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Abstract:
This paper presents a new method for recognizing

trajectory-based human activities. We use a discriminative
latent variable model in our proposed method, which con-
siders that human trajectories are made up of some spe-
cific motion regimes, and different activities have different
switching patterns among the motion regimes. We model
the trajectories using Hidden Conditional Random Fields
(HCRFs) and the motion regimes act as sub-structures in
the model. Experiments using both synthetic and real
data sets demonstrate the superiority of our model in
comparison with other methods, including Hidden Markov
Models (HMM) and Conditional Random Fields (CRFs).
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1. Introduction

The goal of human activity recognition (HAR) is to

understand what people are doing from their position [1],

figure [2], motion [3], or other spatiotemporal information

derived from video sequences. With the potential for wide

applications, HAR has been actively investigated for tens

of years. A focus of recent interest is the use of trajectory

data, to learn to recognize human behaviors in which a

person is engaged over a long period of time [1] [4] [5].

An important application area in this domain is automatic

surveillance which is used in busy public places, such as

parks, airports, campus, etc. In a surveillance case, HAR

aims at characterizing human behaviors and alarming at any

illegal or abnormal activities being performed [6]. Other

examples in this area include human robot interaction [7],

intelligent environment [8], etc.
The challenge of this research is how to recognize

trajectories accurately. Methods based on Hidden Markov

Models (HMMs) have been widely used for this problem

[1] [5] [9]. In these methods, a restrictive, usually un-

realistic assumption is made to ensure that observations

are conditionally independent given the values of latent

variables. However, since human behaviors are complex,

it is often more accurately modeled by incorporating long

range dependencies and allowing latent variables to depend

on several local features.
Conditional Random Fields (CRFs) have proven to be

a successful tool for labeling sequence data and have been

successfully used for tasks such as part-of-speech tagging

and gesture recognition [3] [10]. CRFs condition on the

observations without modeling them, and therefore they

avoid the independence assumption and can accommodate

long range dependencies among observations at different

steps. However, CRFs assign each observation in a sequence

a label, and they neither capture hidden states nor directly

provide a way to estimate the conditional probability of a

class label for an entire sequence [11]. This situation leads

to their unfitness for trajectory classification tasks.
From daily experience we know that complex human

behaviors usually consist of simple motion regimes. For

example, the behavior of a person “crossing a park” may

be decomposed into “moving east first” and “then moving

north”. This observation underlies the use of models in-

cluding hidden states, which have a capacity for capturing

intrinsic sub-structures. Hidden Conditional Random Fields

(HCRFs) are discriminative latent variable models. HCRFs

are based on CRFs, and moreover, they use intermediate

hidden variables to model the latent structures of the input

domain [12]. Therefore they avoid the independence as-

sumption and have a capacity for capturing sub-structures.
In this paper, we propose a method for trajectory-

based human activity recognition based on HCRFs. In our



method, a set of latent variables is introduced to model

the unobservable motion regimes and different activities are

recognized based on different switching patterns. Our work

is related to the switched dynamical HMM (SD-HMM) [1].

However, there are important differences. One most signifi-

cant difference is that SD-HMM is a generative model while

ours is a discriminative one. Another difference is that, in

[1], different activities share identical motion regimes, while

in our method, the potential of motion regimes of different

activities are differently parameterized. We examine our

model on both synthetic and real data sets and compare its

performance against HMM-based and CRF-based methods.

Experimental results show the superiority of our model.
The remainder of this paper is organized as follows.

Section 2 gives a brief introduction of CRFs. Section 3

presents the detailed model for human trajectories, including

the parameter estimation and inference techniques. Section

4 reports experimental results on both synthetic and real data

sets including comparisons with two other methods, HMMs

and CRFs. Finally, Section 5 gives conclusions and future

research directions.

2. CRFs: A Nutshell

Before describing our model, we give a review of

CRFs proposed by [10], which will make HCRFs easier to

understand.
CRFs are undirected graphical models (UGMs)

which aim at mapping a sequence of observations

X = {x1, x2, ..., xm} to a sequence of labels

Y = {y1, y2, ..., ym}. Let G = (V, E) be a UGM and

Y be indexed by the vertices of G, Y = (Yv)v∈V . (i, j) ∈ E
is an edge when there exists a link between nodes yi and yj .
By defining different edge structures, CRFs can be applied

to different tasks. If when conditioned on X, each yv obeys

the Markov property with respect to G, then (Y, X) is a CRF.

To define the conditional distribution P (Y|X), we formulate

in terms of maximal cliques, which are the fully connected

sub-graphs in a CRF. Let C be the set of all maximal cliques

of G, and the non-negative potential function of clique c be

represented as φc(Yc,Xc), then the conditional distribution

can be written as

P (Y|X) =
1

Z(X)

∏
c∈C

φc(Yc,Xc), (1)

where Z(X) is a normalization factor which guarantees that

the distribution sums to one. Specifically, Z(X) can be

computed by summing over all possible configurations of Y

Z(X) =
∑

Y

∏
c∈C

φc(Yc,Xc). (2)

The potential function can be defined arbitrarily accord-

ing to special tasks. A widely used form is

φc(Yc,Xc) = exp(
∑
i∈Vc

λif1,c(yi,Xc)

+
∑

(i,j)∈Ec

βi,jf2,c(yi, yj ,Xc)),
(3)

where f1,c is a state feature function which models the

observation-label correlations, f2,c is a transition feature

function which models the label-label dependencies, and λi

and βi,j are weights to be estimated.
To simplify the formula, we use a feature function

Fc(Yc,Xc) to represent either a state function or a transition

function, and λi, βi,j are represented by a set of weights wc.

Then the forms of potential functions turn to

φc(Yc,Xc) = exp(wcFc(Yc,Xc)). (4)

Put 4 into 1 and 2, and the conditional distribution turns

to

P (Y |X) =
1

Z(X)

∏
c∈C

exp(wcFc(Yc,Xc))

=
1

Z(X)
exp(

∑
c∈C

(wcFc(Yc,Xc))),

(5)

where Z(X) is

Z(X) =
∑

Y

exp(
∑
c∈C

wcFc(Yc,Xc)). (6)

3. Human Activity Recognition

3.1. Trajectory Model

Our task is to learn a mapping from a sequential trajecto-

ry X to a single activity label y. Formally, each trajectory X
is a vector of observations, X = {x1, x2, ..., xT }, and each

observation xt implies the displacement of a person from

time t-1 to time t (t = 1, ..., T ). xt is represented by a D-

dimension local feature, φ(xt) ∈ RD. Each y is one of the

activity labels represented by a set of constants. Assume

we have Y activities, then y ∈ {1, 2, ...,Y}. Based on

the fully observable CRFs described in previous section, we

introduce a vector of latent variables H = {h1, h2, ..., hT }
to model the intermediate motion regimes contained in

complex activities [12]. Each ht is a member of a finite set

H, which is the collection of all possible motion regimes.

For example, if we assume that all trajectories are made

up of five motion regimes, which are “stopped”, “moving

east”, “moving west”, “moving south”, “moving north”,



Figure 1. The chain structure HCFR for trajectory
recognition.

then H contains all five of them and each ht corresponds

to one of them. Let’s still consider the UMG G = (V,

E), In a HCRF, the latent variables H = {h1, h2, ..., hT }
correspond to vertices in the graph and (i, j) ∈ E is an edge

when there exists a link between variables hi and hj . It’s

worth noticing that the presence of an edge between two

vertices in an UMG implies the dependencies between the

random variables represented by these vertices. By defining

different edge structures, HCRFs can be applied to different

domains. Returning to our activity recognition task, which

intrinsically is a temporal classification problem. Based on

the general HCRFs and considering the specific characters of

our task, we define a linear-chain structure in order to capture

the temporal dynamics (see Figure 1). In this structure,

the maximal cliques include pairs of neighboring states

(ht−1, ht). The connectivity between each latent state and

observations, which implies the long range dependencies

among observations, is unrestricted. We introduce a window

size w to define the connectivity. w = 0 indicates that the

current state is only depend on the current observation, while

w > 0 indicates that neighbor observations from t − w to

t+ w are also used.
Given the above definitions, first we model human

trajectories in a CRF way as

P (y,H|X; θ) =
1

Z(X; θ)
exp(

T∑
t=1

F (y, ht−1, ht,X; θ)),

(7)

marginalizing out the latent variables H = {h1, h2, ..., hT }
yields the following HCRF form

P (y|X; θ) =
∑

H

P (y,H|X; θ)

=
1

Z(X; θ)

∑
H

(exp(
T∑
t=1

F (y, ht−1, ht,X; θ))),

(8)

where the normalization factor Z(X) take the form as

Z(X; θ) =
∑
y′,H

exp(

T∑
t=1

F (y′, ht−1, ht,X; θ)). (9)

We define the feature function F as follows

F (y, ht−1, ht,X; θ) =
∑
a∈A

θafa(y, ht−1, ht,X)

+
∑
b∈B

θbfb(y, ht,X),
(10)

where A is the set of edge features and B is the set of

node features, fa is a predefined transition function which

depends on a pair of latent variables and fb is a predefined

state function which depends on a single latent variable in

the model. θ = {θa, θb} are parameters to be estimated from

training data.

3.2. Parameter Estimation

Our training data set consists of N labeled trajectories,

T = {(X1, y1), (X2, y2), ..., (XN , yN )}. The parameters

can be obtained by optimizing the conditional log-likelihood

of the training data

L(θ) =

N∑
i=1

Li(θ) =

N∑
i=1

logP (yi|Xi; θ). (11)

While in practice, we often regularize the problem by

optimizing a penalized likelihood: L(θ)+R(θ), where R(θ)
is the log of a Gaussian prior with variance σ2, i.e., R(θ) ∼
exp(− 1

2σ2 ‖ θ ‖2) [13].
Likelihood maximization leads to an optimization task,

which can be solved using gradient ascent methods. In

our paper, we solve this problem using a limited-memory

variable-metric gradient ascent method (BFGS) [14].

3.3. Classification

For testing, given a new observed trajectory X, we want

to classify it into one of the activities y∗ ∈ Y which

maximizes the conditional probability

y∗ = argmax
y∈Y

P (y|X, θ∗), (12)

where the values of θ∗ are learned from the training data.
Since HCRFs can be considered as UMGs, the inference

tasks can be solved using belief propagation [15].

4. Experiments

We run a variety of experiments using both synthetic

and real data. To evaluate the performance of our model,

comparisons with other approaches are also given.



Figure 2. Two synthetic activities sharing the same
motion regimes, with different switching patterns.
Training data(left), testing data(right).

(a) (b) (c) (d)

Figure 3. Examples of the four activities defined for
the shopping scenario: (a) entering; (b) leaving; (c)
passing; (d) browsing.

4.1. Synthetic Data

We first run a simple synthetic example in an ideal

scenario, which aims at demonstrating the effectiveness of

our model. In this experiment, we consider two activities

shown in Figure 2. The two activities depicted in red and

green share two motion regimes: moving horizontally and

moving vertically. The mean of horizontal displacements is

T1 =
[
0.02 0

]T
, and the mean of vertical displacements

is T2 =
[
0 0.02

]T
. Corresponding covariances are Q1 =

Q2 = 10−3I. The only difference between the two activities

resides on the switching patterns. The red activity has

a low probability of switching between different motion

regimes, while the green activity has identical probabilities

of switching at all instants. Respectively, for the red and

green activities, the transition matrices are

B1 =

[
0.95 0.05
0.05 0.95

]
B2 =

[
0.5 0.5
0.5 0.5

]

Given the above parameters, we generate 100 training

(a) (b) (c) (d)

(e) (f) (g)

Figure 4. Examples of the seven activities defined
for the campus scenario: (a) entering building;
(b) leaving building; (c) walking along; (d) cross-
ing park up; (e) crossing park down; (f) passing
through; (g) wandering.

trajectories and 100 testing trajectories using HMMs. The

reason why we use HMMs to generate the synthetic data

is that, discriminative models condition on observations

without modeling them, thus, without knowledge of obser-

vations, they are unable to generate data.

4.2. Experimental Results on Synthetic Data

From the way we generate this synthetic data set, it is

clear to see that each frame in a trajectory corresponds to

only one motion regime. Thus, we only run the experi-

ment using a HCRF with window size w = 0. Finally,

the classification accuracy obtained on the testing data is

100%, showing that our model possibly have a capacity to

recognize trajectories.

4.3. Real Data

We consider two scenarios in our experiments with real

data, which include a shopping center and a university cam-

pus. In the shopping center scenario, four human activities

have been predefined. While in the campus scenario, seven

human activities have been predefined. Figure 3 shows

examples of trajectories in the shopping center scenario

and Figure 4 shows examples of trajectories in the campus



scenario.
A notable point in the experiments with real data is that,

since formula (8) has to marginalize out the latent variables,

our model works with a finite number of motion regimes.

Estimating the number of motion regimes is a model selec-

tion task, and lots of exact methods have already existed

for this task [16]. Since model selection is not the focus

of our paper, we employ the model selection result of [1].

Thus, for the shopping data, we define five motion regimes:

“stopped”, “moving north”, “moving south”, “moving east”,

and “moving west”. While for the campus data, we define

nine motion regimes: “stopped”, “moving north”, “moving

north-east”, “moving east”, “moving south-east”, “moving

south”, “moving south-west”, “moving west”, and “moving

north-west”.
Another notable point is that, in original data sets,

each element in a trajectory sequence implies the position

of a human. In order to use the displacement features,

we perform some preprocessing. Representing an original

trajectory by P = {p0, p1, ..., pT }, thus our input trajectory

will be X = {x1, x2, ..., xT }, where xt = pt − pt−1 (t =
1, ..., T ).

After preprocessing, we get 53 available trajectories in

the shopping scenario and 143 available trajectories in the

campus scenario.

4.4. Experimental Results on Real Data

We consider two different procedures for splitting the

available data into training and testing sets: 1) a single train-

ing/testing splitting; 2) a complete p-fold cross validation.

For The shopping scenario, the first procedure picks three

samples of each activity to generate the training set, and the

rest samples generate the testing set. While for the campus

scenario, the first procedure splits all available data into

two disjoint sets with each set containing 50% of all data.

The second procedure performs a complete ten-fold cross

validation for both scenarios.
Experiment on same data sets, we evaluate our model

with varying levels of long range dependencies (with differ-

ent window size) and compare the performance with HMM

and CRF models.
In our HMM experiments, we consider the switched

dynamical HMM (SD-HMM) proposed in [1], which is

actually a two layer hierarchical HMM. The lower layer

consists of a bank of Gaussians which imply the motion

regimes and the higher layer models the switching among

the motion regimes.
Though CRFs do not directly provide a way to map

an entire sequence to a class label, with some tricks, they

still work. In our CRF experiments, each input trajectory

Table 1. Comparison of Recognition Performance for

Shopping Scenario

Methods 1st split procedure 2nd split procedure

HMM 70.73% 70.73%

CRF w=0 12.20% 12.77%

CRF w=1 17.07% 10.67%

HCRF w=0 85.37% 85.11%

HCRF w=1 80.49% 76.60%

HCRF w=2 80.49% 80.85%

HCRF w=3 75.61% 78.72%

Table 2. Comparison of Recognition Performance for

Campus Scenario

Methods 1st split procedure 2nd split procedure

HMM 82.61% 87.60%

CRF w=0 10.14% 9.302%

CRF w=1 13.04% 10.85%

HCRF w=0 88.41% 92.25%

HCRF w=1 91.30% 93.02%

HCRF w=2 78.26% 89.92%

HCRF w=3 68.12% 87.60%

sequence X = {x1, x2, ..., xT } is associated with a sequence

of labels Y = {y1, y2, ..., yT }. In training data, the label

sequences are generated by repeating the target activity label

y T times. For a testing trajectory sequence, the final activity

label assigned is the label which appeared most frequently in

the decoded sequence. We come up with this idea from the

literature of gesture recognition [12].
Table 1 shows the results for the shopping experiments

and Table 2 shows the results for the campus experiments.

As we can see, our approach performs better than the HMM-

based and CRF-based methods.
From the results in Table 1, we can see that our approach

performs best at window size 0. Though this implies that

the independence assumption is correct, our model still

performs better than HMMs. From the results in Table 2,

we can see that increasing the window size from 0 to 1

improves the performance of our model. This implies that

incorporating appropriate degree of long range dependencies

is helpful. However, we also see that further increasing the

window size does not improve the performance.
It is a foregone conclusion that CRFs achieve bad

results. We try to recognize human activities by modeling

the intermediate motion regimes, but CRFs have no capacity

to capture sub-structures.



5. Conclusions

In this work, we have presented a method for recogniz-

ing trajectory-based human activities. Our method models

trajectories using HCRFs while shared motion regimes act

as latent variables. Thus different trajectories are recognized

based on different switching patterns. To validate our model,

we run a variety of experiments using both synthetic and real

data and compare the performance with other methods. Ex-

perimental results have shown that our method outperforms

both HMM-based methods and CRF-based methods.
For future research, the proposed method can be embed-

ded with model selection methods. In this way, the number

of latent variables can be obtained automatically and the

model will be more flexible. Another possible direction is

extending the proposed method to infinite Gaussian mixture

models [17]. In this way, techniques of variational inference

will play an important role.
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