (1)

where M can be any symmetric positive semi-definite real matrix. Setting M as the identity
matrix, it recovers the standard Euclidean metric. Actually, the Mahalanobis distance can be
expressed as the Euclidean distance after a mapping x⃗→ Ax⃗:

d(x⃗i, x⃗j) = ∥A(x⃗i − x⃗j)∥2 = (x⃗i − x⃗j)
TATA(x⃗i − x⃗j). (2)

Therefore, M can be decomposed as

M = ATA, (3)

where A is the decomposition of matrix M . For simplification, we denote the difference of
two vectors by x⃗ij = x⃗i − x⃗j .
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2.2. Kernel Regression

Kernel regression is an estimation technique for fitting data [5]. Standard kernel regression
usually combines the Gaussian kernel function and Euclidean metric. Its task is to estimate
an unknown function f : Rd → R based merely on a training set of possibly noisy examples.
In kernel regression, the target value of every test input is estimated as

yi = f(x⃗i) + ε, (4)

where ε represents some small noise.

Nadaraya and Watson proposed to estimate f as a locally weighted average, using a kernel
as the weighting function [2, 3]. Therefore, the estimated value ŷi ≈ f(x⃗i) is approximated
by

ŷi =

k∑
j=1

yjKij

k∑
j=1

Kij

, (5)

where k is the number of the test input x⃗i’s nearest neighbors, Kij is the value of the kernel
function based on the distance between x⃗i and its corresponding nearest neighbor x⃗j .

The kernel function Kij = K(d(x⃗i, x⃗j)) is nonnegative. It is formulated as follows

K(x⃗i, x⃗j) =
1

σ
√
2π

e−
d(x⃗i,x⃗j)

2σ2 , (6)

where d(x⃗i, x⃗j) is the Mahalanobis distance between x⃗i and x⃗j with M being the metric
matrix. Setting M to be the identity matrix I , it refers to the Euclidean metric.

The quadratic error loss function of kernel regression is generally formulated as L:

L =
n∑

i=1

(yi − ŷi)
2, (7)

where ŷi represents the estimator of yi and is computed by formula (5). L represents the
accumulated quadratic leave-one-out regression error of all test examples.

Metric learning for kernel regression (MLKR) aims at training a Mahalanobis matrix by
minimizing the error loss of all training examples:

L =

Ntraining∑
i=1

(yi − ŷi)
2. (8)

A transformation matrix A, the decomposition of matrix M is learnt by a gradient descent
procedure:

∆A = −α∂L
∂A

, (9)

where α is an adaptive step-size parameter. Then the Mahalanobis matrix is obtained by
M = ATA, and it is used to estimate the targets of test inputs.
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2.3. Distance Metric Learning

Metric learning is an important research area in machine learning and data mining. A metric
is a distance function on a set of points, mapping pairs of points into the nonnegative real
numbers. The objective of metric learning is to find a proper distance function to make the
distance between similar examples as small as possible while enlarging the distance between
dissimilar examples. A proper metric d(·, ·) obeys four properties [8]:

• Nonnegativity: d(x⃗i, x⃗j) ≥ 0,

• Symmetry: d(x⃗i, x⃗j) = d(x⃗j, x⃗i),

• Triangle inequality: d(x⃗i, x⃗j) + d(x⃗i, x⃗k) ≥ d(x⃗j, x⃗k),

• Distinguishability: d(x⃗i, x⃗j) = 0⇔ x⃗i = x⃗j .

For many machine learning algorithms, the choice of a distance metric has a critical
influence on their performance. Take the kNN algorithm as an example [12, 20], most im-
plementations of kNN adopt the simple Euclidean as their distance metrics. As mentioned in
the previous section, Euclidean metric has two important drawbacks, which badly prevents
the algorithms from performing well. Furthermore, it has been revealed that even a simple
linear transformation of the input features can lead to significant improvements in kNN clas-
sification [8]. Distance metric learning has attracted much attention from researchers and a
number of improved algorithms have been proposed. It is already demonstrated that kNN
algorithms can be greatly improved by learning an appropriate distance metric from labeled
examples [10, 18, 22].

A good distance metric should generally preserve the proximity relationship of the data
in the transformed space. That is, the distance between similar examples should be relative-
ly smaller than that between dissimilar examples in the transformed space. In supervised
classification, the label information can tell us whether two examples are in the same class
(similar) or in different classes (dissimilar). For semi-supervised clustering, the side infor-
mation conveys the information that a couple of examples are similar or dissimilar to each
other [12, 13, 21]. Throughout most of the published works on metric learning for classifica-
tion, they have two points in common.

• Firstly, triplets containing 3 examples with two kinds of labels are constructed. That
is,

T = {τ = (i, j, k) : i, j, k ∈ N, ∀(x⃗i, x⃗j) ∈ S and (x⃗j, x⃗k) ∈ D},

where S represents pairs of similar examples and D represents the dissimilar pairs
according to the label information.

• Secondly, the distances between examples should always satisfy some constraints: the
distance of similar examples are smaller than that of dissimilar examples.

∥A(x⃗j − x⃗k)∥2 ≥ ∥A(x⃗i − x⃗j)∥2 + 1,∀(i, j, k) ∈ T.

Algorithms of metric learning for classification have strongest dependence on the label in-
formation. Among the existing distance metric learning algorithms, distance metric learning
for large margin nearest neighbor classification (LMNN) [8] is one of the most prominen-
t. LMNN is motivated from the large margin concept. It learns a Mahalanobis metric with
the goal that the k-nearest neighbors of the test input always belong to the same class while
examples from different classes are separated by a large margin.
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Distance metric learning usually attempts to learn a distance function f with a full-rank
square metric matrix M from the given data set. However, the observed data are proba-
bly contaminated by noise or redundancy, especially for high-dimensional data sets. If the
contaminated data are not pre-processed to remove the irrelevant information in data, the
accuracy of related algorithms may be degraded to an extent. Learning a full-rank metric
matrix can not suppress the noise and will instead make the learning process time-consuming
and expensive. To overcome the drawbacks of existing distance metric learning algorithms,
a number of sparse metric learning approaches have been proposed [11–13]. In particu-
lar, the latest innovation of metric learning proposes a unified framework for sparse metric
learning (GSML) [12]. Existing sparse metric learning algorithms are able to learn a good
distance metric as well as a sparse or low-dimensional representation. Specifically, GSML
directly targets the shortcomings of existing distance metric learning algorithms and has been
demonstrated considerable improvement.

GSML bases itself on two principal hypotheses:
• the distance between similar examples should be relatively smaller than that of dissim-

ilar examples;
• a good distance metric should have the capability of removing noise in data leading to

dimensionality reduction.
Therefore, to meet the first hypothesis, the distances of a triplet in the transformed space

should satisfy a constraint condition:

∥A(x⃗j − x⃗k)∥2 ≥ ∥A(x⃗i − x⃗j)∥2 + 1, ∀(i, j, k) ∈ T, (10)

where A ∈ Rd×d is a transformation matrix. For the second hypothesis, any transformation
vector ˆ⃗xi = Ax⃗i should have fewer dimensions than the input vector x⃗i. Let Ai denote the
i-th row vector of A, if ∥Ai∥=0, then the i-th entry of x⃗i becomes 0. Thus, to get a sparse
solution, we can enforce a L1-norm regularization across the vector (∥A1∥, ∥A2∥, . . . , ∥Ad∥),

i.e.,
d∑

i=1

∥Ai∥. That is, the sparse representation is realized by enforcing a mixed (2, 1)-norm

regularization over the transformation matrix A. Ideally, the principal components of ˆ⃗xi are
expected to be sparse. Therefore, an extra orthonormal transformation matrix U ∈ Od is
introduced and ˆ⃗xi = AUx⃗i.

To avoid the situation that there is no solution for equation (10), slack variables ξ are
introduced. After a serials of transformation, the sparse metric learning formulation is pro-
posed [12, 13],

min
U∈Od

min
M∈Sd

+

∑
τ ξτ + γ ∥M∥(2,1)

s.t. 1 + x⃗T
ijU

TMUx⃗ij ≤ x⃗T
jkU

TMUx⃗jk + ξτ ,
ξτ ≥ 0, ∀τ = (i, j, k) ∈ T.

(11)

With reference to [13, 15, 17, 19], problem (11) is equivalent to the following convex opti-
mization problem:

min
M∈Sd

+

∑
τ ξτ + γTr(M)

s.t. 1 + x⃗T
ijMx⃗ij ≤ x⃗T

jkMx⃗jk + ξτ ,
ξτ ≥ 0,∀τ = (i, j, k) ∈ T.

(12)

By defining the hinge loss [z]+ =

{
z if z > 0
0 otherwise , the above problem can be transformed

into an unconstrained optimization problem:

min
M≥0

∑
τ
[1 + x⃗T

ijMx⃗ij − x⃗T
jkMx⃗jk]+ + γTr(LM). (13)
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Then the matrix M is obtained by a standard sub-gradient descent procedure.

3. Kernel Regression with Sparse Metric Learning (KR SML)

We aim at learning a low-rank Mahalanobis matrix for kernel regression. Besides preserv-
ing the proximity relationship of examples in the transformed space, a good distance metric
should be able to effectively remove possible noise in data leading to dimensionality reduc-
tion. Therefore, for the purpose of noise suppression, the metric matrix defined by M should
be regularized. We will give a detailed explanation on how the metric matrix can be regu-
larized for forcing sparsity. In the end, we introduce the sparse regularization of the metric
matrix into the quadratic error loss function of kernel regression to build a sparse metric
learning model for kernel regression.

As mentioned in previous sections, existing distance metric learning algorithms usual-
ly attempt to learn a distance function f with a full-rank square metric matrix M from the
given data set. However, the observed data are probably contaminated by noise, especially
for high-dimensional data sets. The noise in the data may prevent the algorithms from per-
forming well if the contaminated data are not pre-processed to remove the noise. Worse still,
learning a full-rank metric matrix can not suppress the noise but instead will make the learn-
ing process time-consuming and expensive. Therefore, to conquer the drawbacks of existing
distance metric learning algorithms, sparse metric learning emerges as required. However,
all the existing sparse metric learning algorithms are about classification, none for regression.
Therefore, to learn a sparse metric for kernel regression becomes meaningful and necessary.

The Mahalanobis metric is learnt in the transformed space, after the mapping:

x⃗→ Ax⃗,

where A ∈ Rd×d is the transformation matrix and the metric matrix M can be obtained by
M = ATA. With the purpose that a good distance metric should be able to remove noise in
data leading to dimensionality reduction. Ideally, the principal components of input vector x⃗i

are expected to be sparse. Therefore, any transformation vector ˆ⃗xi (ˆ⃗xi = Ax⃗i ) should have
fewer dimensions than its corresponding input vector x⃗i. As a 1-norm regularization over a
vector can produce a sparse vector, certain columns of A should be expected to become zero
vectors. That is the basic motivation of sparse metric learning [13].

Let Ai denote the i-th row vector of A, if ∥Ai∥=0, then the i-th entry of x⃗i becomes
0. Thus, enforcing a L1-norm regularization over the vector (∥A1∥, ∥A2∥, . . . , ∥Ad∥), i.e.,
d∑

i=1

∥Ai∥, leads to a sparse representation of A. Thereinto,
d∑

i=1

∥Ai∥ represents the mixed

(2, 1)-norm regularization of matrix A. Therefore, the sparse representation can be realized
by enforcing a mixed (2, 1)-norm regularization over the transformation matrix A. On the
other hand, the metric matrix M = ATA = (M1,M2, . . . ,Md). It is obvious that Mi ≡ 0
is equivalent to Ai ≡ 0. Motivated by this observation, instead of enforcing a L1-norm reg-
ularization over the vector (∥A1∥, ∥A2∥, . . . , ∥Ad∥), L1-norm regularization can be enforced
across the vector (∥M1∥, ∥M2∥, . . . , ∥Md∥). The (2, 1)-norm regularization over M is denot-

ed by ∥M∥(2,1) =
d∑

i=1

∥Mi∥. A similar mixed (2, 1)-norm regularization is used for multi-task

learning and multi-class classification to learn the sparse representation shared across differ-
ent tasks or classes [17, 18].

The task of kernel regression is to estimate the target values for test inputs as precise as
possible. In other words, the goal of kernel regression is to make the accumulated quadrat-

ic regression error, the concrete form of which is L =
n∑

i=1

(yi − ŷi)
2, as small as possible.
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Generally speaking, if a kernel regression algorithm with a specific distance metric performs
well on the training data, it often gets a good performance on the test data as well. There-
fore, following the idea of MLKR [8], we train a Mahalanobis metric matrix by the training
data. Bearing the objective of kernel regression and sparse metric learning in mind, our work
would ensure that the error is small and the metric matrix is sparse. Therefore, a Mahalanobis
metric matrix is learnt by making the loss function of kernel regression and the mixed (2, 1)-
norm regularization over M to a minimum. That is, the objective function of the proposed
kernel regression algorithm (KR SML) is the minimum of L(M), which is represented as
follows

L(M) =

Ntraining∑
i=1

(yi − ŷi)
2 + µ∥M∥(2,1). (14)

The mixed (2, 1)-norm regularization over M in the objective function is non-convex and
non-differentiable. Actually, the minimum of the mixed (2, 1)-norm regularization over M
is equivalent to the trace of M [13], which is presented as Theorem 1.

THEOREM 1. min∥M∥(2,1) = Tr(M)

Proof. By the eigen-decomposition of M there exists V ∈ Od such that M = V Tλ(M)V .
Thereinto, the diagonal matrix λ(M) = diag(λ1, λ2, . . . , λd), where λi is the i-th eigen-value
of M . Therefore, ∥M∥(2,1) = ∥V Tλ(M)V ∥(2,1). Observing that

∥V Tλ(M)V ∥(2,1) =
∑

i (
∑

j (
∑

k VkiλkVkj)
2)

1
2

=
∑

i (
∑

k,k′ (
∑

j VkiVk′i)λkVkjλk′Vk′j)
1
2

=
∑

i (
∑

k λ
2
kV

2
ki)

1
2 ,

(15)

in the last equality, we use the fact that V ∈ Od, i.e.,
∑

j VkjVk′j = δkk′ . Applying Cauchy-
Schwartz’s inequality implies that

∑
k λkV

2
ki ≤ (

∑
k λ

2
kV

2
ki)

1
2 (
∑

k V
2
ki)

1
2 = (

∑
k λ

2
kV

2
ki)

1
2 .

Putting this back into equation (15) and the following result is obtained

∥M∥(2,1) ≥
∑

i

∑
k
λkV

2
ki =

∑
k
λk = Tr(M). (16)

If we make V the identity matrix I , then the minimum of
∑

i (
∑

k λ
2
kV

2
ki)

1
2 is equal to Tr(M).

That is

min ∥M∥(2,1) = Tr(M). (17)

Therefore, the objective function (14) is equivalent to

L(M) =

Ntraining∑
i=1

(yi − ŷi)
2 + µTr(M). (18)

With reference to [4,24] and making use of ∂Tr(M)
∂M

= I , the gradient of (18) with respect
to M can be stated as

∂L(M)

∂M
= 2

Ntraining∑
i=1

(ŷi − yi)

k∑
j=1

(ŷi − yj)Kijx⃗ijx⃗
T
ij

k∑
j=1

Kij

+ µI. (19)
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After setting the initial value of M , we adjust its subsequent values using a gradient
descent procedure. In each iteration, we have to keep M positive semi-definite. Let Gt

denote the gradient of the objective function at the t-th iteration, then Gt can be stated as

Gt= 2

Ntraining∑
i=1

(ŷi − yi)

k∑
j=1

(ŷi − yj)Kijx⃗ijx⃗
T
ij

k∑
j=1

Kij

+ µI. (20)

At each step, the metric matrix M can be updated by

M(t) = M(t−1) − αGt, (21)

where α is a small positive step-size constant. We then project the matrix M(t) to the cone
of positive semi-definite matrices by the eigen-decomposition of matrix M(t), i.e., M(t) =
P TΛP , where P is the eigen-vector matrix, and Λ is the diagonal matrix with the diagonal
elements λi being the eigen-values of M(t). To keep M(t) semi-definite, we set M(t) =
P TΛ+P , where Λ+ = diag(max{0, λ1},max{0, λ2}, . . . ,max{0, λd}).

According to the above details, the proposed algorithm is illustrated as follows.

• Begin

• Input Matrix M , step-size α for adapting M , step-size µ for adapting L(M), stop
criterion θ, t← 0.

– Do t← t+ 1

– Compute the gradient of objective function Gt at the t-th iteration.

– M(t) ←M(t−1) − αGt

– M(t) ← P TΛ+P

– Compute the value of objective function L(Mt) at the t-th iteration.

– Until |L(Mt)− L(Mt−1)| ≤ θ.

• Output M

• End

4. Experiments

The objective of the proposed kernel regression algorithm is to learn a good distance metric
for kernel regression and simultaneously remove the noise of data leading to dimensionality
reduction. In our experiments, we compare the proposed algorithm with three other compet-
ing kernel regression algorithms KR, MLKR, and KR PCA on 19 standard regression data
sets. Information about the data sets, experimental settings and results will be presented in
this section in detail.
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4.1. Data Description and Configuration

The first 16 standard regression data sets utilized in our experiments are from Data for E-
valuating Learning in Valid Experiments (Delve)1. They are Kin family of data sets and
Pumadyn family of data sets, More information about the specific data set is available at
http://www.cs.toronto.edu/˜delve/data/kin/desc.html and http://
www.cs.toronto.edu/˜delve/data/pumadyn/desc.html. They are generat-
ed by two synthetic robot arms. Half of the sixteen data sets have 32 dimensions and the
other half are of dimension 8. Each data set has already been randomly split into four disjoint
training sets of size n = 1024 and four corresponding test sets of the same size. As a result,
we get four training sets and four test sets. The final result is the mean of the results of the
four individual runs. There are other papers that have used the DELVE data sets in assessing
model performance [34, 35]. The last 3 data sets are from UCI machine learning repository:
http://archive.ics.uci.edu/ml/ for regression. For the last 3 data sets, the final
results are given as an average over 10 random splits of the data. The detailed information
about the 19 data sets are listed in Table 1, where dataset represents the name of a data set, n
represents the size of the data set, and d represents the number of dimensions.

The target value of a test input is estimated by a locally weighted average of values of its
k nearest neighbors in the training set. In our implementation we only considered the k = 30
nearest neighbors of each test examples. The trade-off parameter µ in the objective function
of our proposed algorithm and the step-size constant α used in KR SML and MLKR are
tuned by 10-fold cross-validation on training sets. Specifically, KR SML consists of setting
the initial value of metric matrix M , and then adjusting its values using a gradient descent
procedure. In our experiments, we follow [4] to initialize it with the identity matrix.

Table 1: The 19 data sets of regression used for experiments

dataset n d dataset n d

kin8fh 8096 8 puma-8fh 8096 8
kin8fm 8096 8 puma-8fm 8096 8
kin8nh 8096 8 puma-8nh 8096 8
kin8nm 8096 8 puma-8nm 8096 8
kin32fh 8096 32 puma-32fh 8096 32
kin32fm 8096 32 puma-32fm 8096 32
kin32nh 8096 32 puma-32nh 8096 32
kin32nm 8096 32 puma-32nm 8096 32
Concrete 1030 8 housing 506 13
parkinsons 5875 21

4.2. Experimental Results

The proposed method has the capability of dimensionality reduction. We provide another KR
model with principal component analysis (PCA) [36], one of the most commonly used algo-
rithms for dimensionality reduction, for comparison. The model is referred to as KR PCA.
It first conducts dimensionality reduction on the regressors via principal component analysis
and then runs KR on the leading principal components. The other two competing methods
are KR and MLKR. To compare the performance of the proposed algorithm with other three
related kernel regression algorithms, KR, MLKR, and KR PCA, two widely-used criterions

1Delve: http://www.cs.toronto.edu/˜delve/data/datasets.html
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are adopted to evaluate experimental results. They are root mean squared error (RMSE) and
mean absolute relative error (MARE), respectively, which are formulated as follows

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2, (22)

and

MARE =
1

n

n∑
i=1

|yi − ŷi|
yi

. (23)

Besides, we also compare the accumulated quadratic leave-one-out regression error of test

examples L =
n∑

i=1

(yi − ŷi)
2, where ŷi is the estimator of yi and n is the number of test ex-

amples. Moreover, we provide the performance in terms of dimensionality reduction as well.

Table 2: Experimental results based on RMSE and the final rank of metric matrix M learnt by KR SML.

datasets KR MLKR KR PCA KR SML d Rank(M ) PCA d

kin8fh 0.0511 0.0485 0.0511 0.0456 8 5 8
kin8fm 0.0318 0.0274 0.0318 0.0181 8 6 8
kin8nh 0.1998 0.1806 0.1932 0.1791 8 6 8
kin8nm 0.1616 0.1206 0.1440 0.1130 8 7 8
kin32fh 0.4031 0.2722 0.4075 0.2671 32 12 29
kin32fm 0.3397 0.1272 0.3422 0.1207 32 4 29
kin32nh 0.4904 0.4897 0.5585 0.4789 32 26 16
kin32nm 0.4524 0.4517 0.5196 0.4326 32 15 16
puma-8fh 3.4018 3.3962 3.3894 3.3150 8 2 6
puma-8fm 1.5902 1.5502 1.5791 1.1136 8 2 6
puma-8nh 3.9231 3.9113 3.7784 3.4174 8 2 6
puma-8nm 2.8196 2.8087 2.4487 1.2511 8 2 6
puma-32fh 0.0214 0.0210 0.0293 0.0210 32 30 5
puma-32fm 0.0064 0.0050 0.0085 0.0050 32 30 5
puma-32nh 0.0335 0.0335 0.0416 0.0335 32 32 5
puma-32nm 0.0273 0.0273 0.0344 0.0273 32 32 5
Concrete 8.4746 8.4624 8.7907 8.1076 8 3 5
housing 5.9790 5.9772 7.4727 5.8919 13 8 2
parkinsons 0.0555 0.0555 0.0739 0.0465 21 20 3

Experimental results based on criterion RMSE of four kernel regression algorithms on
19 data sets are shown in Table 2. The bold number in the table represents that the kernel
regression algorithm in the corresponding column performs best on the data set of the cor-
responding row. The d column tells the original dimension of each data set. The Rank(M )
column reports the rank of the metric matrix M learnt by KR SML. The PCA d column
shows the final dimension of each data set learnt by PCA. To give an intuitive comparison,
we show the accumulated quadratic leave-one-out regression error of the four kernel regres-
sion algorithms in Fig. 1. The final results of four kernel regression algorithms based on
comparison criterion MARE are shown in Fig. 2.
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Figure 1: The accumulated regression error of KR, MLKR, KR PCA and KR SML on 19 data sets.
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Figure 2: MARE of KR, MLKR, KR PCA and KR SML on 19 data sets.
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4.3. Discussion

The objective of kernel regression is to estimate the target values for test inputs as precise
as possible to minimize the accumulated quadratic regression error. Therefore, the test error
L (or RMSE) is treated as the most important comparison criterion for kernel regression
algorithms. As is revealed by the experimental results presented in Table 2 and Fig. 1, the
proposed algorithm gets the best performance on all the 19 data sets. As to the comparison
criterion MARE, KR SML also outperforms the other three kernel regression algorithms on
most of data sets. In addition, KR SML is the only kernel regression algorithm that targets
the objective of sparse metric learning. According to data in the last three columns of Table 2,
the metric matrix M learnt by KR SML has lower rank than its original dimension on most
of data sets. If a sparse or low-rank metric matrix M is learnt, the performance of KR SML
is obviously much better than that of the other three competing kernel regression algorithms.
For the data sets puma-32nh and puma-32nm, KR SML cannot learn a sparse metric matrix
M . However, all the three kernel regression algorithms perform well on the two data sets. It
can be explained that the features of the two data sets are all meaningful to the distance metric.
That is, if the data are contaminated by noise, KR SML has the capability of learning a sparse
metric matrix leading to dimensionality reduction and the performance of KR is improved a
lot. On the other hand, if the data are not contaminated by noise, KR SML cannot learn a low-
rank metric matrix, but it can perform as well as the other two kernel regression algorithms.
As to KR PCA, it also has the ability to reduce dimensionality due to PCA, but it gets the
worst performance. This again demonstrates that PCA is easily affected by the scaling of
input features and ignores the important information for being totally unsupervised [4]. When
the noise become the leading PCA principal components, it tends to keep the noise and ignore
the signal. Therefore, we can conclude that KR SML can learn a good distance metric and
simultaneously remove noise in data leading to dimensionality reduction. As the first work
to combine kernel regression with sparse metric learning, KR SML is a promising and better
algorithm for kernel regression.

5. KR SML for Traffic Flow Forecasting

Short-term traffic flow forecasting is one of the most important and fundamental problems in
intelligent transportation systems (ITS). It contributes a lot to traffic signal control and con-
gestion avoidance. The benefits of ITS cannot be realized without the ability to forecast traffic
condition in the next time interval, for example, 5 minutes to half an hour. A good traffic con-
dition forecasting model will provide this ability and make traffic management more efficient.
There have been a variety of methods proposed for short-term traffic flow forecasting such
as Markov chain models, time series models, Bayesian networks, support vector machines
and kernel regression. In this paper, the proposed kernel regression algorithm KR SML is
applied to forecasting short-time traffic flow to evaluate its effectiveness.

The problem addressed in this section is to forecast the future traffic flow rates at given
roadway locations from the historical data on a transportation network. The data are from
Beijing’s Traffic Management Bureau. From the real urban traffic map, we select a repre-
sentative patch to verify the proposed approach, which is given in Fig. 3 [33]. Each circle
in the sketch map denotes a road junction. An arrow shows the direction of traffic flow,
which reaches the corresponding road link from its upstream link. Paths without arrows are
of no traffic flow records. Vehicular flow rates of discrete time series are recorded every
15 minutes. The recording period is 25 days (totally 2400 recorded entries) from March,
2002. In our experiment, the raw data are divided into two sets, 2112 recorded entries of the
first 22 days as the training set and the rest recorded entries as the test set. For evaluation,
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Figure 3: A patch of traffic map taken from the East Section of the Third Circle of Beijing City Map where the
UTC/SCOOT system is mounted.

experiments are performed with multiple randomly selected roads from Fig. 3.
Let x1, x2, x3, . . . , x2400 denote the original 2400 ordered recorded data of a road. First

the raw data have to be changed into examples of vector form. An example is represented
as (x⃗, y), where x⃗ ∈ Rd and y ∈ R [24]. In our experiment, the dimension of x⃗, d, and the
number of past flows used to forecast the current flow, k, are empirically set as 45 and 8,
respectively.

Table 3: The final rank of metric matrix M learnt by KR SML.

Road d Rank(M ) PCA d
Ba 45 25 35
Cf 45 35 35
Fe 45 26 34
Gb 45 39 32
Hi 45 41 36

Table 4: Training error comparison

MARE RMSE
R KR MLKR KR PCA KR SML KR MLKR KR PCA KR SML
Ba 0.229 0.148 0.293 0.140 279.10 177.30 298.54 148.61
Cf 0.130 0.118 0.231 0.114 134.58 116.29 198.15 106.15
Fe 0.209 0.112 0.265 0.112 341.53 169.00 363.81 157.08
Gb 0.235 0.174 0.309 0.155 170.00 135.88 179.37 88.15
Hi 0.245 0.168 0.390 0.161 182.26 113.91 194.07 92.01

The two criterions used to compare the performance of KR SML, KR PCA, MLKR and
KR in the above section are also adopted in this section. Detailed information about the rank
of the metric matrix M learnt by KR SML and the final dimension learnt by PCA for each
data set is presented in Table 3. In addition, performance comparison of the four algorithms
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Table 5: Test error comparison

MARE RMSE
R KR MLKR KR PCA KR SML KR MLKR KR PCA KR SML
Ba 0.238 0.157 0.302 0.152 318.87 202.92 333.68 193.89
Cf 0.115 0.106 0.226 0.102 137.91 115.80 209.99 105.15
Fe 0.204 0.117 0.263 0.107 363.12 191.11 386.50 166.83
Gb 0.243 0.172 0.284 0.152 178.15 148.13 185.72 100.64
Hi 0.242 0.160 0.353 0.152 198.48 119.25 205.46 102.97
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Figure 4: Forecasting results of KR, MLKR, KR PCA and KR SML for Gb.

based on criterions MARE and RMSE on training sets and test sets are reported in Table 4
and Table 5, respectively. In order to give an intuitive illustration of the forecasting perfor-
mance, we draw the forecasting results of Roadway Gb on the test set using KR, MLKR,
KR PCA and KR SML, which are shown in Fig. 4, where blue lines represent real recorded
data and red stars represent forecasted results. Real traffic flow forecasting results report-
ed in Table 3, Table 4 and Table 5 reveal that MLKR and KR SML are all superior to the
traditional kernel regression algorithm KR and KR PCA, which means metric learning can
effectively improve the performance of kernel regression algorithms. Different from MLKR,
the proposed KR SML is the first to combine kernel regression with sparse metric learning.
As shown in Table 3, only KR SML has the capability of learning a low-rank metric matrix.
Furthermore, KR SML gets much better forecasting results than that of MLKR, KR PCA,
and KR on almost all the data sets. Therefore, the conclusion can be drawn that the proposed
algorithm is better than KR, KR PCA, and MLKR. It can learn a good metric and effectively
remove noise in data leading to dimensionality reduction as well.
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6. Conclusion

In this paper, a new kernel regression algorithm with sparse metric learning, which we refer
to as KR SML is proposed. KR SML is realized by introducing a mixed (2, 1)-norm reg-
ularization over the metric matrix M into the objective function of kernel regression. By
minimizing the regression error function and the metric matrix’s mixed (2, 1)-norm regular-
ization, a sparse or low-rank metric matrix is learnt through a gradient descent procedure.
The proposed algorithm is the first to combine kernel regression with sparse metric learning.
KR SML is evaluated on 19 benchmark data sets for regression. Besides, it is also applied to
forecasting short-term traffic flows. For comparison purpose, three related kernel regression
algorithms KR, KR PCA and MLKR are also employed to serve as base lines. Two widely-
used criterions including the root mean square error RMSE and mean absolute relative error
MARE are adopted to compare the performance of the four kernel regression algorithm-
s. Experimental results of KR SML on 19 benchmark data sets reveal competitive results.
KR SML gets the best performance on almost all the data sets. Especially when a sparse
metric matrix is learnt, KR SML obviously outperforms the other three kernel regression al-
gorithms. Furthermore, experiments on real data of urban vehicular traffic flows forecasting
also indicate excellent results. The promising results demonstrate that KR SML is an effec-
tive and better kernel regression algorithm. It has the capability of learning a good distance
metric and simultaneously remove noise in data leading to dimensionality reduction.

KR SML targets the objective of sparse metric learning directly. It improves the perfor-
mance of kernel regression by learning a sparse distance metric. In the future, developing the
potential of KR SML in other domains is our pursuit.
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