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Abstract

This paper presents a dependent multi-output Gaussian process (GP) for modeling complex
dynamical systems. The outputs are dependent in this model, which is largely different
from previous GP dynamical systems. We adopt convolved multi-output GPs to model the
outputs, which are provided with a flexible multi-output covariance function. We adapt
the variational inference method with inducing points for learning the model. Conjugate
gradient based optimization is used to solve parameters involved by maximizing the vari-
ational lower bound of the marginal likelihood. The proposed model has superiority on
modeling dynamical systems under the more reasonable assumption and the fully Bayesian
learning framework. Further, it can be flexibly extended to handle regression problems.
We evaluate the model on both synthetic and real-world data including motion capture
data, traffic flow data and robot inverse dynamics data. Various evaluation methods are
taken on the experiments to demonstrate the effectiveness of our model, and encouraging
results are observed.

Keywords: Gaussian process, variational inference, dynamical system, multi-output
modeling

1. Introduction

Dynamical systems are widespread in the research area of machine learning. Multi-output
time series such as motion capture data, traffic flow data and video sequences are typical
examples generated from these systems. Data generated from these dynamical systems
usually have the following characteristics. 1) Implicit dynamics exist in the data, and the
relationship between the observations and the time indices is nonlinear. For example, the
transformation of the frames of a video over time is complex. 2) Possible dependency exists
among multiple outputs. For example, for motion capture data, the position of the hand
is often closely related to the position of the arm. A simple and straightforward method
to model this kind of dynamical systems is to use Gaussian processes (GPs), since GPs
provide an elegant method for modeling nonlinear mappings in the Bayesian nonparametric
learning framework (Rasmussen and Williams, 2006). Some extensions of GPs have been
developed in recent years to better model the dynamical systems. The dynamical systems
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modeled by GPs are called the Gaussian process dynamical systems (GPDSs). However, the
existing GPDSs have a limitation of ignoring the dependency among the multiple outputs,
that is, they may not make full use of the characteristics of data. Our work aims to model
the complex dynamical systems more reasonably and flexibly.

Gaussian process dynamical models (GPDMs) as extensions of the GP latent variable
model (GP-LVM) (Lawrence, 2004, 2005) were proposed to model human motion (Wang
et al., 2006, 2008). The GP-LVM is a nonlinear extension of the probabilistic principal
component analysis (Tipping and Bishop, 1999) and is a probabilistic model where the out-
puts are observed while the inputs are hidden. It introduces latent variables and performs
a nonlinear mapping from the latent space to the observation space. The GP-LVM pro-
vides an unsupervised non-linear dimensionality reduction method by optimizing the latent
variables with the maximum a posteriori (MAP) solution. The GPDM allows to model
nonlinear dynamical systems by adding a Markov dynamical prior on the latent space in
the GP-LVM. It captures the variability of outputs by constructing the variance of outputs
with different parameters. Some research of adapting GPDMs to specific applications was
developed, such as object tracking (Urtasun et al., 2006), activity recognition (Gamage
et al., 2011) and synthesis, and computer animation (Henter et al., 2012).

Similarly, Damianou et al. (2011, 2014) extended the GP-LVM by imposing a dynamical
prior on the latent space to the variational GP dynamical system (VGPDS). The nonlinear
mapping from the latent space to the observation space in the VGPDS allows the model
to capture the structures and characteristics of data in a relatively low dimensional space.
Instead of seeking a MAP solution for the latent variables as in GPDMs, VGPDSs used a
variational method for model training. This follows the variational Bayesian method for
training the GP-LVM (Titsias and Lawrence, 2010), in which a lower bound of the logarith-
mic marginal likelihood is computed by variationally integrating out the latent variables
that appear nonlinearly in the inverse kernel matrix of the model. The variational Bayesian
method was built on the method of variational inference with inducing points (Titsias, 2009).
The VGPDS approximately marginalizes out the latent variables and leads to a rigorous
lower bound on the logarithmic marginal likelihood. The model and variational parame-
ters of the VGPDS can be learned through maximizing the variational lower bound. This
variational method with inducing points was also employed to integrate out the warping
functions in the warped GP (Snelson et al., 2003; Lázaro-gredilla, 2012). Park et al. (2012)
developed an almost direct application of VGPDSs to phoneme classification, in which a
variance constraint in the VGPDS was introduced to eliminate the sparse approximation
error in the kernel matrix. Besides variational approaches, expectation propagation based
methods (Deisenroth and Mohamed, 2012) are also capable of conducting approximate in-
ference in GPDSs.

However, all the models mentioned above for GPDSs ignore the dependency among
multiple outputs, which usually assume that the outputs are conditionally independent.
Actually, modeling the dependency among outputs is necessary in many applications such
as sensor networks, geostatistics and time-series forecasting, which helps to make better
predictions (Boyle, 2007). Indeed, there are some recent works that explicitly considered
the dependency of multiple outputs in GPs (Álvarez et al., 2009; Álvarez and Lawrence,
2011; Wilson et al., 2012). Latent force models (LFMs) (Álvarez et al., 2009) are a recent
state-of-the-art modeling framework, which can model multi-output dependencies. Later, a

2



Variational Dependent Multi-output GPDS

series of extensions of LFMs were presented such as linear, nonlinear, cascaded and switch-
ing dynamical LFMs (Álvarez et al., 2011, 2013). In addition, sequential inference methods
for LFMs have also been developed (Hartikainen and Särkkä, 2012). Álvarez and Lawrence
(2011) employed convolution processes to account for the correlations among outputs to
construct a convolved multiple outputs GP (CMOGP) which can be regarded as a specific
case of LFMs. To overcome the difficulty of time and storage complexities for large data
sets, some efficient approximations for the CMOGP were constructed through the convo-
lution formalism (Álvarez et al., 2010; Álvarez and Lawrence, 2011). This leads to a form
of covariance similar in spirit to the so called deterministic training conditional (DTC)
approximation (Csató and Opper, 2001), fully independent training conditional (FITC) ap-
proximation (Quiñonero-Candela and Rasmussen, 2005; Snelson and Ghahramani, 2006)
and partially independent training conditional (PITC) approximation (Quiñonero-Candela
and Rasmussen, 2005) for a single output (Lawrence, 2007). The CMOGP is then enhanced
and extended to the collaborative multi-output Gaussian process (COGP) for handling large
scale cases (Nguyen and Bonilla, 2014). Besides CMOGPs, Wilson et al. (2012) combined
neural networks with GPs to construct a GP regression network (GPRN). Outputs in the
GPRN are linear combinations of the shared adaptive latent basis functions with input de-
pendent weights. However, these two models are neither introduced nor directly suitable for
complex dynamical system modeling. When a dynamical prior is imposed, marginalizing
over the latent variables is needed, which can be very challenging.

In this paper, we propose a variational dependent multi-output GP dynamical system
(VDM-GPDS). It is a hierarchical Gaussian process model in which the dependency among
all the observations is well captured. Specifically, the convolved process covariance function
(Álvarez and Lawrence, 2011) is employed to capture the dependency among all the data
points across all the outputs. To learn the VDM-GPDS, we first approximate the latent
functions in the convolution processes, and then variationally marginalize out the latent
variables in the model. This leads to a convenient lower bound of the logarithmic marginal
likelihood, which is then maximized by the scaled conjugate gradient method to find out
the optimal parameters.

The highlights of this paper are summarized as follows. 1) We explicitly take the depen-
dency among multiple outputs into consideration while other methods (Damianou et al.,
2011; Park et al., 2012) for GPDS modeling assume that the outputs are conditionally in-
dependent. In particular, the convolved process covariance functions are used to construct
the covariance matrix of the outputs. 2) We use the variational method to compute a lower
bound of the logarithmic marginal likelihood of the GPDS model. Compared to Damianou
et al. (2011), our model is more reasonable in specific practical settings, and more challeng-
ing as a result of involving complex formulations and computations. 3) Our model can been
seen as a multi-layer regression model which regards time indices as inputs and observations
as outputs. It can be flexibly extended to handle regression problems. Compared with other
dependent multi-output models such as the CMOGP, the VDM-GPDS can achieve much
better performance attributed to its latent layers. 4) Our model is applicable to general
dependent multi-output dynamical systems and multi-output regression tasks, rather than
being specially tailored to a particular application. In this paper, we adapt the model to
different applications and obtain promising results.
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An earlier short version of this work appeared in Zhao and Sun (2014). In this paper,
we add detailed derivations of the variational inference and provide the gradients of the
objective function with respect to the parameters. Moreover, we analyze the performance
and efficiency of the proposed model. In addition, we supplement experiments on real-world
data and all the experimental results are measured under various evaluation criteria.

The rest of the paper is organized as follows. First, we give the model for nonlinear
dynamical systems in Section 2, where we use convolution process covariance functions to
construct the covariance matrix of the dependent multi-output latent variables. Section 3
gives the derivation of the variational lower bound of the marginal likelihood function and
optimization methods. Prediction formulations are introduced in Section 4. Related work
is analyzed and compared in Section 5. Experimental results are reported in Section 6 and
finally conclusions are presented in Section 7.

2. The Proposed Model

Suppose we have multi-output time series data {yn, tn}Nn=1, where yn ∈ RD is an observa-
tion at time tn ∈ R+. We assume that there are low dimensional latent variables that govern
the generation of the observations and a GP prior for the latent variables conditional on
time captures the dynamical driving force of the observations, as in Damianou et al. (2011).
However, a large difference compared with their work is that we explicitly model the de-
pendency among the outputs through convolution processes (Álvarez and Lawrence, 2011).

Our model is a four-layer GP dynamical system. Here t ∈ RN represents the input
variables in the first layer. The matrix X ∈ RN×Q represents the low dimensional latent
variables in the second layer with element xnq = xq(tn). Similarly, the matrix F ∈ RN×D
denotes the latent variables in the third layer, with element fnd = fd(xn) and the matrix
Y ∈ RN×D denotes the observations in the fourth layer whose nth row corresponds to
yn. The model is composed of an independent multi-output GP mapping from t to X, a
dependent multi-output GP mapping from X to F , and a linear mapping from F to Y .

Specifically, for the first mapping, x is assumed to be a multi-output GP indexed by
time t similarly to Damianou et al. (2011), that is

xq(t) ∼ GP(0, κx(t, t′)), q = 1, ..., Q, (1)

where individual components of the latent function x(t) are independent sample paths drawn
from a GP with a certain covariance function κx(t, t′) parameterized by θx. There are several
commonly used covariance functions such as the squared exponential covariance function
(RBF), the Matérn 3/2 function and the periodic covariance function (RBFperiodic), which
can be adopted to model the time evolution of sequences. For example, an RBF or a Matérn
3/2 function is usually appropriate for a long time dependent sequence, which will lead to
a full covariance matrix. For modeling the evolution of multiple independent sequences, a
block-diagonal covariance matrix should be chosen, where each block can be constructed by
an RBF or a Matérn 3/2 function. RBFperiodic is useful to capture the periodicity of the
sequences, and multiple kernels can be used to model different time cycles. These kernel
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functions take the following forms.

κx(RBF )(ti, tj) = σ2
rbfe

(ti−tj)
2

2`2 ,

κx(Matérn3/2)(ti, tj) = σ2
mat(1 +

√
3|ti − tj |
`

)e
−
√
3|ti−tj |
` ,

κx(RBFperiodic)(ti, tj) = σ2
pere

− 1
2

sin2( 2π
T

(ti−tj))
` .

(2)

According to the conditional independency assumption among the latent variables {xq}Qq=1,
we have

p(X|t) =

Q∏
q=1

p(xq|t) =

Q∏
q=1

N (xq|0,Kt,t), (3)

where Kt,t is the covariance matrix constructed by κx(t, t′).

For the second mapping, we assume that f is another multi-output GP indexed by x,
whose outputs are dependent, that is

fd(x) ∼ GP(0, κfd,fd′ (x,x
′)), d, d′ = 1, ..., D, (4)

where κfd,fd′ (x,x
′) is a convolved process covariance function. The convolved process co-

variance function captures the dependency among all the data points across all the outputs
with parameters θf = {{Λk}, {Pd}, {Sd,k}}. The detailed formulation of this covariance
function will be given in Section 2.1. From the conditional dependency among the latent
variables {fnd}N,Dn=1,d=1, we have

p(F |X) = p(f |X) = N (f |0,Kf ,f ), (5)

where f is a shorthand for [f>1 , ..., f
>
D ]> and Kf ,f sized ND ×ND is the covariance matrix

in which the elements are calculated by the covariance function κfd,fd′ (x,x
′).

The third mapping, which is from the latent variable fnd to the observation ynd, can be
written as

ynd = fnd + εnd, εnd ∼ N (0, β−1). (6)

Since the observations {ynd}N,Dn=1,d=1 are conditionally independent on F , we get

p(Y |F ) =
D∏
d=1

N∏
n=1

N (ynd|fnd, β−1). (7)

Given the above setting, the graphical model for the proposed VDM-GPDS on the
training data {yn, tn}Nn=1 can be depicted as Figure 1. From (3), (5) and (7), the joint
probability distribution for the VDM-GPDS model is given by

p(Y, F,X|t) = p(Y |F )p(F |X)p(X|t) = p(f |X)
D∏
d=1

N∏
n=1

p(ynd|fnd)
Q∏
q=1

p(xq|t). (8)
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Figure 1: The graphical model for VDM-GPDS.

2.1 Convolved Process Covariance Function

Since the outputs in our model are dependent, we need to capture the correlations among all
the data points across all the outputs. Bonilla et al. (2007) and Luttinen and Ilin (2012) used
a Kronecker product covariance matrix with the form of KFF = KDD ⊗KNN , where KDD

is the covariance matrix among the output dimensions, and KNN is the covariance matrix
calculated solely from the data inputs. This Kronecker form kernel is constructed from
the processes which involve some form of instantaneous mixing of a series of independent
processes. This is very limited and actually a special case of some general covariances when
covariances calculated from outputs and inputs are independent (Álvarez et al., 2012). For
example, if we want to model two output processes in such a way that one process was
a blurred version of the other, we cannot achieve this through the instantaneous mixing
(Álvarez and Lawrence, 2011). In this paper, we use a more general and flexible kernel in
which KDD and KNN are not separated. In particular, the convolution processes (Álvarez
and Lawrence, 2011) are employed to model the latent function F (X).

Now we introduce how to construct the convolved process covariance functions. By using
independent latent functions {uk(x)}Kk=1 and smoothing kernels {Gd,k(x)}D,Kd=1,k=1 in the
convolution processes, each latent function in (4) in the VDM-GPDS is expressed through
a convolution integral,

fd(x) =
K∑
k=1

∫
X
Gd,k(x− x̃)uk(x̃)dx̃. (9)

The most common construction is to use Gaussian forms for {uk(x)}Kk=1 and {Gd,k(x)}D,Kd=1,k=1.
So the smoothing kernel is assumed to be

Gd,k(x) = Sd,kN (x|0, Pd) , (10)

where Sd,k is a scalar value that depends on the output index d and the latent function
index k, and Pd is assumed to be diagonal. The latent process uk(x) is assumed to be
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Gaussian with covariance function

κk
(
x,x′

)
= N

(
x− x′|0,Λk

)
. (11)

Thus, the covariance between fd(x) and fd′(x
′) is

κfd,fd′ (x,x
′) =

K∑
k=1

Sd,kSd′,kN (x|x′, Pd + Pd′ + Λk). (12)

The covariance between fd(x) and uk(x
′) is

κfd,uk(x,x′) = Sd,kN
(
x− x′|0, Pd + Λk

)
. (13)

These covariance functions (11), (12) and (13) will later be used for approximate in-
ference in Section 3. Compared with Kronecker form kernels, our used convolved kernels
have the following advantages. From the perspective of constructing the process fd, con-
volved kernels are constructed using the convolution process fd in which the smoothing
kernels Gd,k(x) related to x are employed while Kronecker form kernels are constructed us-

ing fd(x) = aduk(x) in which ad has no relation to x (Álvarez and Lawrence, 2011). From
the perspective of kernels, for different dimensions d and d′, convolved kernels allow that
the covariances {κfd,fd′ (x,x

′)} are related to different terms N (x|x′, Pd + Pd′ + Λk) while
Kronecker form kernels indicate that different covariances {κfd,fd′ (x,x

′)} share the same
term κq(x,x

′). Thus, our used convolved kernels are more general.

3. Inference and Optimization

As described above, the proposed VDM-GPDS explicitly models the dependency among
multiple outputs, which makes it largely distinct to the previous VGPDS and other GP
dynamical systems. In order to make it easy to implement by extending the existing frame-
work of the VGPDS, in the current and the following sections, we will deduce the variational
lower bound for the logarithmic marginal likelihood and the posterior distribution for pre-
diction in a formulation similar to the VGPDS. However, many details as described in the
paper are specific to our model, and some calculations are more involved.

The fully Bayesian learning for our model requires maximizing the logarithm of the
marginal likelihood (Bishop, 2006)

p(Y |t) =

∫
p(Y |F )p(F |X)p(X|t)dXdF. (14)

Note that the integration w.r.t X is intractable, because X appears nonlinearly in the
inverse of the matrix Kf ,f . We attempt to make some approximations for (14).

To begin with, we approximate p(F |X) which is constructed by convolution process
fd(x) in (9). Similarly to Álvarez and Lawrence (2011), a generative approach is used
to approximate fd(x) as follows. We first draw a sample, uk(Z) = [uk(z1), ..., uk(zM )]>,
where Z = {zm}Mm=1 are introduced as a set of input vectors for uk(x̃) and will be learned
as parameters. We next sample uk(x̃) from the conditional prior p(uk(x̃)|uk). According
to the above generating process, uk(x̃) in (9) can be approximated by the expectation
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E(uk(x̃)|uk). Let U = {uk}Kk=1 and u = [u>1 , ...,u
>
K ]>. The probability distribution of u

can be expressed as

p(u|Z) = N (0,Ku,u), (15)

where Ku,u is constructed by κk (x,x′) in (11). Combining (9) and (15), we get the proba-
bility distribution of f conditional on u, X, Z as

p(f |u, X, Z) = N (f |Kf ,uK−1
u,uu,Kf ,f −Kf ,uK−1

u,uKu,f ), (16)

where Kf ,u is the cross-covariance matrix between fd(x) and uk(z) with element κfd,uk(x,x′)
in (13), the block-diagonal matrix Ku,u is the covariance matrix between uk(z) and uk(z

′)
with element κk (x,x′) in (11), and Kf ,f is the covariance matrix between fd(x) and fd′(x

′)
with element κfd,fd′ (x,x

′) in (12). Therefore, p(F |X) is approximated by

p(F |X) ≈ p(f |X,Z) =

∫
p(f |u, X, Z)p(u|Z)du, (17)

and p(Y |t) is converted to

p(Y |t) ≈ p(Y |t, Z) =

∫
p(y|f)p(f |u, X, Z)p(u|Z)p(X|t)dFdUdX, (18)

where p(u|Z) = N (0,Ku,u) and y = [y>1 , ...,y
>
D]>. It is worth noting that the marginal

likelihood in (18) is still intractable as the integration with respect to X remains difficult.
Then, we introduce a lower bound of the logarithmic marginal likelihood log p(Y |t)

using variational methods. We construct a variational distribution q(F,U,X|Z) to approx-
imate the posterior distribution p(F,U,X|Y, t) and compute the Jensen’s lower bound on
log p(Y |t) as

L =

∫
q(F,U,X|Z) log

p(Y, F, U,X|t, Z)

q(F,U,X|Z)
dXdUdF. (19)

The variational distribution is assumed to be factorized as

q(F,U,X|Z) = p(f |u, X, Z)q(u)q(X). (20)

The distribution p(f |u, X, Z) in (20) is the same as the second term in (18), which will be

eliminated in the term log p(Y,F,U,X|t,Z)
q(F,U,X|Z) in (19). The distribution q(u) is an approximation

to the posterior distribution p(u|X,Y ), which is arguably Gaussian by maximizing the vari-
ational lower bound (Titsias and Lawrence, 2010; Damianou et al., 2011). The distribution
q(X) is an approximation to the posterior distribution p(X|Y ), which is assumed to be a
product of independent Gaussian distributions q(X) =

∏Q
q=1N (xq|µq, Sq).

After some calculations and simplifications, the lower bound with X, U and F integrated
out becomes

L = log

[
β
ND
2 |Ku,u|

1
2

(2π)
ND
2 |βψ2+Ku,u|

1
2

exp{−1

2
y>Wy}

]

− βψ0

2
+
β

2
Tr(K−1

u,uψ2)−KL[q(X)||p(X|t)],

(21)
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where W = βI − β2ψ1(βψ2 + Ku,u)−1ψ>1 , ψ0 = Tr(〈Kf ,f 〉q(X)), ψ1 = 〈Kf ,u〉q(X) and ψ2 =

〈Ku,fKf ,u〉q(X). KL[q(X)||p(X|t)] defined by
∫
q(X) log q(X)

p(X|t)dX is expressed as

KL[q(X)||p(X|t)] =
Q

2
log |Kt,t| −

1

2

Q∑
q=1

log |Sq|

+
1

2

Q∑
q=1

[Tr(K−1
t,tSq) + Tr(K−1

t,tµqµ
>
q )] + const.

(22)

The detailed derivation of this variational lower bound is described in Appendix A where
L is expressed as L = L̂ −KL[q(X)||p(X|t)].

Note that although the lower bound in (21) and the one in VGPDS (Damianou et al.,
2011) look similar, they are essentially distinct and have different meanings. In particular,
the variables U in this paper are the samples of the latent functions {uk(x)}Kk=1 in the
convolution process while in VGPDS they are samples of the latent variables F . Moreover,
the covariance functions of F involved in this paper are multi-output covariance functions
while VGPDS adopts single-output covariance functions. As a result, our model is more
flexible and challenging. For example, the calculation of statistics of ψ0, ψ1 and ψ2 is more
complex, as well as the derivatives of the parameters.

3.1 Computation of ψ0, ψ1, ψ2

Recall that the lower bound in (21) requires computing the statistics {ψ0, ψ1, ψ2}. We now
detail how to calculate them. ψ0 is a scalar that can be calculated as

ψ0 =
N∑
n=1

D∑
d=1

∫
κfd,fd(xn,xn)N (xn|µn, Sn) dxn

=

D∑
d=1

K∑
k=1

NSd,kSd,k

(2π)
Q
2 |2Pd + Λk|

1
2

.

(23)

ψ1 is a V ×W matrix whose elements are calculated as1

(ψ1)v,w =

∫
κfd,uk(xn, zm)N (xn|µn, Sn)dxn

= Sd,kN (zm|µn, Pd + Λk + Sn) ,

(24)

where V = N × D, W = M × K, d = bv−1
N c + 1, n = v − (d − 1)N , k = bw−1

M c + 1 and
m = w − (k − 1)M . Here the symbol “bc” means rounding down. ψ2 is a W ×W matrix
whose elements are calculated as

(ψ2)w,w′ =
D∑
d=1

N∑
n=1

∫
κfd,uk(xn, zm)κfd,uk′ (xn, zm′)N (xn|µn, Sn)dxn

=
D∑
d=1

N∑
n=1

Sd,kSd,k′N (zm|zm′ , 2Pd + Λk + Λk′)N (
zm + zm′

2
|µn,Σψ2),

(25)

1. We borrow the density formulations to express ψ1 as well as ψ2.
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where k = bw−1
M c + 1, m = w − (k − 1)M , k′ = bw′−1

M c + 1, m′ = w′ − (k′ − 1)M and
Σψ2 = (Pd + Λk)

>(2Pd + Λk + Λk′)
−1(Pd + Λk′) + Sn.

3.2 Conjugate Gradient Based Optimization

The parameters involved in (21) include the model parameters {β,θx,θf} and the varia-

tional parameters {{µq, Sq}Qq=1, Z}. In order to reduce the variational parameters to be
optimized and speed up convergence, we reparameterize the variational parameters µq and
Sq to µ̄q and λq as done in Opper and Archambeau (2009) and Damianou et al. (2011)

µq = Kt,tµ̄q, (26)

Sq =
(
K−1

t,t + diag(λq)
)−1

, (27)

where diag(λq) = −2 ∂L̂
∂Sq

is an N × N diagonal, positive matrix whose N -dimensional

diagonal is denoted by λq, and µ̄q = ∂L̂
∂µq

is an N -dimensional vector. Now the variational

parameters to be optimized are {{µ̄q,λq}Qq=1, Z}. Then the derivatives of the lower bound
L with respect to the variational parameters µ̄q and λq become

∂L
∂µ̄q

= Kt,t

(
∂L̂
∂µq

− µ̄q

)
, (28)

∂L
∂λq

= −(Sq ◦ Sq)

(
∂L̂
∂Sq

+
1

2
λq

)
. (29)

All the parameters are jointly optimized by the scaled conjugate gradient method to
maximize the lower bound in (21). The detailed gradients with respect to the parameters
are given in Appendix B.

4. Prediction

The proposed model can perform prediction for complex dynamical systems in two situa-
tions. One is prediction with only time and the other is prediction with time and partial
observations. In addition, it can be adapted to regression models.

4.1 Prediction with Only Time

If the model is learned with training data Y, one can predict new outputs with only given
time. In the Bayesian framework, we need to compute the posterior distribution of the
predicted outputs Y∗ ∈ RN∗×D on some given time instants t∗ ∈ RN∗ . The expectation
is used as the estimate and the autocovariance is used to show the prediction uncertainty.
With the parameters as well as time t and t∗ omitted, the posterior density is given by

p(Y∗|Y ) =

∫
p(Y∗|F∗)p(F∗|X∗, Y )p(X∗|Y )dF∗dX∗, (30)

where F∗ ∈ RN∗×D denotes the set of latent variables (the noise-free version of Y∗) and
X∗ ∈ RN∗×Q represents the latent variables in the low dimensional space.

10
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The distribution p(F∗|X∗, Y ) is approximated by the variational distribution

p (F∗|X∗, Y ) ≈ q(f∗|X∗) =

∫
p(f∗|u, X∗)q(u)du, (31)

where f>∗ = [f>∗1, ..., f
>
∗D], and p(f∗|u, X∗) is Gaussian. Since the optimal setting for q(u)

in our variational framework is also found to be Gaussian, q(f∗|X∗) is Gaussian that can
be computed analytically. The distribution p (X∗|Y ) is approximated by the variational
distribution q (X∗) which is Gaussian. Given p(F∗|X∗, Y ) approximated by q(f∗|X∗) and
p(X∗|Y ) approximated by q(X∗), the posterior density of f∗ (the noise-free version of y∗) is
now approximated by

p(f∗|Y ) =

∫
q(f∗|X∗)q(X∗)dX∗. (32)

The specific formulations of the distributions p(f∗|u, X∗), q(f∗|X∗) and q (X∗) are given in
Appendix C as a more comprehensive treatment.

However, the integration of q(f∗|X∗) w.r.t q(X∗) is not analytically feasible. Following
Damianou et al. (2011), we give the expectation of f∗ as E(f∗) and its element-wise autoco-
variance as vector C(f∗) whose (ñ× d)th entry is C(fñd) with ñ = 1, ..., N∗ and d = 1, ..., D.

E(f∗) = ψ1∗b, (33)

C(fñd) = b>(ψd2ñ − (ψd1ñ)>ψd1ñ)b + ψd0∗ − Tr
[
(K−1

u,u − (Ku,u + βψ2)−1)ψd2∗

]
, (34)

where ψ1∗ = 〈Kf∗,u〉q(X∗), b = β(Ku,u + βψ2)−1ψ>1 y, ψd1ñ = 〈Kfñd,u〉q(xñ), ψ
d
2ñ = 〈Ku,fñd

Kfñd,u〉q(xñ), ψ
d
0∗ = Tr(〈Kf∗d,f∗d〉q(X∗)) and ψd2∗ = 〈Ku,f∗dKf∗d,u〉q(X∗). Since Y∗ is the noisy

version of F∗, the expectation and element-wise autocovariance of Y∗ are E(y∗) = E(f∗) and
C(y∗) = C(f∗) + β−11N∗D, where y>∗ = [y>∗1, ...,y

>
∗D].

4.2 Prediction with Time and Partial Observations

Prediction with time and partial observations can be divided into two cases. In one case,
we need to predict Y m

∗ ∈ RN∗×Dm which represents the outputs on missing dimensions,
given Y pt

∗ ∈ RN∗×Dp which represents the outputs observed on partial dimensions. We call
this task reconstruction. In the other case, we need to predict Y n

∗ ∈ RN∗m×D which means
the outputs at the next time, given Y pv

∗ ∈ RN∗p×D which means the outputs observed on all
dimensions at the previous time. We call this task forecasting.

For the task of reconstruction, we should compute the posterior density of Y m
∗ which is

given below (Damianou et al., 2011)

p(Y m
∗ |Y pt

∗ , Y ) =

∫
p(Y m
∗ |Fm∗ )p(Fm∗ |X∗, Y pt

∗ , Y )p(X∗|Y pt
∗ , Y )dFm∗ dX∗. (35)

p(X∗|Y pt
∗ , Y ) is approximated by a Gaussian distribution q(X∗) whose parameters need to be

optimized for the sake of considering the partial observations Y pt
∗ . This requires maximizing

a new lower bound of log p(Y, Y pt
∗ ) which can be expressed as

L̃ = log

[
β
ND+N∗Dp

2 |Ku,u|
1
2

(2π)
ND+N∗Dp

2 |βψ̃2+Ku,u|
1
2

exp{−1

2
ỹ>W̃ ỹ}

]

− βψ̃0

2
+
β

2
Tr(K−1

u,uψ̃2)−KL[q(X,X∗)||p(X,X∗)|t, t∗)],

(36)

11
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where W̃ = βI − β2ψ̃1(βψ̃2 + Ku,u)−1ψ̃>1 , ψ̃0 = Tr(〈Kf̃ ,f̃ 〉q(X,X∗)), ψ̃1 = 〈Kf̃ ,u〉q(X,X∗)
and ψ̃2 = 〈Ku,f̃Kf̃ ,u〉q(X,X∗). The vector ỹ splices the vectorization of matrix Y and the

vectorization of matrix Y pt
∗ , i.e. ỹ = [vec(Y ); vec(Y pt

∗ )]. The vector f̃ corresponds to the
noise-free version of ỹ. Moreover, parameters of the new variational distribution q(X,X∗)
are jointly optimized because of the coupling of X and X∗. Then the marginal distribution
q(X∗) is obtained from q(X,X∗). Note that when multiple sequences such as X∗ and X are
independent, only the separated variational distribution q(X∗) is optimized.

For the task of forecasting, we focus on real-time forecasting for which the outputs
are dependent on the previous ones and the training set Y is not used in the prediction
stage. The variational distribution q(X∗) can be directly computed as (70). Then the
posterior density of Y n

∗ is computed as (66), but with Y∗ and Y replaced with Y n
∗ and Y pv

∗ ,
respectively. E(yn∗ ) is the estimate of the output Y n

∗ . An application for forecasting is given
in Section 6.3.

4.3 Adaptation to Regression Models

Since the VDM-GPDS can been seen as a multi-layer regression model which regards time
indices as inputs and observations as outputs. It can be flexibly extended to solve regression
problems. Specifically, the time indices in the dynamical systems are replaced with the
observed input data V . In addition, the kernel functions for the latent variables X are
replaced by some appropriate functions such as automatic relevance determination (ARD)
kernels:

κx(v,v′) = σ2
arde

1
2

∑P
p=1 ωp(vp,v′p)2 . (37)

Model inference and optimization remain the same except for some changes for model
parameters θx. Compared with other dependent multi-output regression models such as the
CMOGP, the VDM-GPDS can achieve much better performance. This could be attributed
to its use of latent layers.

5. Related Work

Damianou et al. (2011) described a GP dynamical system with variational Bayesian infer-
ence called VGPDS in which the latent variables X are imposed a GP prior to model the
dynamical driving force and capture the high dimensional data’s characteristics. After in-
troducing inducing points, the latent variables are variationally integrated out. The outputs
of VGPDS are generated from multiple independent GPs with the same latent variables X
and the same parameters, resulting in the advantage that VGPDS can handle high dimen-
sional situations. However, the explicit dependency among the multiple outputs is ignored
in this model, while this kind of dependency is very important for many applications. In
contrast, the CMOGP (Álvarez and Lawrence, 2011) and GPRN (Wilson et al., 2012) model
the dependency of different outputs through convolved process covariance functions and an
adaptive network, respectively. Nevertheless, these two methods are not directly suitable
for dynamical system modeling. If applied to dynamical systems with time as inputs, they
cannot well capture the complexity of dynamical systems because there is only one nonlinear
mapping between the input and output included.

12
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Our model is capable of capturing the dependency among outputs as well as modeling
the dynamical characteristics. It is also very different from the GPDM (Wang et al., 2006,
2008) which models the variance of each output with different scale parameters and employs
Markov dynamical prior on the latent variables. The Gaussian prior for the latent variables
in the VDM-GPDS can model the dynamical characteristics in the systems better than the
Markov dynamical prior, since it can model different kinds of dynamics by using different
kernels such as using periodic kernels to model periodicity. Moreover, in contrast to the
GPDM that estimates the latent variables X through the MAP, the VDM-GPDS integrates
out the latent variables with variational methods. This is in the same spirit of the technique
used in Damianou et al. (2011), which can provide a principled approach to handle uncer-
tainty in the latent space and determine its principal dimensions automatically. In addition,
the multiple outputs in our model are modeled by convolution processes as in Álvarez and
Lawrence (2011), which can flexibly capture the correlations among the outputs.

6. Experiments

In this part, we design five experiments to evaluate our model for four different kinds of
applications including prediction with only time as inputs, reconstruction of the missing
data, real-time forecasting and solving robot inverse dynamics problem. Two experiments
are performed on synthetic data and three on real-world data. A number of models such
as the CMOGP/COGP, GPDM, VGPDS and VDM-GPDS are tested on the data. The
root mean squire error (RMSE) and mean standardized log loss (MSLL) (Rasmussen and
Williams, 2006) are taken as the performance measures. In particular, let Ŷ ∗ be the estimate
of matrix Y ∗, and then the RMSE can be formulated as

RMSE(Y ∗, Ŷ ∗) =

[
1

D

1

N

∑
d

∑
n

(y∗dn − ŷ∗dn )2

] 1
2

. (38)

MSLL is the mean negative log probability of all the test data under the learned model Γ
and training data Y , which can be formulated as

MSLL(Y ∗,Γ) =
1

N

∑
n

{− log p(y∗n|Γ, Y )} . (39)

The lower value of the RMSE and MSLL we get, the better the performance of the model is.
Our code is implemented based on the framework of publicly available code for the VGPDS
and CMOGP.

6.1 Synthetic Data

In this section, we evaluate our method on synthetic data generated from a complex dynam-
ical system. The latent variables X are independently generated by the Ornstein-Uhlenbeck
(OU) process (Archambeau et al., 2007)

dxq = −γxqdt+
√
σ2dW, q = 1, ..., Q. (40)

The outputs Y are generated through a multi-output GP

yd(x) ∼ GP(0, κfd,fd′ (x,x
′)), d, d′ = 1, ..., D, (41)
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Spline CMOGP GPDM VGPDS VDM-GPDS

RMSE(y1) 1.91±0.43 1.75±0.38 1.70±0.18 1.51±0.31 1.43± 0.23
RMSE(y2) 4.23±1.01 3.46±0.67 3.32±0.27 2.99±0.53 2.82± 0.35
RMSE(y3) 6.88±1.91 5.19±0.99 4.83±0.28 4.24±0.85 4.09± 0.59
RMSE(y4) 6.99±1.52 7.50±0.94 5.98±0.55 5.16±0.92 5.00± 0.60

Table 1: Averaged RMSE (%) with the standard deviation (%) for predictions on the
output-dependent synthetic data.

Spline CMOGP GPDM VGPDS VDM-GPDS

MSLL(y1) · −2.63±0.22 2.21×104±4.86×104 −2.73±0.08 −2.79± 0.08
MSLL(y2) · −1.99±0.13 1.93×104±5.23×104 −2.14±0.15 −2.18± 0.15
MSLL(y3) · −1.49±0.21 3.92×104±8.17×104 −1.66±0.24 −1.66± 0.21
MSLL(y4) · −1.08±0.21 9.90×104±1.98×105 −1.31±0.41 −1.32± 0.25

Table 2: Averaged MSLL with the standard deviation for predictions on the output-
dependent synthetic data.

where κfd,fd′ (x,x
′) defined in (12) is the multi-output covariance function. In this paper,

the number of the latent functions in (9) is set to one, i.e., K = 1, which is also the common
setting used in Álvarez and Lawrence (2011).

We sample the synthetic data by two steps. First we use the differential equation with
parameters γ = 0.5, σ = 0.01 to sample N = 200, Q = 2 latent variables at time interval
[−1, 1]. Then we sample D = 4 dimensional outputs, each of which has 200 observations
through the multi-output GP with the following parameters S1,1 = 1, S2,1 = 2, S3,1 = 3,
S4,1 = 4, P1 = [5, 1]>, P2 = [5, 1]>, P3 = [3, 1]>, P4 = [2, 1]> and Λ = [4, 5]>. For
approximation, 30 random inducing points are used. In addition, white Gaussian noise is
added to each output.

6.1.1 Prediction

Here we evaluate the performance of our method for predicting the outputs given only
time over the synthetic data. We randomly select 50 points from each output for training
with the remaining 150 points for testing. This is repeated for ten times. The CMOGP,
GPDM and VGPDS are performed as comparisons. The cubic spline interpolation (spline
for short) is also chosen as a baseline. The latent variables X in the GPDM, VGPDS and
VDM-GPDS with two dimensions are initialized by using the principal component analysis
on the observations. Moreover, the Matérn 3/2 covariance function is used in the VGPDS
and VDM-GPDS.

Table 1 and Table 2 present the RMSE and MSLL for predictions, respectively. The
best results are shown in bold. From the tables, we can find that for prediction on the
data of each dimension, our model obtains the lowest RMSE and MSLL. We analyze the
reasons as follows. First, since the data in this experiment are generated from a complex
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Figure 2: Predictions for y4(t) with the five methods. Pred and True indicate predicted
and observed values, respectively. The shaded regions represent two standard
deviations for the predictions.

dynamical system that combines two GP mappings, the CMOGP which consists of only one
GP mapping cannot capture the complexity well. Moreover, the VDM-GPDS models the
explicit dependency among the multiple outputs while the VGPDS and GPDM do not. The
assumption of multi-output dependency is appropriate for the generative model. Further,
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Spline CMOGP GPDM VGPDS VDM-GPDS

RMSE(y1) 3.81±0.82 11.49±0.26 3.82±1.55 2.18± 0.06 2.21±0.06
RMSE(y2) 2.58±0.68 3.59±0.72 3.45±1.70 2.06±0.19 2.05± 0.13
RMSE(y3) 3.26±0.90 1.75±0.10 3.57±1.71 1.68± 0.09 1.72±0.12
RMSE(y4) 9.06±1.17 8.34±10.89 7.10±1.28 4.48±0.23 4.45± 0.20

Table 3: Averaged RMSE (%) with the standard deviation (%) for predictions on the
output-independent synthetic data.

Spline CMOGP GPDM VGPDS VDM-GPDS

MSLL(y1) · −0.74±0.02 5.22×102±5.23×102 −2.34± 0.04 −2.33±0.04
MSLL(y2) · −1.91±0.24 1.10×103±2.22×103 −2.36±0.10 −2.36± 0.13
MSLL(y3) · −2.62±0.05 2.10×102±3.43×102 −2.50±0.08 −2.52± 0.11
MSLL(y4) · −1.38±0.66 5.19×102±1.16×103 −1.46±0.17 −1.48± 0.18

Table 4: Averaged MSLL with the standard deviation for predictions on the output-
independent synthetic data.

the GPDM cannot work well in the case in which data on many time intervals are lost.
Prediction with the GPDM results in very high MSLL. To sum up, our model gives the best
performance among the five models as expected.

In order to give intuitive representations, we draw one prediction result from the ten
experiments in Figure 2 where the shaded regions in 2(b), 2(c), 2(d) and 2(e) represent
two standard deviations for the predictions. Through the figures, it is clear that the VDM-
GPDS has higher accuracies and smaller variances. Note that the GPDM has very small
variances, but low accuracies, which leads to the high MSLL as in Table 2. With all the
evaluation measures considered, the VDM-GPDS gives the best performance of prediction
with only time as inputs.

In addition, to verify the flexibility of the VDM-GPDS, we perform experiments on the
output-independent data which are generated analogously to Section 6.1. In particular, the
output-independent data are generated using Equation (41) but with κfd,fd′ (x,x

′) = 0 for
d 6= d′ after generating X. Note that the GPDM and VGPDS do not make the assumption
of output dependency. The results in terms of RMSE and MSLL are shown in Table 3 and
Table 4 where we can see that our model performs as well as the VGPDS and significantly
better than the CMOGP and GPDM.

6.1.2 Reconstruction

In this section, we compare the VDM-GPDS with the k-nearest neighbor best (k-NNbest)
method which chooses the best k from {1, . . . , 5}, the CMOGP, GPDM and VGPDS for
recovering missing points given time and partially observed outputs. We set S4,1 = −4 to
generate data in this part, which makes the output y4 be negatively correlated with the
others. We remove all outputs y1 or y4 at time interval [0.5, 1] from the 50 training points,
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k-NNbest CMOGP GPDM VGPDS VDM-GPDS

RMSE(y1) 1.87±0.62 1.90±0.31 2.69±3.67 1.49±0.94 0.98± 0.34
RMSE(y4) 13.51±2.54 9.31±0.87 12.61±2.43 6.79±6.07 5.56± 1.88

Table 5: Averaged RMSE (%) with the standard deviation (%) for reconstructions of the
missing points for y1 and y4.

k-NNbest CMOGP GPDM VGPDS VDM-GPDS

MSLL(y1) · −1.74±0.20 1.40×103±5.96×104 −2.29±0.46 −2.86± 0.09
MSLL(y4) · 0.31±0.62 7.40×104±8.34×104 −1.64±0.69 −2.35± 0.10

Table 6: Averaged MSLL with the standard deviation for reconstructions of the missing
points for y1 and y4.

resulting in 35 points as training data. Note that the CMOGP considers all the present
outputs as the training set while the GPDM, VGPDS and VDM-GPDS only consider the
outputs at time interval [−1, 0.5) as the training set.

Table 5 and Table 6 show the averaged RMSE and MSLL with the standard deviation
for reconstructions of the missing points for y1 and y4. The proposed model performs best
with the lowest RMSE and MSLL. Specifically, our model can make full use of the present
data on some dimensions to reconstruct the missing data through the dependency among
outputs. This advantage is shown by comparing with the GPDM and VGPDS. In addition,
the two Gaussian process mappings in the VDM-GPDS help to well model the dynamical
characteristics and complexity of the data. This advantage is shown by comparing to the
CMOGP.

Figure 3 shows one reconstruction result for y4 from the ten experiments by five different
methods. It can be seen that the results of the VDM-GPDS are the closest to the true values
among the compared methods. This indicates the superior performance of our model for
the reconstruction task.

6.2 Human Motion Capture Data

In order to demonstrate the validity of the proposed model on real-world data, we employ
ten sequences of runs/jogs from subject 35 (see Figure 4 for a skeleton) and two sequences
of runs/jogs from subject 16 in the CMU motion capture database for the reconstruction
task. In particular, our task is to reconstruct the right leg or the upper body of one test
sequence on the motion capture data given training sequences. We preprocess the data as
in Lawrence (2007) and divide the sequences into training and test data. Nine independent
training sequences are all from subject 35 and the remaining three testing sequences are
from subject 35 and subject 16 (one from subject 35 and two from subject 16). The average
length of each sequence is 40 frames and the output dimension is 59.

We conduct this reconstruction with six different methods, the nearest neighbor in the
angle space (NN) and the scaled space (NN sc.) (Taylor et al., 2006), the CMOGP, GPDM,
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Figure 3: Reconstructions of the missing points for y4(t) with the five methods. Pred and
True indicate predicted and observed values, respectively. The shaded regions
represent two standard deviations for the predictions.

VGPDS and VDM-GPDS. For the CMOGP, periodic time indices with different cycles are
used as inputs where the length of each sequence is a cycle. For the GPDM, parameters
and latent variables are set as in Wang et al. (2006). For the VGPDS and VDM-GPDS,
the RBF kernel is adopted in this set of experiments to construct Kt,t which is a block-
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Figure 4: A skeleton of subject 35 running at a moment.

NN sc. NN CMOGP GPDM VGPDS VDM-GPDS

RMSE(LS) 0.82 0.85 1.15 0.68 0.65 0.64
RMSE(LA) 6.75 7.94 13.53 5.61 5.54 5.30
RMSE(BS) 1.00 1.40 3.56 0.68 0.66 0.60
RMSE(BA) 5.63 9.57 5.02 3.39 2.81 2.60

RMSE(LS) 1.03 1.40 1.37 0.91 0.89 0.85
RMSE(LA) 10.10 9.73 15.19 8.90 8.13 8.65
RMSE(BS) 2.88 3.00 4.70 2.85 3.80 2.83
RMSE(BA) 7.45 7.83 8.04 7.13 10.64 6.69

Table 7: The RMSE for reconstructions of the missing points of the motion capture data.
The values listed above the double line are the results for the one test sequence
from subject 35 while the values listed below the double line are the averaged
results for the two test sequences from subject 16.

diagonal matrix because the sequences are independent. Moreover, the latent variables X
in the VGPDS and VDM-GPDS with nine dimensions are initialized by using principal
component analysis on the observations. For parameter optimization of the VDM-GPDS
and VGPDS, the maximum numbers of iteration steps are set to be identical.

Table 7 gives the RMSE for reconstructions of the missing points with the six meth-
ods. The values listed above the double line are the results for reconstruction of the test
sequence from subject 35. The values listed below the double line are the averaged results
for reconstruction of the two test sequences from subject 16. LS and LA correspond to
the reconstructions of the right leg in the scaled space and angle space. Similarly, BS and
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NN sc. NN CMOGP GPDM VGPDS VDM-GPDS

MSLL(Leg) · · 1.55 −3.17 −3.10 −6.94
MSLL(Body) · · -26.00 −40.78 −48.19 − 45.53

MSLL(Leg) · · 5.35 11.17 4.60 −1.03
MSLL(Body) · · −2.58 121.58 82.95 −11.54

Table 8: The MSLL for reconstructions of the missing points of the motion capture data.
The values listed above the double line are the results for the one test sequence
from subject 35 while the values listed below the double line are the averaged
results for the two test sequences from subject 16.

BA correspond to the reconstructions of the upper body in the same two spaces. Table
8 shows the MSLL in the original space for the same reconstructions as in Table 7. As
expected, the results on subjects whose motions are used to learn the models show signifi-
cantly smaller RMSE and MSLL than those for the test motions from subjects not used in
the training set. No matter under what circumstances, our model generally outperforms the
other approaches. We conjecture that this is because the VDM-GPDS effectively considers
both the dynamical characteristics and the dependency among the outputs in the complex
dynamical system. Specifically, for the CMU data, the dependency among different parts
of the entire body can be well captured by the VDM-GPDS. When only parts of data on
each frame of the test sequence are observed, the missing data on the corresponding frame
can be recovered by utilizing the observed data. Meanwhile, the GP prior on the latent
variables makes sure the continuity and smoothness of movements.

6.3 Traffic Flow Forecasting

The problem addressed here is to predict the future traffic flows of a certain road link.
We focus on the short-term predictions, in the time interval of 15 minutes, which is a
difficult but very important application. A real urban transportation network is used for
this experiment. The raw data are of 25 days, which include 2400 recording points for
each road link. Note that the data are not continuous in these 25 days, though data are
complete within each recording day. Specifically, the day numbers with recordings are
{[1 ∼ 19], [21], [25 ∼ 29]}. The first seven days are used for training, and the remaining 18
days are for testing. Figure 5 shows a patch taken from the urban traffic map of highways
as in Sun et al. (2006). Each circle node in the sketch map denotes a road link. An arrow
shows the direction of the traffic flow, which reaches the corresponding road link from its
upstream link. Paths without arrows are of no traffic flow records.

We predict the traffic volumes (vehicles/hour) of the road links (Bb, Ch, Dd, Eb, Fe,
Gd, Hi, Ib, Jh, Ka) based on their own historic traffic flows and their direct upstream
flows. A VDM-GPDS is trained for each road link. Take Gd as an example. Its three direct
upstream flows Fe, Fg and Fh and its own flows are used to construct the four outputs in
a VDM-GPDS. We use multiple kernels, including RBF and RBFperiodic to capture the
periodicity inherent in the data. The present periodicity in the data contains two cycles.
The short cycle is one day and the long cycle is one week. In the prediction stage, we use
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Figure 5: A patch taken from the urban traffic map of highways.

RW VGPDS VDM-GPDS

RMSE(Bb) 84.95 81.90 80.88
RMSE(Ch) 72.49 65.33 62.08
RMSE(Dd) 66.45 61.68 57.97
RMSE(Eb) 153.46 148.42 140.69
RMSE(Fe) 151.16 143.35 131.74
RMSE(Gd) 174.18 162.81 147.14
RMSE(Hi) 95.57 92.89 85.19
RMSE(Ib) 142.85 129.21 121.15
RMSE(Jh) 146.52 141.50 128.66
RMSE(Ka) 94.15 88.23 75.23

Table 9: The RMSE for forecasting results on the traffic flow data.

the historic traffic flows of the four road links to predict the flows of Gd in the next interval.
The historic time for forecasting is fixed as four intervals. We compare our model with
the Random Walk (RW) and VGPDS. The RW is to forecast the current value using the
last value (Williams, 1999), which is chosen as a baseline. According to the descriptions
about real-time forecasting in Section 4.2, the VGPDS can be adapted to apply to this
experiment. Moreover, in the previous experiments, the VGPDS performs best among the
compared models except the VDM-GPDS. Therefore, it is sufficient to compare our model
with the RW and VGPDS. Note that the realization of the VGPDS also takes the periodicity
into consideration.

Table 9 and Table 10 show the RMSE and MSLL for forecasting results with three
methods over the testing sets, respectively. It is obvious that the VDM-GPDS achieves
the best performance, even for the road links with large volumes (and large fluctuations)
such as Gd. This is attributed to the fact that our model well captures both the temporal
and spatial dependency of the traffic flow data. In particular, the relationship between
the traffic flows of the objective road link and its upstream links is captured by the multi-
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RW VGPDS VDM-GPDS

MSLL(Bb) · 5.87 5.85
MSLL(Ch) · 6.04 5.90
MSLL(Dd) · 5.64 5.57
MSLL(Eb) · 6.40 6.33
MSLL(Fe) · 6.41 6.37
MSLL(Gd) · 6.53 6.44
MSLL(Hi) · 5.93 5.90
MSLL(Ib) · 6.33 6.25
MSLL(Jh) · 6.38 6.30
MSLL(Ka) · 6.07 5.86

Table 10: The MSLL for forecasting results on the traffic flow data.

output dependency in the VDM-GPDS; the relationship between the traffic flows of the
objective road link and its own historical series is captured by the dynamical characteristics
modeled in the VDM-GPDS. Therefore, the entire cause information is well collected by
the VDM-GPDS to predict the traffic flows of the objective road link.

To be intuitive, we give the final forecasting results of the performed models for the road
link Gd in the last three days in Figure 6. The VDM-GPDS has shown great superiority
to the compared models. As seen from the figures, the forecasting results with the RW and
VGPDS often lag (see Figure 6(a) and Figure 6(b)).

6.4 Robot Inverse Dynamics Problem

The robot inverse dynamics problem is an important task in the robot areas (Sciavicco and
Vijayakumar, 2000). For a goal of touching or grasping a subject using a robotic manipu-
lator, it usually needs the following procedures. First, the inverse kinematic calculates the
robot joint coordinates given the pose of the end-effector. Then trajectory planing decides
a trajectory describing how a robot should move to achieve the desired task. Finally, given
the trajectory, i.e., the motion specified by the joint angles, velocities and accelerations, the
torques needed at the joints to drive it along the trajectory are computed by the inverse
dynamics. What we concerned here is the robot inverse dynamics problem. Analytical
models for the inverse dynamics are often infeasible, for example due to uncertainty in the
physical parameters of the robot, or the difficulty of modeling frictions. This leads to the
need to learn the inverse dynamics by some machine learning methods (Chai et al., 2009;
Nguyen and Bonilla, 2014).

We approximate the inverse dynamics model of a 7-degree-of-freedom anthropomorphic
robot arm (see Figure 7 (Vijayakumar and Schaal, 2000)). The inverse dynamics model of
the robot is strongly nonlinear due to a vast amount of superpositions of sine and cosine
functions in robot dynamics. The data consist of 21 input dimensions: 7 joint positions,
velocities, and accelerations. The goal of learning is to approximate the appropriate torque
command of one robot motor in response to the input vector. We choose 4449 data points
from the original data set which consists of 48933 data points. We use 100, 300 and 500
points for training, respectively and the rest for testing. All the experiments are repeated
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(b) VGPDS
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Figure 6: Forecasting results of the performed models for the road link Gd on the last three
days.

for ten times. We consider joint learning for the two couples, the 2nd and 3rd, the 4th and
7th torques. Note that, the 2nd and 3rd torques are negatively correlated while the 4th and
7th torques are positively correlated.

We adapt our dynamical model to a regression model as described in Section 4.3. In
order to demonstrate the performance of our model on the regression problem. We compare
our model with the single Gaussian process regression (sGPR), multi-task Gaussian process
(MTGP), collaborative multi-output Gaussian process (COGP) and VGPDS. The sGPR
is to learn the torque for each joint separately. The MTGP regards the torques from
different joints as different tasks. The COGP is a scalable method which is extended from
the CMOGP by introducing stochastic variational inference. As the COGP is a enhanced
version of the CMOGP for robot inverse dynamics problems (Nguyen and Bonilla, 2014),
we do not include the CMOGP in this experiment. For fairness, we set the batch size in
the COGP the same as the number of training points. Note that the exact inference is used
for the sGPR and MTGP. For the COGP, VGPDS and VDM-GPDS, variational inference
is employed and the same size of inducing points are included. Particularly, 15, 20 and
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Figure 7: Sketch of the SARCOS dextrous arm.

Method 2nd joint 3rd joint
(N = 100) RMSE MSLL RMSE MSLL

sGPR 6.33±1.33 3.85±0.86 4.48±1.04 4.06±1.18
MTGP 5.52±0.79 3.88±0.19 3.20±0.38 3.10±0.27
COGP 5.11±0.44 4.17±0.69 3.18±0.23 3.39±0.38
VGPDS 4.89±0.36 6.20±0.87 2.96±0.26 5.73±0.89
VDM-GPDS 4.55 ± 0.34 2.95± 0.14 2.68± 0.22 2.34± 0.15

Method 4th joint 7th joint
(N = 100) RMSE MSLL RMSE MSLL

sGPR 5.01±2.06 4.33±1.54 1.04±0.22 2.76±1.53
MTGP 3.27±0.35 3.44±0.49 0.72±0.07 2.11±0.55
COGP 3.26±0.25 2.68±0.24 0.68±0.05 1.30±0.21
VGPDS 3.19± 0.20 2.36± 0.08 0.65± 0.03 0.86± 0.66
VDM-GPDS 3.19±0.26 2.44±0.12 0.66±0.04 0.95±0.10

Table 11: Averaged RMSE and MSLL with the standard deviation for robot inverse dy-
namics learning with 100 training points.

30 inducing points are used for 100, 300 and 500 training points, respectively. For the
VDM-GPDS and VGPDS, the dimensionality of the latent space is set to two. Table 11,
12 and 13 show the results for different methods in terms of averaged RMSE and MSLL.
For intuition, we also plot the RMSE results in Figure 8.

From the tables and figures, we find that our model performs best on the whole, which
confirms that the VDM-GPDS also works well for regression tasks. Comparing the VDM-
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Method 2nd joint 3rd joint
(N = 300) RMSE MSLL RMSE MSLL

sGPR 4.19±0.83 2.85±0.32 2.61±0.51 2.44±0.37
MTGP 4.37±0.89 3.36±0.35 2.53±0.56 2.77±0.19
COGP 3.78±0.14 5.08±0.79 2.27±0.09 3.49±0.43
VGPDS 3.67±0.18 2.62±0.04 2.11±0.12 2.06±0.04
VDM-GPDS 3.52± 0.09 2.59± 0.04 2.01± 0.06 2.00± 0.03

Method 4th joint 7th joint
(N = 300) RMSE MSLL RMSE MSLL

sGPR 2.21±0.37 2.39±0.59 0.55±0.13 0.92±0.51
MTGP 2.01±0.20 2.40±0.12 0.47±0.04 1.27±0.19
COGP 2.25±0.18 2.65±0.25 0.52±0.02 1.71±0.21
VGPDS 2.31±0.38 2.12±0.15 0.48±0.06 0.59±0.10
VDM-GPDS 1.95± 0.09 1.92± 0.04 0.45± 0.01 0.53± 0.04

Table 12: Averaged RMSE and MSLL with the standard deviation for robot inverse dy-
namics learning with 300 training points.

Method 2nd joint 3rd joint
(N = 500) RMSE MSLL RMSE MSLL

sGPR 4.01±0.71 2.78±0.27 2.08±0.45 2.05±0.32
MTGP 3.50±0.32 3.42±0.27 1.97±0.27 2.59±0.24
COGP 3.33±0.08 5.24±0.49 1.89±0.06 3.54±0.34
VGPDS 3.47±0.17 2.57±0.03 1.98±0.12 2.02±0.03
VDM-GPDS 3.20± 0.11 2.52± 0.04 1.77± 0.08 1.93± 0.04

Method 4th joint 7th joint
(N = 500) RMSE MSLL RMSE MSLL

sGPR 2.08±0.38 2.28±0.51 0.47±0.08 0.76±0.45
MTGP 1.66±0.17 2.28±0.19 0.39±0.02 1.27±0.15
COGP 1.77±0.06 2.46±0.10 0.45±0.02 2.20±0.22
VGPDS 1.93±0.14 2.04±0.08 0.44±0.01 0.55±0.04
VDM-GPDS 1.64± 0.06 1.83± 0.02 0.39± 0.01 0.44± 0.03

Table 13: Averaged RMSE and MSLL with the standard deviation for robot inverse dy-
namics learning with 500 training points.

GPDS with the COGP, we further verify the assumption that the latent space can well
grasp the characteristics of the data generation. Thus, the VDM-GPDS can well model
the inverse dynamics model and make better prediction. Compared with the VGPDS, our
model still shows advantages. This is attributed to the assumption of the dependency among
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Figure 8: Averaged RMSE with the standard deviation for the 2nd, 3rd, 4th and 7th joint
torques prediction. (better in color)

the multiple outputs. No matter for dynamical system modeling or static data regression,
the proposed model is reasonable and applicable.

6.5 Performance and Efficiency Analysis

The proposed VDM-GPDS outperforms several previous methods for predicting outputs and
recovering missing points for dynamical systems. In order to quantify the superior results,
we evaluate the performance increases with the averaged performance increasing ratio to
the VGPDS in terms of RMSE. The increasing ratios of the four experiments (Sections
6.1.1, 6.1.2, 6.2, 6.3 and 6.4) are 4.49%, 26.17%, 10.40%, 7.35% and 7.97%, respectively.

However, high effectiveness often comes together with low efficiency. The VDM-GPDS is
a four-layer GP system that is more complex than the conventional methods. Particularly,
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CMOGP GPDM VGPDS VDM-GPDS

computational complexity O(D3N3) O(N3) O(M2NQ) O(M2NDQK)
execution time 50.7 26.8 74.2 181.1

Table 14: Computational complexities and execution time (in ms) for different models.

since the proposed method explicitly models the dependency among outputs, the dependent
multi-output covariance matrix in the VDM-GPDS is a full matrix with size ND×ND and
operations involving it cannot be factorized. This is in contrast to the independent multi-
output covariance matrix in the GPDM and VGPDS, which is block-diagonal. As in Titsias
(2009), inducing points are employed for the variational inference for the VDM-GPDS. The
number of the inducing points M is much smaller than that of the data points N , which
can improve the computational efficiency. For the VDM-GPDS, the most time-consuming
calculation is to compute ψ2 whose computational complexity is O(M2NDQK).

In order to give clear comparisons in terms of efficiency, we list the computational
complexities of four models and the execution time (in ms) of one step for learning the
models on the synthetic data in Table 14. Through the table, we find that the VDM-GPDS
costs a lot. Nevertheless, our model can obtain high performance improvements as discussed
above. We believe that getting performance improvements is worth the time cost.

7. Conclusion

In this paper, we have proposed a dependent multi-output GP for modeling complex dynam-
ical systems. We give the reasonable assumption that the different outputs of the systems
are generally dependent. The convolved process covariance function is employed to model
the dependency among all the data points across all the outputs. We adapt the variational
inference method involving inducing points to our model so that the latent variables are
variationally integrated out. The model and variational parameters are jointly optimized
with the scaled conjugate gradient method. Through small adaptations, our model can
handle regression problems.

Modeling the possible dependency among multiple outputs can help to make better
predictions. The effectiveness of the proposed model for complex dynamical systems is
empirically demonstrated through multiple experiments. However, when the dimensionality
of the output is very high, our model may take a long time to converge. This opens the
possibility for future work to accelerate training for high dimensional dynamical systems.
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Appendix A. Derivation of the Lower Bound

In order to approximately compute the marginal likelihood p(Y |t), we compute the varia-
tional lower bound of it by involving the variational distribution q(F,U,X|Z). The varia-
tional lower bound L can be expressed as

L =

∫
q(F,U,X|Z) log

p(Y, F, U,X|t, Z)

q(F,U,X|Z)
dXdUdF

=

∫
p(f |u, X, Z)q(u)q(X) log

p(y|f)p(u|Z)p(X|t)

q(u)q(X)
dfdudX,

(42)

since
p(Y, F, U,X|t, Z) = p(y|f)p(f |u, X, Z)p(u|Z)p(X|t), (43)

and
q(F,U,X|Z) = p(f |u, X, Z)q(u)q(X). (44)

For neatness, the above expression is split into two parts as L = L̂ − KL[q(X)||p(X|t)].
Specifically, L̂ is expressed by

L̂ =

∫
p(f |u, X, Z)q(u)q(X) log

p(y|f)p(u|Z)

q(u)
dfdudX. (45)

KL[q(X)||p(X|t)] is the relative entropy of q(X) and p(X|t), expressed as

KL[q(X)||p(X|t)] =

∫
q(X) log

q(X)

p(X|t)

=
Q

2
log |Kt,t| −

1

2

Q∑
q=1

log |Sq|

+
1

2

Q∑
q=1

[Tr(K−1
t,tSq) + Tr(K−1

t,tµqµ
>
q )] + const,

(46)

since

p(X|t) =

Q∏
q=1

N (xq|0,Kt,t), (47)

and

q(X) =

Q∏
q=1

N (xq|µq, Sq). (48)

So far, KL[q(X)||p(X|t)] can be calculated analytically as the above, we need to calculate

L̂. By using the facts that log p(y|f)p(u|Z)
q(u) = log p(y|f) + log p(u|Z)

q(u) and
∫
p(f |u, X, Z)df = 1,

L̂ is converted into

L̂ =

∫
q(u)q(X)

∫
p(f |u, X, Z) log p(y|f)dfdudX

+

∫
q(u)q(X) log

p(u|Z)

q(u)
dudX.

(49)
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We know that p(y|f) and p(f |u, X, Z) are both Gaussian, and then∫
p(f |u, X, Z) log p(y|f)df

= logN (y|Kf ,uK−1
u,uu, β−1I)− β

2
Tr(Kf ,f −Kf ,uK−1

u,uKu,f ).

(50)

Thus L̂ in (49) can be simplified as

L̂ =

∫
q(u)q(X) log

N (y|a, B)p(u)

q(u)
dudX

−
∫
β

2
Tr(Kf ,f −Kf ,uK−1

u,uKu,f )q(X)dX,

(51)

where a = Kf ,uK−1
u,uu and B = β−1I. By changing the integration order, we get

L̂ =

∫
q(u)[log

e〈logN (y|a,B)〉q(X)p(u)

q(u)
]d(u)

− β

2
Tr(〈Kf ,f 〉q(X) − 〈Kf ,uK−1

u,uKu,f 〉q(X)).

(52)

We compute the optimal bound using the reserved Jensen’s inequality as in Titsias and
Lawrence (2010). This gives

L̂ ≤ log

∫
e〈logN (y|a,B)〉q(X)p(u)du

− β

2
Tr(〈Kf ,f 〉q(X)) +

β

2
Tr(〈Kf ,uK−1

u,uKu,f 〉q(X)).

(53)

The optimal distribution q(u) that gives rise to this lower bound is given by q(u) =

e〈logN (y|Kf ,uK
−1
u,uu,β

−1I)〉q(X)p(u), which is analytically Gaussian

q(u) ∝ N (βy>ψ1Ku,u(βψ2 + Ku,u)−1ψ>1 y,Ku,u(βψ2 + Ku,u)−1), (54)

where ψ0 = Tr(〈Kf ,f 〉q(X)), ψ1 = 〈Kf ,u〉q(X) and ψ2 = 〈Ku,fKf ,u〉q(X). The closed-form of
the lower bound of the approximated marginal log-likelihood defined as L is given by

L = log

[
β
ND
2 |Ku,u|

1
2

|2π|
ND
2 |βψ2+Ku,u|

1
2

exp{−1

2
y>Wy}

]

− βψ0

2
+
β

2
Tr(K−1

u,uψ2)−KL[q(X)||p(X|t)],

(55)

where W = βI − β2ψ1(βψ2 + Ku,u)−1ψ>1 . Given the above, we can obtain the final formu-
lation of the lower bound in (21) which has the similar formulation with Damianou et al.
(2011). But actually they are not the same.
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Appendix B. Gradients with Respect to the Parameters

The parameters involved in the proposed model include the model parameters {β,θx,θf}
and the variational parameters {{µ̄q, λq}Qq=1, Z} after reparameterizing {µq, Sq}Qq=1. All the
parameters are jointly optimized by maximizing the lower bound in (21) with the scaled
conjugate gradient method. Here we give the detailed gradients of all the parameters. Note
that in our model the dimensionality of the latent variable U is one (K=1). So the statistics
such as Sd,k, Λk, W are changed to sd, Λ, M here. In order to simplify the expressions,

we define Σψ0 = 2Pd + Λ, Σψ1 = Pd + Λ + Sn, Σψ21 = 2(Pd + Λ), Σψ22 = Pd+Λ
2 + Sn,

C−1 = β−1Ku,u +ψ2. z is equivalent to zm and z′ is equivalent to zm′ . The symbol |q after
a matrix means the qth column of the matrix.

Because of the reparameterization, we need to calculate the gradients of L̂ with respect
to µq, Sq and then obtain the gradients of L with respect to µ̄q, λq using (28) and (29).
Given that KL[q(X)||p(X|t)] does not involve the parameters θf , β and Z, its gradients

with respect to θf , β and Z are zero. Therefore, ∂L
∂θf

= ∂L̂
∂θf

, ∂L
∂β = ∂L̂

∂β and ∂L
∂Z = ∂L̂

∂Z .

First, we give the gradients of L̂ with respect to µq, Sq, Pd, sd through the formulation

∂L̂
∂θ

= −β
2

∂ψ0

∂θ
+ βTr[

∂ψ>1
∂θ

yy>ψ1C] +
β

2
Tr[

∂ψ2

∂θ
(K−1

u,u −
C

β
− Cψ>1 yy>ψ1C)], (56)

where θ represents µnq, Snq, Pdq and sd. The detailed derivatives of ψ0, ψ1 and ψ2 with
respect to µnq, Snq, Pdq and sd are different. The derivatives of ψ0, (ψ1)vm and (ψ2)mm′

with respect to µnq are

∂ψ0

∂µnq
= 0,

∂(ψ1)vm
∂µnq

= sdN (z|µn,Σψ1)((z− µn)>Σ−1
ψ1
|q),

∂(ψ2)mm′

∂µnq
=

D∑
d=1

sd
2N (z|z′,Σψ21)N (

z + z′

2
|µn,Σψ22)((

z + z′

2
− µn)>Σ−1

ψ22
|q).

(57)

The derivatives of ψ0, (ψ1)vm and (ψ2)mm′ with respect to Snq are

∂ψ0

∂Snq
= 0,

∂(ψ1)vm
∂Snq

= sdN (z|µn,Σψ1)(−
|Σψ1 |

−1

2

∂|Σψ1 |
∂Snq

− 1

2
(z− µn)>

∂Σ−1
ψ1

∂Snq
(z− µn)),

∂(ψ2)mm′

∂Snq
=

D∑
d=1

sd
2N (z|z′,Σψ21)N (

z + z′

2
|µn,Σψ22)

(−
|Σψ22 |

−1

2

∂|Σψ22 |
∂Snq

− 1

2
(
z + z′

2
− µn)>

∂Σ−1
ψ22

∂Snq
(
z + z′

2
− µn)).

(58)
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The derivatives of ψ0, (ψ1)vm and (ψ2)mm′ with respect to Pdq are

∂ψ0

∂Pdq
=

D∑
d=1

−N
2

sdsd

|2π|
Q
2 |Σψ0 |

3
2

∂|Σψ0 |
∂Pdq

,

∂(ψ1)vm
∂Pdq

=sdN (z|µn,Σψ1)(−
|Σψ1 |

−1

2

∂|Σψ1 |
∂Pdq

− 1

2
(z− µn)>

∂Σ−1
ψ1

∂Pdq
(z− µn)),

∂(ψ2)mm′

∂Pdq
=

N∑
n=1

sd
2N (z|z′,Σψ21)N (

z + z′

2
|µn,Σψ22)

(−
|Σψ21 |

−1

2

∂|Σψ21 |
∂Pdq

− 1

2
(z− z′)>

∂Σ−1
ψ21

∂Pdq
(z− z′)

−
|Σψ22 |

−1

2

∂|Σψ22 |
∂Pdq

− 1

2
(
z + z′

2
− µn)>

∂Σ−1
ψ22

∂Pdq
(
z + z′

2
− µn)).

(59)

The derivatives of ψ0, (ψ1)vm and (ψ2)mm′ with respect to sd are

∂ψ0

∂sd
=

2Nsd

|2π|
Q
2 |Σψ0 |

1
2

,

∂(ψ1)vm
∂sd

= N (z|µn,Σψ1),

∂(ψ2)mm′

∂sd
=

N∑
n=1

2sdN (z|z′,Σψ21)N (
z + z′

2
|µn,Σψ22).

(60)

Then, we give the gradients of L with respect to Λ and Z through the formulation

∂L
∂θ

=− β

2

∂ψ0

∂θ
+ βTr[

∂ψ>1
∂θ

yyTψ1C] +
β

2
Tr[

∂ψ2

∂θ
(K−1

u,u − Cψ>1 yy>ψ1C − β−1C)]

+
1

2
Tr[

∂Ku,u

∂θ
(K−1

u,u − Cψ>1 yy>ψ1C − β−1C − βK−1
u,uψ2K

−1
u,u],

(61)

where θ represents Λq, Zmq. The detailed derivatives of the ψ0, ψ1, ψ2 and Ku,u with respect
to Λq, Zmq are given separately. The derivatives of ψ0, (ψ1)vm, (ψ2)mm′ and (Ku,u)mm′
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with respect to Λq are

∂ψ0

∂Λq
=

D∑
d=1

−N
2

sdsd

|2π|
Q
2 |Σψ0 |

3
2

∂|Σψ0 |
∂Λq

,

∂(ψ1)vm
∂Λq

=sdN (z|µn,Σψ1)(−1

2
|Σψ1 |

−1∂|Σψ1 |
∂Λq

− 1

2
(z− µn)>

∂Σ−1
ψ1

∂Λq
(z− µn)),

∂(ψ2)mm′

∂Λq
=

N∑
n=1

D∑
d=1

sd
2N (z|z′,Σψ21)N (

z + z′

2
|µn,Σψ22)

(−
∂|Σψ21 |

2|Σψ21 |∂Λq
− 1

2
(z− z′)>

∂Σ−1
ψ21

∂Λq
(z− z′)

−
∂|Σψ22 |

2|Σψ22 |∂Λq
− 1

2
(
z + z′

2
− µn)>

∂Σ−1
ψ22

∂Λq
(
z + z′

2
− µn)),

∂(Ku,u)mm′

∂Λq
= N (z|z′,Λ)(−1

2
|Λ|−1∂|Λ|

∂Λq
− 1

2
(z− z′)>

∂Λ−1

∂Λq
(z− z′)).

(62)

The derivatives of ψ0, (ψ1)vm, (ψ2)mm′ and (Ku,u)mm′ with respect to zmq are

∂ψ0

∂zmq
=0,

∂(ψ1)vm
∂zmq

=− sdN (z|µn,Σψ1)((z− µn)>Σ−1
ψ1
|q),

∂(ψ2)mm′

∂zmq
=

D∑
d=1

sd
2N (z|z′,Σψ21)N (

z + z′

2
|µn,Σψ22)

(−1

2
(
z + z′

2
− µn)>Σ−1

ψ22
|q + (z− z′)>Σ−1

ψ21
|q),

∂(Ku,u)mm′

∂zmq
=− 1

Λq
N (z|z′,Λ)(zmq − zm′q).

(63)

Finally, we give the gradients of L with respect to β and θx as follows.

∂L
∂β

=
1

2
[Tr(K−1

u,uψ2) + (V −M)β−1 − ψ0 − Tr(yy>) + Tr(Cψ>1 yy>ψ1)

+ β−2Tr(Ku,uC) + β−1Tr(Ku,uCψ
>
1 yy>ψ1C)]. (64)

∂L
∂θx

=

Q∑
q=1

Tr[[−1

2
(B̂qKt,tB̂q + µ̄qµ̄

T
q ) + (I − B̂qKt,t)

∂L̂
∂Sq

(I − B̂qKt,t)
>]
∂Kt,t

∂θx
]

+

(
∂L̂
∂µq

)>
∂Kt,t

∂θx
µ̄q, (65)

where B̂q = Λ
1
2
q (I + Λ

1
2
q Kt,tΛ

1
2
q )−1Λ

1
2
q .
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Appendix C. Derivations of Prediction with Only Time

With the parameters as well as time t and t∗ omitted, the posterior density for prediction
is given by

p(Y∗|Y ) =

∫
p(Y∗|F∗)p(F∗|X∗, Y )p(X∗|Y )dF∗dX∗, (66)

where F∗ ∈ RN∗×D denotes the set of latent variables (the noise-free version of Y∗) and
X∗ ∈ RN∗×Q represents the latent variables in the low dimensional space.

The distribution p(F∗|X∗, Y ) in (66) is approximated by the variational distribution

p (F∗|X∗, Y ) ≈ q(f∗|X∗) =

∫
p(f∗|u, X∗)q(u)du, (67)

where f>∗ = [f>∗1, ..., f
>
∗D], and p(f∗|u, X∗) is Gaussian with the formulation

p(f∗|u, X∗) = N (f∗|Kf∗,uK−1
u,uu,Kf∗,f∗ −Kf∗,uK−1

u,uKu,f∗). (68)

Since the optimal setting for q(u) in our variational framework is also found to be Gaussian,
q(f∗|X∗) is Gaussian that can be computed analytically

q(f∗|X∗) =N (βKf∗,u(Ku,u + βψ2)−1ψ>1 y,

Kf∗,u(Ku,u + βψ2)−1K>f∗,u + Kf∗,f∗ −Kf∗,u,K
−1
u,uK>f∗,u).

(69)

The distribution p (X∗|Y ) in (66) is approximated by the variational distribution q (X∗)
which is Gaussian and can be explicitly formulated as

q(X∗) = N (µX∗ ,ΣX∗), (70)

where µX∗ is composed of column vector µx∗q and block-diagonal matrix ΣX∗ has diagonal
element Σx∗q with

µx∗q = Kt∗,tK
−1
t,tµq, (71)

Σx∗q = Kt∗,t∗ −Kt∗,tK
−1
t,t (Kt,t∗ − SqK−1

t,tKt,t∗). (72)

Given p(F∗|X∗, Y ) approximated by q(f∗|X∗) and p(X∗|Y ) approximated by q(X∗), the
posterior density of f∗ (the noise-free version of y∗) is now approximated by

p(f∗|Y ) =

∫
q(f∗|X∗)q(X∗)dX∗. (73)

So far, following Damianou et al. (2011), the expectation of f∗and its element-wise autoco-
variance are given in (33) and (34).
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M. A. Álvarez, D. Luengo, and N. D. Lawrence. Latent force models. In Proceedings of the
12th International Conference on Artificial Intelligence and Statistics, pages 9–16, 2009.
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