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Abstract. Maximum entropy discrimination (MED) is a general framework for dis-
criminative estimation which integrates the principles of maximum entropy and
maximum margin. In this paper, we propose a novel approach named multi-kernel
MED (MKMED) for multi-view learning (MVL), which takes advantage of the
complementary principle for MVL. Multiple kernels encode the similarities in dif-
ferent views. We obtain a kernel matrix by multiple kernel combination to make use
of the complementary information in different views. Based on the kernel matrix
obtained by multiple kernel combination, we can proceed MVL within the MED
framework. The experimental results on multiple datasets demonstrate the effec-
tiveness of the proposed MKMED. MKMED outperforms the single-view MEDs
and a competing MVL mothod named SVM-2K, and is competitive with the state-
of-the-art multi-view MED (MVMED) and even sometimes exceeds it.

Keywords. Multi-view learning, Maximum entropy discrimination, Multi-kernel
learning

1. Introduction

In real-world applications, it is often extensive that many data have multiple feature rep-
resentations [1,2,3,4]. For example, a web page can be described by words appearing on
the web page itself and words underlying all links pointing to the web page from other
pages. In multimedia learning, multimedia segments can be simultaneously described by
their video signals and audio signals. As another example, in content-based web-image
retrieval, an object can be described by its visual features from the image and at the same
time by the text surrounding the image. How to take good advantage of the multiple
feature representations? The research to deal with this problem is known as multi-view
learning (MVL). These views or representations may be obtained from multiple feature
sets or different sources. MVL is a rapidly growing direction in machine learning with
well theoretical underpinnings and it has achieved great success in practice. A notewor-
thy fact for MVL is that when there are no natural multiple views, manually generated
multiple views can still improve the performance [5]. Therefore, the application range
for MVL is very wide. For a comprehensive survey on MVL, refer to [6,7]. A related
concept is ensemble of classifiers, which can use single view or multiple views to make
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a final decision. When each classifier just uses one of multiple views to ensemble, this
kind of ensemble of classifiers can be considered as an implementation of MVL.

The existing successful MVL methods respect two significant principles: consensus
and complementary [7]. While the consensus principle aims to maximize the agreement
among multiple views, the complementary principle assumes that each view of the data
contains some information not in other views. According to Xu et al. [7], representative
MVL methods can be classified into three groups: 1) co-training [1,8,9,10], 2) multiple
kernel learning, and 3) subspace learning [11,12,13]. But Xu et al. [7] just reviews some
multiple kernel learning methods, which haven’t been used in MVL. To deal with hetero-
geneous data, Lewis et.al [14] used different kernel functions to encode protein sequence
and structure respectively. It is noted that if we consider the heterogeneous form of data
as the views of MVL, learning from heterogeneous forms of data will be identical to
MVL and they will possess the similar level of complexity. This paper attempts to utilize
multiple kernel combination in a single framework, i.e., maximum entropy discrimina-
tion (MED) [15] to integrate complementary information in different views.

MED [15] is a general framework for discriminative estimation following the max-
imum entropy principle, which embodies the Bayesian integration of prior information
with large margin constraints on observations. By introducing a selector variable into the
discrimination function, Jebara and Jaakkola [16] employed MED for feature selection.
Jebara [17,18] further extended MED to the problem of multi-task feature and kernel se-
lection. On the theoretical side, Long and Wu [19] established a mistake bound that leads
to a nearly optimal algorithm for learning disjunctions based on the maximum entropy
principle. In recent years, Zhu and Xing [20] proposed an MED Markov network which
combines MED and structure learning and thus possesses the advantages of maximum
margin and probabilistic models. By adopting a Laplace prior, Zhu et al. [21] obtained a
Laplace maximum margin Markov network which is a sparse model suitable for learning
complex structures. In order to deal with MVL situation, Sun and Chao [22] proposed
a method named multi-view maximum entropy discrimination (MVMED) to formulate
and analyze the multi-view algorithm.

Based on MED, we introduce a new MVL method named multi-kernel MED
(MKMED), which is different from the existing MVMED method. MVMED follows the
consensus principle by enforcing the margins of the classifiers from different views to be
the same. Our proposed MKMED is the first attempt to integrate multi-kernel learning
into MED for MVL. Distinct from MVMED, MKMED abides by the complementary
principle. Since different kernels may correspond to different notations of similarity and
they have their specific advantages, we resort to multi-kernel learning to make an appro-
priate combination under the complementary principle. Herein, different kernels use in-
puts from different views. After making multiple kernel combination on different views,
we obtain a comprehensive measurement of the similarity for MVL.

With regard to multi-kernel learning (MKL), there are a large quantity of such
work [23,24,25,26]. Lanchriet [23] learns a kernel matrix via semidefinite programming
techniques. Mao et al. [24] presented a probabilistic interpretation of MKL such that
MED with a noninformative prior over multiple views is equivalent to the formulation
of MKL, and they introduced a data-dependent prior based on an ensemble of kernel
predictors instead of noninformative prior. Sonnenburg et al. [25] developed an efficient
semi-infinite linear program for MKL to deal with large scale problems. Subrahmanya
and Shin [26] proposed an algorithm named sparse MKL to perform kernel selection.



The reminder of this paper is organized as follows. Section 2 briefly reviews MED,
MVMED and kernel combination. Section 3 introduces our proposed MKMED for
MVL. Section 4 reports experiments on multiple real-world datasets and makes compar-
isons. Finally, we give conclusion and discuss some possible future work in Section 5.

2. Background knowledge

In this section, we will first introduce the classical MED framework, and then reviews
a multi-view version of MED (MVMED). At last, we give a brief overview on kernel
function and kernel combination.

2.1. MED

MED is similar to Bayesian learning since the posterior of model parameters requires
to be inferred. Moreover, it also integrates the maximum entropy and maximum margin
principles and may not need the formulation of generative distributions for data.

Suppose we have a data set {Xt ,yt}, t = 1, ...,N, where Xt and yt indicate the tth in-
put and its corresponding output yt ∈ {±1}. Given two class-conditional probability dis-
tributions over the examples, i.e., p(Xt |θyt ) with parameters θyt , the decision rule follows
the sign of the discriminant function

L(Xt |ΘΘΘ) = log
p(Xt |θ1)

p(Xt |θ−1)
+b, (1)

where ΘΘΘ = {θ1,θ−1,b} include the model parameters and b is a bias term that can be
expressed as a log-ratio of class priors b = log

(
p+/(1− p+)

)
with p+ being the prior of

the positive class. Alternatively, the discriminant function can be directly described by a
parametric formulation without any reference to any probability model, i.e., L(Xt |ΘΘΘ) =
θθθ TXt +b where ΘΘΘ = {θθθ ,b}. Generally, MED is formulated as follows:

minp(ΘΘΘ,γγγ)KL
(

p(ΘΘΘ,γγγ) ∥ p0(ΘΘΘ,γγγ)
)

s.t.
∫

p(ΘΘΘ,γγγ)[ytL(Xt |ΘΘΘ)− γγγ t ]dΘΘΘdγγγ ≥ 0

1 ≤ t ≤ N,

(2)

where γγγ = {γ1, . . . ,γN} specify the desired classification margins which reflect the max-
imum margin principle as in support vector machines (SVMs), p0(ΘΘΘ,γγγ) is the prede-
fined prior distribution that the solution tends to approach, and KL

(
p(ΘΘΘ,γγγ) ∥ p0(ΘΘΘ,γγγ)

)
is the Kullback-Leibler (KL) divergence to measure the distance between p(ΘΘΘ,γγγ) and
p0(ΘΘΘ,γγγ). Here, instead of seeking a single parameter estimation, MED considers a more
general problem of finding a distribution p(ΘΘΘ,γγγ) over the parameters and margins, from
which we can get the parameter distribution p(ΘΘΘ) by marginalization. Correspondingly,
it uses a convex combination of discriminant functions, i.e.,

∫
p(ΘΘΘ)L(Xt |ΘΘΘ)dΘΘΘ to make

model averaging rather than a single discriminant function for decisions. In addition, the
solution to MED is unique as long as it exists since the optimization problem in (2) is
convex with respect to p(ΘΘΘ,γγγ) [15].

To solve this MED problem, we rely on the following theorem [15].



Theorem 1 The solution to the MED problem has the general form

p(ΘΘΘ,γγγ) =
1

Z(λλλ )
p0(ΘΘΘ,γγγ)e∑N

t=1 λt [yt L(Xt |ΘΘΘ)−γt ], (3)

where Z(λλλ ) is the normalization constant (partition function) and λλλ = {λ1, ...,λN} define
a set of non-negative Lagrange multipliers, one for each classification constraint. λλλ are
set by finding the unique maximum of the jointly concave objective function

J(λλλ ) =−logZ(λλλ ). (4)

Whether the solution to MED can be found depends entirely on whether the partition
function Z(λλλ ) can be evaluated in a closed form, which is given as

Z(λλλ ) =
∫

p0(ΘΘΘ,γγγ)e∑N
t=1 λt [yt L(Xt |ΘΘΘ)−γt ]dΘΘΘdγγγ. (5)

After the Lagrange multipliers λλλ are obtained, the following formula is used to predict
the label of a new example X

ŷ = sign
(
Ep(ΘΘΘ)[L(X |ΘΘΘ)]

)
. (6)

2.2. MVMED

Built on MED, Sun and Chao [22] proposed an MVMED approach to make use of mul-
tiple views in a fashion named margin consistency. They enforced the margins from two
views to be equal, which means that the classification confidences from different views
are deemed to match each other. By this means, MVMED followed the consensus prin-
ciple in MVL.

Given the multi-view dataset {X1
t ,X

2
t ,yt}, t = 1, ...,N, where X1

t and X2
t denote the

views from view 1 and view 2, respectively, and yt ∈ {±1} is the corresponding label.
MVMED considers a joint probability distribution over the two view classifier param-
eters ΘΘΘ1, ΘΘΘ2 and the margin γγγ where ΘΘΘ1 = {θθθ 1,b1}, ΘΘΘ2 = {θθθ 2,b2}, and the common
margin vector γγγ = {γ1, . . . ,γN}. Enforcing the large margin constraints on two views, the
MVMED is formulated as

minp(ΘΘΘ1,ΘΘΘ2,γγγ)KL
(

p(ΘΘΘ1,ΘΘΘ2,γγγ) ∥ p0(ΘΘΘ1,ΘΘΘ2,γγγ)
)

s.t.
∫

p(ΘΘΘ1,ΘΘΘ2,γγγ)[ytL1(X1
t |ΘΘΘ1)− γt ]dΘΘΘ1dΘΘΘ2dγγγ ≥ 0∫

p(ΘΘΘ1,ΘΘΘ2,γγγ)[ytL2(X2
t |ΘΘΘ2)− γt ]dΘΘΘ1dΘΘΘ2dγγγ ≥ 0

1 ≤ t ≤ N,

(7)

where L1(X1
t |ΘΘΘ1) and L2(X2

t |ΘΘΘ2) are discriminant functions from view 1 and view 2,
respectively. p0(ΘΘΘ1,ΘΘΘ2,γγγ) is the predefined prior distribution, and KL

(
p(ΘΘΘ1,ΘΘΘ2,γγγ) ∥

p0(ΘΘΘ1,ΘΘΘ2,γγγ)
)

is the KL divergence to measure the distance between p(ΘΘΘ1,ΘΘΘ2,γγγ) and



p0(ΘΘΘ1,ΘΘΘ2,γγγ). They may take linear formulations such as L1(X1
t |ΘΘΘ1) = θθθ T

1 X1
t + b1 and

L2(X2
t |ΘΘΘ2) = θθθ T

2 X2
t +b2.

The solution to MVMED is identified by the following expression

p(ΘΘΘ1,ΘΘΘ2,γγγ) =
1

Z(λλλ 1,λλλ 2)
p0(ΘΘΘ1,ΘΘΘ2,γγγ)

exp
( N

∑
t=1

λ1t [ytL1(X1
t |ΘΘΘ1)− γt ]+

N

∑
t=1

λ2t [ytL2(X2
t |ΘΘΘ2)− γt ]

)
,

(8)

where Z(λλλ 1,λλλ 2) is the normalization constant and λλλ 1 = {λ11, ...,λ1N}, λλλ 2 = {λ21, ...,λ2N}
define two sets of non-negative Lagrange multipliers, which are set by finding the unique
maximum of the jointly concave objective function

J(λλλ 1,λλλ 2) =−logZ(λλλ 1,λλλ 2). (9)

After λλλ 1 and λλλ 2 are obtained, the following two formulae are used to predict the
label of a new example (X1,X2) from view 1 and view 2, respectively

ŷ1 = sign
(∫

p(ΘΘΘ1,ΘΘΘ2)L1(X1|ΘΘΘ1)dΘΘΘ1dΘΘΘ2

)
, (10)

ŷ2 = sign
(∫

p(ΘΘΘ1,ΘΘΘ2)L2(X2|ΘΘΘ2)dΘΘΘ1dΘΘΘ2

)
. (11)

The prediction for a new example can also be made by using the two views together

ŷ = sign
(1

2

∫
p(ΘΘΘ1,ΘΘΘ2)

(
L1(X1|ΘΘΘ1)+L2(X2|ΘΘΘ2)

)
dΘΘΘ1dΘΘΘ2

)
. (12)

2.3. Kernel function and kernel combination

Generally, a kernel function (also known as kernel) κ(xxx,yyy) defines the similarity between
a given pair of objects (xxx,yyy). A larger value of κ(xxx,yyy) indicates that xxx and yyy are similar
and a smaller value indicates they are dissimilar. The kernel function must be symmetric
and positive semidefinite. Given n data points with length d, we can compute the simi-
larity between all pairs of objects in the data set. Denoted by KKKn×n, it is called the kernel
matrix. To some extent, the kernel matrix can be a sufficient representation of the raw
data. The canonical kernel function is the dot products κ(xxx,yyy) = ∑i xiyi, which is also
known as linear kernel. Some other common kernel functions are polynomial kernel, ra-
dial basis function (RBF) kernel. To ‘kernelize’ an algorithm, we can simply replace dot
products with kernel function κ .

Kernels are useful because they often make linear classifiers effective in the dataset
that was previously non-separable. Kernels may encode prior knowledge about the data
and similarities among non-vector and heterogeneous datasets. In addition, since differ-
ent kernels can correspond to various notions of similarity of inputs coming from dif-



ferent sources or modalities, kernel combination is a possible way to integrate multiple
information sources and obtain a better solution.

Many mathematical operations are closed under positive semidefiniteness, which
may ensure the combined kernel is a valid kernel [31]. The most common such operation
is addition: if κ1 and κ2 are both kernel functions, then κ(xxx,yyy) = κ1(xxx,yyy)+κ2(xxx,yyy) is
a valid kernel. A weighted combination of kernels η1κ1(xxx,yyy) + η2κ2(xxx,yyy) is a better
choice for kernel combination with positive coefficients η1 and η2.

3. Multi-kernel maximum entropy discrimination for multi-view learning

As discussed before, there are two significant principles ensuring the success of MVL:
consensus and complementary principles. Consensus principle [27,29] aims to maximize
the agreement on multiple views, while complementary principle [5,30] intends to em-
ploy the complementary information in different views. For SVM-2K proposed in [27],
the consensus principle is followed by forcing the constraint of consensus of two views,
which can be formulated as || f 1(x1

i )− f 2(x2
i )|| ≤ ηi + ε where ηi is a variable that im-

poses consensus between the two views, and ε is a slack variable. Our proposed MKMED
method respects the other principle: complementary principle. Different kernels encode
different information in different views and correspond to different notations of similar-
ity, and thus we can make a kernel combination to use the complementary information in
different views. For simplicity, we start with two views, which is a special case of MVL
and can be easily extended to multi-view case.

The kernel combination form we adopted is βκ1(xxx,yyy)+(1−β )κ2(xxx,yyy) with kernel
function κ1 encoding the first view of the data and κ2 encoding the second view of the
data, 0 ≤ β ≤ 1. For the case with three views, we can use three kernels encoding them
and use two parameters β and γ tradeoff their importance. For the case with more than
three views, we can deal with it similarly, but the implementation is time-consuming.
Therefore, it is worth further researching for the case with more than three views, and it
will be our further research work.

Subsequently, we provide an instantiation of MED and integrate the kernel combina-
tion into the instantiation, which produces our MKMED. As to the discriminant function
L(Xt |ΘΘΘ), we use the linear form L(Xt |ΘΘΘ) = θθθ TXt + b. From (3), we find that the prior
p0(ΘΘΘ,γγγ) plays an important role in the MED framework. Therefore, it is necessary to
design specific prior forms for better instantiation. We suppose

p0(ΘΘΘ,γγγ) = p0(ΘΘΘ)p0(γγγ) = p0(θθθ)p0(b)p0(γγγ), (13)

where p0(b) approaches a non-informative Gaussian prior, p0(θθθ) is Gaussian distributed
with mean 000 and identity covariance III, and the prior over the margin constraints γγγ is
assumed to be fully factorized

p0(γγγ) =
N

∏
t=1

p0(γt), (14)

with p0(γt) = cexp
(
− c(1− γt)

)
and γt ≤ 1. A penalty is incurred for margins smaller

than 1− 1/c (the prior mean of γt ) while vanishes otherwise. In fact, this choice of the



margin prior corresponds to the use of slack variables and additive penalties in SVM. The
margin prior allows some slackness to handle the non-separable case, which is analogous
to soft-margin SVMs. By making such assumptions, (5) becomes

Z(λλλ ) =
∫

N (θθθ |0,I)N (b|0,σσσ2)
N

∏
t=1

cexp
(
− c(1− γt)

)
exp

( N

∑
t=1

λt [ytL(Xt |ΘΘΘ)− γt ]
)
dΘΘΘdγγγ

=
∫

N (θθθ |0,I)exp
( N

∑
t=1

λtytθθθ TXt
)
dθθθ

∫
N (b|0,σσσ2)exp

( N

∑
t=1

λtytb
)
db

∫ N

∏
t=1

cexp
(
− c(1− γt)

)
exp

(
−

N

∑
t=1

λtγt
)
dγγγ

= exp
(1

2

N

∑
t,τ=1

λtλτ ytyτ Xt
TXτ +

σσσ2

2
( N

∑
t=1

λtyt
)2
) N

∏
t=1

( c
c−λt

e−λt
)
.

(15)

We substitute (15) into (4) to obtain

J(λλλ ) =
N

∑
t=1

[
λt + log(1− λt

c
)
]
− 1

2

N

∑
t,τ=1

λtλτ ytyτ Xt
TXτ

− σσσ2

2
( N

∑
t=1

λtyt
)2
,

(16)

where λt ≥ 0, t = 1, ...,N. Since σσσ2 → ∞ corresponds to using non-informative prior on
the bias term b, the above objective function requires ∑N

t=1 λtyt = 0. Thus, we get the
following dual optimization problem

max
λλλ

N

∑
t=1

(
λt + log

(
1− λt

c

))
− 1

2

N

∑
t,τ=1

λtλτ ytyτ Xt
TXτ

N

∑
t=1

λtyt = 0.

(17)

For the above dual optimization problem, we replace Xt
TXτ with Mercer kernel func-

tion κ(Xt ,Xτ) to obtain the kernel version of the instantiation of MED as (18).


max

λλλ

N

∑
t=1

(
λt + log

(
1− λt

c

))
− 1

2

N

∑
t,τ=1

λtλτ ytyτ κ(Xt ,Xτ)

N

∑
t=1

λtyt = 0.

(18)



In order to handle MVL with MED, now we will use the kernel combination
βκ1(X1t ,X1τ)+(1−β )κ2(X2t ,X2τ) to substitute κ(Xt ,Xτ) to obtain MKMED, β ∈ [0,1].
(X1t ,X2t) denote the two views of the data, t = 1, ...,N. We obtain the formulation for
MKMED 

max
λλλ

N

∑
t=1

(
λt + log

(
1− λt

c

))
− 1

2

N

∑
t,τ=1

λtλτ ytyτ
(
βκ1(X1t ,X1τ)+(1−β )κ2(X2t ,X2τ)

)
N

∑
t=1

λtyt = 0.

(19)

From the above formulation, we find that if β = 0 MKMED will degenerate to MED
with only the second view, and if β = 1 MKMED will degenerate to MED with only the
first view. In order to facilitate the expression, we will denote the above two cases by
MKMED2 and MKMED1, respectively.

In order to better understand the procedure of MKMED, we give the algorithm of
MKMED in Algorithm 1. Apart from the input and output, we introduce the algorithm
of MKMED with three steps: preparation, training and test mainly. They are detailed in
the execution part of Algorithm 1.

Algorithm 1 MKMED

Input:
Training sets {X1t ,X2t ,yt}, training set size ℓ, test sets {X1i,X2i}, test set size u,
parameter c, tradeoff parameter β , kernel functions κ1 and κ2.
Execution:
preparation:
Initialize λλλ .
Make kernel combination βκ1(X1t ,X1τ )+(1−β )κ2(X2t ,X2τ ).
Training:
Solve the optimization problem (19) with ℓ replacing N.
Test:
Once the Lagrange multipliers λλλ are obtained, use any of the formulae (10), (11)
and (12) to make predictions for the test sets (X1i,X2i), i = ℓ+1, ..., ℓ+u.
Output:
The prediction outputs of the test sets and the accuracy of these predictions.

For our proposed MKMED, its computational complexity is O(ℓ3) with ℓ indicating
the number of the training set, which is the same with SVM. This cubic complexity is a
challenge for large scale application. In fact, standard SVM also suffers this disadvantage
and special optimizations needs to be designed. Therefore, it is interesting to design some
speedup strategies such as stochastic optimization and the Nyström approximation to
make MKMED scalable, which will be our future work.



4. Experiments

In order to validate the effectiveness of our proposed MKMED, we evaluate it on three
real-world datasets: web-page, ionosphere and advertisement.

4.1. Datasets

Table 1. The average classification accuracies and standard deviations (%) of six methods on three datasets.

Dataset MKMED1 MKMED2 MKMED3 SVM-2K MVMED MKMED

Web-page 84.68±2.36 92.85±1.03 92.81±1.22 90.42±2.44 92.93±2.07 93.31±1.26
Ionosphere 86.59±3.38 1±0 1±0 98.46±1.25 1±0 1±0
Advertisement 93.60±1.23 93.00±1.55 94.13±1.33 93.66±1.73 95.47±1.12 94.67±1.54

Web-page dataset: The web-page dataset2 includes 1051 web pages collected from
computer science department web sites at four U.S. universities: Cornell University, Uni-
versity of Washington, University of Wisconsin, and University of Texas [1]. The task
is to predict whether a web page is a course home page or not. Within the dataset there
are 230 course pages and 821 non-course pages. One view is words occurring in a web
page while the other is words appearing in the links pointing to that page. We prepro-
cess them into 2333 and 87 dimensions respectively. For convenience and effectiveness,
the dimension of view 1 is reduced from 2333 to 500 via principle component analysis
(PCA).

Ionosphere dataset: The ionosphere dataset3 is collected by a system in Goose Bay,
Labrador. This system consists of a phased array of 16 high-frequency antennas with a
total transmitted power on the order of 6.4 kilowatts. The targets are free electrons in the
ionosphere. Good radar returns are those showing evidence of some type of structure in
the ionosphere. Bad radar returns are those that not and their signals pass through the
ionosphere. There are 225 “good” (positive) instances and 126 “bad” (negative) instances
in this dataset. Originally it has only one view with 35 dimensions, but we generate the
other view via PCA. The generated view has 24 dimensions.

Advertisement dataset: This dataset4 represents a set of possible advertisements on
Internet pages. The task is to predict whether an image is an advertisement (“ad”) or not
(“nonad”). The dataset consists of 3279 examples including 459 “ad” images and 2820
“nonad” images. The original features of the dataset consist of three continuous values
and 1554 binary values. One or more of the three continuous features are missing in 28%
of the instances; missing values should be interpreted as “unknown”. We omit the three
continuous features and divide the other features into two views. The first view describes
the image itself (words in the image’s URL, alt text and caption), while the second view
contains all other features (words from the URLs of the pages that contain the image and
the image points to). The dimensions of the two views are 587 and 967, respectively. 600
examples are sampled to be the used dataset.

2http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-51/www/co-training/data/
3http://archive.ics.uci.edu/ml/datasets/Ionosphere
4http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements
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Figure 1. The performance on Web-page classification.

4.2. Setup

We compare the proposed MKMED with the following baselines:

• MKMED1 and MKMED2: They either only use the feature from the first view
or just use the feature from the second view of each dataset. MKMED1 is the
MKMED with β = 1 while MKMED2 is the MKMED with β = 0.

• MKMED3: It first concatenates the two views and then use the concatenated
feature to train single-view MKMED. Therefore, it uses all the views together.

• SVM-2K [27]: It is an MVL approach which combines KCCA and SVM into a
single optimization problem.

• MVMED [22]: It learns a classifier within MVMED framework, which is an
MVL method with MED.

These baselines are classified into single-view methods and multi-view methods.
The comparison with single-view methods is to show the effectiveness of the MVL of the
proposed MKMED. The comparison with multi-view methods will demonstrate whether
this MVL method is superior to other multi-view methods.

For all the experiments, we will divide the dataset into the training set and test set.
With the training set we will train a classifier, and then select the parameters on the
validation set which is half of the test set, at last we will give the results on the unseen
test set which is the other half of the test set. The parameter c will be chosen in the
range {2−5,2−4, ...,25} and β is selected from {0,0.1, ...,1} via a grid search strategy.
The average accuracies obtained by ten random divisions of the training and test sets are
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Figure 2. The performance on Ionosphere classification.

reported. For all the datasets, we choose linear kernels for both views and first report the
average accuracies and standard deviations of the five methods with half of the dataset
as the training set in Table 1, and then we conduct experiments with varying training set
sizes and show the results in Figures 1∼ 3. To make it clear, we have divided each data
set into ten parts averagely, and then use 1,2,...,9 parts as the training set and the rest
parts as the validation and unseen test set. The sizes of the validation set and unseen test
set equal. Note that the results in Table 1 is just one case of that in Figures 1∼ 3, we
list it out to demonstrate the corresponding numerical values in the case where half of
the dataset (five parts) is used as the training set. Clearly, the comprehensive comparison
should be seen from Figures 1∼ 3 combined with Table 1.

With respect to MKMED, before kernel combination, each kernel is first centered
around the origin in the feature space, and each data point is projected into the unit sphere
using κ̂(xxx,yyy) = κ(xxx,yyy)/

√
κ(xxx,xxx)κ(yyy,yyy). Subsequently, we will show the experimental

results on the three datasets.

4.3. Results

From Table 1, we find that our proposed MKMED outperforms all the other methods
on the web-page dataset. From Figure 1, we see that MKMED performs worse than
MVMED at first and then catches up with MVMED and performs the best. MKMED3
also performs worse than MVMED at first and then catches up with MVMED and out-
performs finally, but it performs worse than MKMED all the time. MKMED, MVMED
and MKMED3 perform better than other methods.
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Figure 3. The performance on Advertisement classification.

Table 1 and Figure 2 both show that MKMED, MVMED, MKMED3 and MKMED2
all perform the best on the ionosphere dataset. SVM-2K performs worse when the train-
ing set is small, but with the increasing training data size, SVM-2K catches up and per-
forms as well as MKMED, MVMED, MKMED3 and MKMED2. MKMED1 performs
the worst all the time.

Table 1 demonstrates that on the advertisement dataset, MVMED performs the best
and MKMED performs a little worse than MVMED but MKMED performs better than
other methods. From Figure 3, we also find that MVMED and MKMED perform better
than other methods, MKMED performs basically a little worse than MVMED but some-
times it performs better than MVMED. MKMED3 performs worse than MVMED and
MKMED but performs better than or as well as other methods.

The experimental results on the three datasets show that MKMED performs better
than three single-view learning methods MKMED1, MKMED2 and MKMED3 and a
competing MVL method SVM-2K. In addition, MKMED also shows comparative per-
formance with state-of-the-art MVMED, and sometimes even exceeds it. This not only
shows that the complementary principle in MVL is effective , but only demonstrates that
the proposed MKMED is competitive with MVMED in classification performance.

5. Conclusions and future work

We have proposed a novel MVL method MKMED, which takes good advantage of the
complementary information in different views via MKL. First we use multiple kernel



functions encoding different views to make kernel combination, and then we integrate
the kernel combination to MED for MVL. Experimental results on real-world applica-
tions web-page classification, ionosphere classification and advertisement classification
demonstrate that the proposed MKMED is competitive with, and sometimes exceeds the
state of the art.

For future work, it is worthy to explore integrating other kernel combination meth-
ods such as the nonlinear kernel combination [28] to the MED framework for MVL. In
addition, it is also very interesting and important to investigate how to design specific
speedup algorithm to deal with large-scale datasets in the future.
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