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Abstract:
Gaussian process regression (GPR) is a very important

Bayesian approach in machine learning applications. It has
been extensively used in semi-supervised learning tasks. In
this paper, we propose a sequential training method for solv-
ing semi-supervised binary classification problem. It assigns
targets to test inputs sequentially making use of sparse Gaus-
sian process regression models. The proposed approach deals
with only one part of the whole data set at a time. Firstly,
the IVM produces a sparse approximation to a Gaussian pro-
cess (GP) by combining assumed density filtering (ADF) with
a heuristic for choosing points based on minimizing posterior
entropy, and then a sparse GPR classifier is learnt on part
of the whole data set. Secondly, the representative points se-
lected in the first step including part of remainder examples
are used to train another sparse GPR classifier. Repeat the
two steps sequentially until all unlabeled examples are deal
with. The proposed approach is simple and easy to implement.
The hyperparameters are estimated easily by maximizing
the marginal likelihood without resorting to expensive cross-
validation technique. The evaluations of the proposed method
on several real world data sets reveal promising results.
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1. Introduction

In real world problems, semi-supervised learning usu-
ally involves lots of unlabeled examples. As to many
existing Gaussian process-based semi-supervised learning
algorithms [1], the computation cost of training a GPR
model is three power of the number of examples, which

is mainly due to the requirement to invert a matrix. The
high computational complexity makes the standard GP-
based semi-supervised algorithms difficult to be directly ap-
plied to large-scale problems. On the other hand, if a semi-
supervised learning algorithm lacks the ability to deal with
large-scale problems, it is hard to demonstrate it’s effective-
ness in practical applications. To overcome the drawbacks of
many existing semi-supervised learning algorithms of high
computational complexity and difficult application in large-
scale data sets, we propose the sequential training method
of semi-supervised classification. Although the idea of se-
quential training is not new [2], we are not aware of its
any application to Gaussian process based semi-supervised
learning so far. The proposed method proceeds as follows.
Firstly, we use the IVM technique to train a sparse GPR clas-
sifier [3] on part of labeled and unlabeled examples, the out-
puts are the targets of unlabeled examples and the represen-
tative points. Secondly, we go on using the representative
points selected in the first step and some new examples to
train another sparse semi-supervised GPR classifier. We re-
peat the above two steps sequentially until all unlabeled ex-
amples are assigned targets. The sequential training method
of semi-supervised learning applicable to large-scale data
sets is obtained in the end. Besides the advantage of deal-
ing with large-scale data sets, the proposed method is also
appropriate to the case of online learning that the training
examples are increasing.

Lawrence et al extended the standard IVM technique
combining with a null category noise model (NCNM) to
build a sparse GP classifier for semi-supervised classifica-
tion. They introduced a virtual category0 and assumed that
the decision boundary avoids dense unlabeled data region.
However, the marginal likelihood associated with the noise
model is not log-concave. Therefore, the Gaussian approx-
imation to the noise model can have negative variance [4].



Patel et al firstly extended the iterative support vector regres-
sion of cluster [5] to semi-supervised learning and then pro-
posed the iterative Gaussian process regression algorithm.
Finally, they proposed the sparse Gaussian process regres-
sion algorithm by combining the iterative Gaussian process
regression with the IVM algorithm, which is referred to as
SSuGPs [3]. The proposed method is inspired by IVM and
SSuGPs algorithms, which is to deal with large-scale prob-
lems.

The rest of this paper is organized as follows. Section 2
reviews Gaussian processes and the IVM algorithm. Sec-
tion 3 thoroughly introduces the sequential training method
of semi-supervised classification. Section 4 reports our ex-
perimental results on eight real word data sets, including
comparisons with other two related methods. Finally, Sec-
tion 5 concludes this paper and gives future research direc-
tion.

2. Gaussian Processes and IVM

In this section, we will review the general Gaussian pro-
cess methodology and how IVM uses the assumed density
filtering approximation technique to approximate the true
posterior probability to produce a sparse Gaussian process
model. We also give a brief introduction of ADF.

2.1. Gaussian processes

A Gaussian process is a natural generalization of the
Gaussian distribution whose mean and covariance is a vec-
tor and matrix. It defines a distribution over functions [1]. It
is completely specified by its mean function and covariance
function. For example,

f ∼ GP(m(x), k(x, x′)), (1)

means that the functionf is distributed as a GP with mean
functionm(x) and covariance functionk(x, x′).

The learning of GPs involves learning of latent functions
f of the input variables. Assuming that we are given a data
set ofN instances, the input data,X = [x1, . . . , xN ]T , and
the targetsy = [y1, . . . , yN ]T are independent from the input
data. A set of random variables,f = [f(x1), . . . , f(xN )]T ,
are function values on the input data. The prior distribution
over the latent variables is given by a GP,

p(f) = N (0,K),

with a covariance matrixK, which is evaluated at the input
dataX by a kernel function. The parameters associated with
the kernel function are called kernel hyperparameters.

The joint likelihood can be written as

p(y, f) = p(f)
N
∏

n=1

p(yn|fn), (2)

where p(yn|fn) gives the relationship between the latent
variable and the output target and is referred to as the noise
model. For Gaussian process regression, the noise model is
also a Gaussian process, that is

p(yn|fn) = N (yn|fn, σ
2
n).

Therefore, it is easy to compute the marginal likelihood for
Gaussian process regression. However, for non-Gaussian
noise models the required marginalization is intractable and
we must turn to approximations [7, 8, 9]. In this paper, we
adopt the assumed density filtering to approximate the true
process posterior.

One key advantage of the Gaussian process framework
is that the hyperparameters are automatically optimized by
maximizing the marginal likelihood. In the next subsec-
tion, we will review how IVM uses the ADF to compute
the marginal likelihood to produce a sparse Gaussian pro-
cess model.

2.2. IVM with ADF

The inspiration for the IVM is the support vector ma-
chine, of which the solution is sparse. The IVM algorithm
seeks to find a sparse representation for the data set [7]. IVM
uses the ADF algorithm to select onlyd most informative
points in an online way based on the information theoretic
selection criterion. Therefore, the resulting model is forced
sparse and the computational complexity is reduced from
O(N3) to O(Nd2). The selected points are referred to as
representative points or active set.

Assumed density filtering (ADF) has its origins in on-
line learning. It deals with only one data point at a time,
computing the modified posterior and replacing it with an
approximation to keep the algorithm tractable [4]. The joint
likelihood (2) can be formulated as

p(y, f) =
N
∏

n=0

tn(f),

wheret0(f) is the prior off, andtn(f) = p(yn|fn). ADF
makes use of this factorized form to approximate the true
posterior, p(f|y), as q(f). Initially, q0(f) = t0(f) =
N (0,K). ADF proceeds in a sequential way by absorbing
one data point at a time. Therefore, once a more pointxni

is



included, it leads to an updated posterior distribution of this
term,

p̂i(f) ∝ qi−1(f)tni
(f).

Then, the new approximation of the true posterior,qi(f), can
be obtained by minimizing the Kullback Leibler (KL) diver-
gence between the two distributions.

KL(p̂i||qi) = −
∫

p̂i(f) log
qi(f)

p̂i(f)
df. (3)

Generally, the updated posterior after including thei-th point
can be written as

p̂i(f) =
qi−1(f)tni

(f)

Zi

, (4)

where the normalization constant is

Zi =

∫

tni
(f)qi−1(f)df. (5)

The minimization of KL divergence (3) is achieved by ‘mo-
ment matching’ equations of the form

qi(f) = N (f|µi,Σi).

In the process of data point selection, the point that gives
the largest reduction in posterior process entropy is selected.
The entropy change associated with including thenith point
at theith inclusion is given by

∆Hi = −
1

2
log |Σi,ni

|+
1

2
log |Σi−1| . (6)

More details about the IVM and ADF algorithms can be
found in [4].

3. The proposed method

In semi-supervised classification, we are given a training
data set ofL labeled examples,D = {(xi, yi)|i = 1, . . . , L},
yi ∈ {−1, 1}, and a test data set ofU unlabeled examples,
D′ = {x∗i |i = 1, . . . , U}, N = L+U . Our aim is to use the
training dataD along with the test dataD′ to determine un-
known labelsy∗i . We now give a brief overview of the sparse
Gaussian process based approach for semi-supervised clas-
sification and then present the proposed sequential training
method.

3.1. SSuGPs

SSuGPs is a GP-based algorithm for solving semi-
supervised binary classification problem using sparse Gaus-
sian process regression models [3]. It is closely related to
semi-supervised learning based on support vector regres-
sion (SVR) and maximum margin clustering [5, 6].

In clustering problems, using large margin methods to
design an algorithm is gaining wide popularity. Zhang et al
proposed an iterative algorithm for maximum margin clus-
tering based on support vector regression [5]. The goal of
SVR is to find a functionf(x∗) = wTφ(x∗) + b which best
fits the data. Here,φ is a mapping function induced by a ker-
nel functionk. The primal problem of the iterative algorithm
for maximum margin clustering can be written as

minw,b,ξ∗
i

1
2
‖w‖2 + C

∑

i ξ
∗
i

s.t. |y∗i − (wTφ(x∗) + b)| = ξ∗i ∀i
yi

∗ ∈ {−1, 1}∀i, − l ≤ eTy∗ ≤ l,

(7)

where−l ≤ eTy∗ ≤ l is a cluster balance constraint to
avoid meaningless solutions,l ≥ 0 is a constant controlling
the class imbalance ande is the vector of ones.

For Gaussian process regression, the relationship be-
tween the latent variables and the targets can be written as
y = f+ϕ, whereϕ is the Gaussian noise,ϕ ∼ N (ϕ|b, σ2

NI).

Let f̃ =
[

fT f∗T
]T

and

K =

[

K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

]

denote the covariance matrix obtained using both the labeled
and unlabeled examples. Therefore, the problem formula-
tion (7) can be easily extended to solve semi-supervised clas-
sification problems making use of Gaussian process regres-
sion. That is,

min
f̃,b,y∗

σ2

N

2
f̃TK−1f̃ + CL

L
∑

i=1

ξ2i + CU

U
∑

i=1

ξ∗i
2

s.t. yi − (fi + b) = ξi, i = 1, . . . , L
y∗i − (f∗

i + b) = ξ∗i , i = 1, . . . , U
y∗i ∈ {−1, 1}∀i, − l ≤ eTy∗ ≤ l.

(8)

Problem (8) can be solved in an iterative way. Firstly,
use only the labeled examples to train a GP classifier to pre-
dict y∗ andb. Secondly, compute the dual problem of Prob-
lem (8) to find f̃. Thirdly, with a fixed f̃, y∗ andb can be
obtained by solving the following problem:

miny∗,b
L
∑

i=1

ξ2i +
U
∑

i=1

ξ∗i
2

s.t. yi − (fi + b) = ξi, i = 1, . . . , L
y∗i − (f∗

i + b) = ξ∗i , i = 1, . . . , U
y∗i ∈ {−1, 1}∀i, − l ≤ eTy∗ ≤ l.

(9)



Repeat the above two steps until convergence or the maxi-
mum number of iterations is reached. The IVM algorithm
has the capability of selecting the most informative points
to force a sparse model. Therefore, making use of the IVM
algorithm to select representative points before the second
step of the iterative GPR algorithm leads to a sparse GPR
algorithm, that is SSuGPs [3].

3.2. The sequential training method based on SSuGPs

Due to a high demand in memory for dealing with large-
scale data sets, it makes the current sparse GP-based semi-
supervised algorithms difficult to solve complex problems.
On the other hand, even if the sparse algorithms can be ap-
plied to solve the large-scale problems, it would have poor
performance due to the complex structure of the large data
set. Therefore, we propose to solve large-scale problems us-
ing existing GP-based algorithm in a sequential way. In this
paper, we focus on the SSuGPs algorithm. The proposed al-
gorithm proceeds as follows. Let the number of representa-
tive points bedmax, and the number of examples being dealt
with in every iteration isNd. Firstly, use the firstNd exam-
ples to train a SSuGPs model, the outputs aredmax repre-
sentative points and the targets of unlabeled examples in the
dealtNd examples. Secondly, train another SSuGPs model
on thedmax representative points got in the previous step
andNd− dmax examples from the remainder examples. Re-
peat the two steps until all unlabeled examples are assigned
targets. For more information about SSuGPs, please refer
to [3]. The proposed algorithm is referred to as SeSSuGPs.

The sequential training method of semi-supervised clas-
sification based on SSuGPs can be illustrated as follows.

• Begin Initialize dmax, Nd, σN and kernel hyper-
parameters.

• Repeat

– Train a SSuGPs classifer on the currentNd exam-
ples.

– Keep thedmax representative points and addNd−
dmax examples from the reminder examples to
form the newNd examples.

• Until all unlabeled examples are assigned targets.

• End

4. Experiments

4.1. Data description and configuration

The proposed algorithm is tested on eight real world
data sets comparing with SSuGPs and NCNM [4]. The
eight data sets are presented on the following table.
Of the eight data sets, the data sets pima, waveform,
ionosphere and letter are from the UCI repository:
http://archive.ics.uci.edu/ml/, the data set USPS is from
http://www-i6.informatik.rwth-aachen.de/k̃eysers/usps.html
and the rest data sets are obtained from
http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm.

Table 1. The data sets used in experiments.

dataset classes attributes training & test

ionosphere 2 34 351
pima 2 8 768
waveform 3 21 5000
letter 26 16 20000
Splice 2 60 1000+2175
Thyroid 2 5 140+75
Ringnorm 2 20 400+7000
USPS 10 256 7291+2007

Following the settings in [3], letk be the difference of
proportions of examples belonging to the two classes, and
we setl in problem (8) to bel = 2kU , whereU denotes
the number of unlabeled examples. For all the experiments,
we use the Gaussian kernel function defined byk(xi,xj) =

ν exp{
−‖xi−xj‖

2

2σ2 }. CL andCU are set to be1 corresponding
to the standard Gaussian process regression.

In the next subsection, we report the experimental re-
sults of SeSSuGPs, SSuGPs and NCNM tested on eight real
world data sets.

4.2. Experimental results

Firstly, we test the proposed algorithm and two compet-
ing algorithms SSuGPs and NCNM on eight data sets. As to
multiple classes problems, we divide the classes to one and
the rest. On the next Table 2, the results on data set wave-
form is ‘0 vs rest’, letter is ‘6 vs rest’ and USPS is ‘3 vs 5’.
The data sets on which the proposed algorithm performs best
are marked bold.

To evaluate the performance of semi-supervised classifi-
cation algorithms on different proportions of labeled exam-
ples, we set the proportion of labeled examples from0.01 to



Table 2. The average error rate (%) of three algo-
rithms on eight data sets.

data set SeSSuGPs SSuGPs NCNM

ionosphere 14.20±1.61 16.76±3.68 17.90±3.53
pima 43.36±2.92 53.86±1.49 44.42±3.42
waveform 10.39±0.80 11.53±1.17 16.72±6.32
letter 0.89±0.52 0.90±0.48 1.10±0.18
Splice 28.14±8.82 21.53±0.55 31.36±1.40
Thyroid 7.11±0.77 16.00±4.81 8.00±2.67
Ringnorm 14.83±1.36 25.97±3.56 17.24±1.82
USPS(3vs5) 7.36±0.66 8.22±1.41 7.09±1.24

0.05 and then test the three algorithms on corresponding data
sets. Test results on the USPS data set of NCNM, SSuGPs
and SeSSuGPs are reported on the next Table 3, Table 4 and
Table 5.

Table 3. Test set errors (%) on the USPS data set
using the NCNM algorithm.

digit 0.01 0.025 0.05

0 7.63±1.96 6.22±0.81 2.00±0.37
1 3.16±0.76 0.76±0.04 3.04±3.37
2 8.75±1.81 8.89±2.30 2.25±0.35
3 3.18±0.30 7.12±2.43 2.94±0.42
4 8.37±3.35 7.88±3.36 5.62±2.92
5 6.57±1.99 6.59±2.23 2.92±0.35
6 7.97±2.94 6.31±3.48 1.70±0.46
7 13.93±2.54 6.09±2.59 2.23±0.41
8 6.76±1.77 7.42±1.80 3.37±0.28
9 11.85±4.45 7.63±2.04 3.97±0.58

From experimental results shown on Table 2, Table 3,
Table 4 and Table 5, we can see that the proposed algorithm
performs better than the other two semi-supervised classi-
fication algorithms. When the proportion of labeled exam-
ples increases, the corresponding algorithms perform better
in general.

5. Conclusions

In this paper, a sequential training method for solving
semi-supervised binary classification problem is proposed.
It assigns targets to test inputs sequentially making use of
sparse Gaussian process regression models and finally re-

Table 4. Test set errors (%) on the USPS data set
using the SSuGPs algorithm.

digit 0.01 0.025 0.05

0 4.70±1.00 2.97±1.15 2.08±0.29
1 2.57±4.08 0.77±0.04 3.30±2.84
2 6.82±1.79 4.46±0.89 2.31±0.22
3 4.26±0.76 3.40±0.32 3.16±0.37
4 6.84±3.17 6.75±3.60 5.46±2.52
5 6.25±1.76 6.15±2.16 2.95±0.39
6 6.49±3.14 4.23±1.46 1.60±0.26
7 7.93±2.41 4.56±1.95 1.83±0.33
8 6.23±1.23 3.26±0.40 3.17±0.40
9 6.89±2.37 4.46±2.49 3.78±0.22

Table 5. Test set errors (%) on the USPS data set
using the Se SSuGPs algorithm.

digit 0.01 0.025 0.05

0 4.29±0.90 2.62±0.96 1.92±0.33
1 0.95±0.10 0.91±0.12 2.80±2.79
2 6.92±2.12 4.07±0.77 2.15±0.29
3 4.24±0.66 3.46±0.41 2.92±0.42
4 6.87±1.91 4.40±1.97 5.69±2.49
5 5.90±1.35 4.13±0.63 2.90±0.18
6 3.26±1.14 2.35±0.52 1.50±0.20
7 2.95±0.95 1.66±0.20 1.73±0.22
8 4.78±0.41 3.22±0.46 3.24±0.67
9 4.38±2.37 3.68±0.51 3.24±0.57

sults in a sequential and sparse method. It is closely re-
lated to the informative vector machine (IVM) technique and
the iterative Gaussian process regression algorithm. Further-
more, the hyperparameters are estimated easily by maximiz-
ing the marginal likelihood without resorting to expensive
cross-validation technique. When evaluated on several real
world data sets, the proposed algorithm gets the best perfor-
mance comparing with two related methods. The promis-
ing results demonstrate the effectiveness of the proposed
method.

As a preliminary study of GP-based semi-supervised al-
gorithm for solving large-scale problems, SeSSuGPs seems
to be a promising beginning. In the future, more sparse GP-
based algorithms should be learnt for semi-supervised clas-
sification.
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