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High-Order Gaussian Process Dynamical Models
for Traffic Flow Prediction

Jing Zhao and Shiliang Sun

Abstract—Traffic flow prediction which predicts the future
flow using the historic flows is an important task in intelligent
transportation systems (ITS). Efficient and accurate models for
traffic flow prediction greatly contribute to the development of
ITS. In this paper, we adapt the Gaussian process dynamical
model (GPDM) to a fourth-order GPDM which is more suitable
for modeling traffic flow data. Specifically, the latent variables
in the fourth-order GPDM is a fourth-order Markov Gaussian
process, and the weighted k£-NN is incorporated in the model to
predict latent variables for efficient prediction. After training the
model, the future flow is estimated by the average of the results
predicted by the fourth-order GPDM and %£-NN. Compared with
other popular methods, the proposed method performs best and
yields significant improvements of prediction performance.

Index Terms—traffic flow prediction, high-order GPDM, dy-
namical system, Gaussian process, weighted £-NN.

I. INTRODUCTION

RAFFIC flow prediction is an important task for the

application of intelligent transportation systems (ITS)
[1, 2, 3, 4, 5]. With the rapid development of the society, there
has been a large increase in urban traffic in recent years, re-
sulting in many transportation problems such as congestions or
accidents. ITS aims to address these problems through utilizing
synergistic technologies and system engineering concepts,
which can develop and improve transportation intelligently.
Traffic flow prediction, as an essential task of ITS, is to predict
traffic flows of a certain road link at a future time interval.
Accurate and efficient prediction will make great significance
for ITS. Since the traffic flow data are complex and varied,
how to construct a good model is the key to the traffic flow
prediction problem. In terms of timing, there are two types of
traffic flow prediction: short-term and long-term. Short-term
traffic flow prediction is to determine the traffic flow data in
the next time interval, usually five to thirty minutes. We focus
on the short-term prediction, in the time interval of 15 minutes,
which is a difficult and very important application.

There exist some methods for traffic flow prediction. At the
beginning, simple methods such as random walk (RW) and his-
torical average (HA) [6] were proposed for specific situations.
RW is to predict the current value using the last value. Then,
there have been some elaborate methods presented for traffic
flow prediction in succession such as Kalman filters [7], kernel
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regression [8], neural networks [9], Markov chain models [1]
and selective random subspace predictor [10]. These methods
have promoted the research of traffic flow modeling. However,
these methods just used the historic flows from a single road
link, which cannot make full use of the information of the data.
For this purpose, Bayesian networks (BN) [11] were proposed
to take advantage of the historic flow patterns of the target and
its adjacent road links, and achieved promising experimental
results. In order to capture more relationship among data, Jin
and Sun [12] and Sun [13] have applied multi-task learning
neural network (MTLNN) to improve traffic flow prediction
by taking advantage of the MTL. For example for traffic flow
prediction, when studying the relationship between y1, yo, ...,
y; and y;4+1, MTL can consider this current task as well as
other related tasks, such as studying the relationship between
Y1s Y2, -, Y and ysyo. With regard to some other approaches
of traffic flow prediction such as support vector regression,
one can refer to Lippi et al. [14] in which the strengths and
weaknesses of most existing methods were analyzed, and the
seasonality in data was considered.

Besides the aforementioned methods, Gaussian process
(GP) based methods have been developed for traffic flow
prediction. Gaussian process regression (GPR) [15, 16] is
a regression model which establishes a nonlinear mapping
between the input and the output. It can be used for many
forecasting applications such as weather forecasting [17] and
traffic flow forecasting [18]. In order to model the multi-
modal features of the traffic flow data, the infinite mixture
of Gaussian processes (IMGP) [19] was applied to traffic flow
prediction. It showed superiority than BN on the prediction
performance when using historic flows from a single road link.

Differently from these supervised learning methods, there
are some unsupervised learning methods for modeling time
series. The Gaussian process dynamical model (GPDM) was
recently proposed for modeling dynamic data. It augmented
the Gaussian process latent variable model [20] with a dy-
namic prior to model sequential motion data and predict the
latent positions [21]. GPDMs are widely applicable to sequen-
tial data analysis such as people tracking [22], motion grasping
[23] and phoneme and gesture recognition [24, 25, 26]. It is
an effective approach to modeling the dynamic data. However,
its feasibility is unknown for traffic flow prediction. We adopt
it for the following reasons. As a dynamical model, the
GPDM can well model the dynamics of the traffic flow data.
Moreover, the latent variable model has superiority of cap-
turing the characteristics implicit in the complex data. In our
work, considering the popularity of fourth-order traffic models
[11, 12, 13, 19], we develop a fourth-order GPDM and apply
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Fig. 1. Graphical model for the fourth-order dynamical system.

it to traffic flow prediction. Specifically, the latent variables
in the fourth-order GPDM is assumed to be a fourth-order
Markov Gaussian process, and the weighted k nearest neighbor
(k-NN) is embedded into the model for prediction. There exists
four algorithms for learning GPDMs [27, 28]: maximizing a
posteriori (MAP), fixing the kernel hyperparameters & (Fix.@),
balanced GPDM and two-stage MAP. We employed MAP for
estimation of parameters and latent variables in the fourth-
order GPDM because traffic flow data have high variance and
frequent volatility.

The highlights of this paper are summarized as follows.
First, we adapt the original GPDM to a fourth-order GPDM,
which is more applicable for traffic flow data. This is the first
time to apply GPDMs to traffic flow prediction. Second, the
weighted k-NN is well embedded into the fourth-order GPDM
to achieve efficient prediction. Finally, compared with other
methods, the proposed method performs best for predictions
on multiple road links.

II. FOURTH-ORDER GAUSSIAN PROCESS DYNAMICAL
MODELS

Traffic flow data are multivariate time series when taking
multiple road links data into consideration. Dynamical systems
are usually used for modeling such time series. GPDM is a
kind of dynamical systems which has elegant formulations
thanks to the Gaussian assumption. We first define a suitable
dynamical system for traffic flow data. Then the fourth-order
GPDM corresponding to this dynamical system is presented.
Note that the dynamical function can be arbitrary order
Markov functions. Since we focus on the problem of traffic
flow prediction, we directly give descriptions of the fourth-
order GPDM.

A. Dynamical Systems

When modeling multivariate time series, it is natural to
incorporate dynamics into latent variable models. Under this
framework, the system can be formulated as two functions. A
dynamical function f, which is parameterized by A, with ad-
ditive process noise ny ; governing the evolution of x;. In our
application, we use a fourth-order Markov dynamical function
Xt = f(X¢—1,X¢—2,Xe—3, X¢—a; A) + Dy ¢. The other function
is an observation function g, which is parameterized by B,
with measurement noise ny ; generating y;. The function can
be expressed as y, = g(x;; B) + ny ;. From the perspective
of probabilistic interpretation, this system can be illustrated as
a graphical model in Figure 1.

B. Fourth-Order Gaussian Process Dynamical Models

Learning the dynamical systems typically involves estimat-
ing the parameters A and B and parameters for the noises.
However, from a Bayesian perspective, the parameters should
be marginalized out. Indeed, the GPDM estimates the latent
variables while marginalizing over the model parameters. Sim-
ilar to the first-order GPDM which assumes Gaussian priors of
A and B and noises, the fourth-order GPDM can marginalize
over f and g in closed form. Let Y = [y1,...,yn] " be the
data in the observation space and X = [xy,...,xy]|" be the
variables in the latent space where y; € R” and x; € R%
The likelihood of Y given X is expressed as a product of GPs
(one for each of the D data dimensions)

p(Y|X,B,W)

wl" 1
S L
(2m)NP|Ky [P 2
where W is a scaling diagonal matrix and Ky is an N X
N kernel matrix constructed by a kernel function xy with

parameters 3 = {3;}3_,
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The distribution of X is given by a fourth-order Markov
Gaussian process
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where x;, X9 — Xj, X3 — X9, X4 — X3 has the
same standard Gaussian prior N(0,1). Xs.n =
[xd,...,x5]", Kx is a kernel matrix constructed from
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Here we use a “linear+RBF” kernel for K x with parameters
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which is very different from the general kernel function. The
priors of the kernel hyperparameters are placed with p(a)
[T, ;" and p(B) < [T, 8" Parameter W has a broad half-

normal prior, p(W) = []4 i=1 3 exp( 2:2) where wg > 0
corresponds to the diagonal elements of W and o is often
fixed to 102 as in [27].

Note that, Y can represent
YW, Y®P) | with lengths Ny, ...,
composed of the associated latent variables X (1), ...,

multiple  sequences
Np. Then X{,;N is
X (P)

as X5y = [Xélj)\; Xélj\),T]T and X, is given by
Xin = [[Xan -1, X380, -2, Xoon, -3, X1.n, —a] DT,

[(Xanp—1. X3:Np—2, Xo:np—3. X1:nvp—a]P)T]T. Given the
above expressions, the joint probability distribution of latent
variables, observations, and parameters is given by

p(X,Y,a, B,W) =p(Y|X, B, W)p(X|a)p(a)p(B)p(W).
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C. Learning Methods

The existing learning methods for GPDMs are MAP, Fix.a,
B-GPDM and T.MAP. As analyzed in [27, 28], the latter three
algorithms tend to get smoother trajectories of latent variables
here. In the application of traffic flow prediction, data have
high variance and frequent volatility. Thus it is undesirable
to get smooth latent trajectories here. Therefore, we employ
the MAP for the estimation of parameters and latent variables.
MAP requires minimizing the joint negative log-posterior of
the unknowns — Inp(X, @, 3, W|Y). It is expressed as £+ C
where C represents a constant and £ is expressed as

L=Ly+L +Zln,8'+21na +tr(W2) &)
=Ly X j 9 i J 20.2 )
with
D 1
Ly = 9 In|Ky|+ §tT(K;1YW2YT) — Nhn|W|, (6)
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1 2 T @
+ 3 Z(XiJrl = %) (Xit1 — %)

=1

III. TRAFFIC FLOW PREDICTION

So far, we have defined the fourth-order GPDM, and the
parameters and latent variables can be optimized by MAP es-
timation. This model can be used for predicting the future data
given the previous data. Specific to the application of traffic
flow prediction, the flows from adjacent road links at previous
four time intervals Yj,cv V0 Vi3 Y0y, ]" are
used for predicting future flow y; denoted by Ycu,,. In our
fourth-order GPDM, prediction is realized by two procedures:
latent variable prediction and future flow prediction. For latent
variable prediction, the original GPDM optimized the X*
by maximizing the conditional distribution p(Y ey, Xpey|I')
where I' represents the learned model. However, this is not
suitable for efficient prediction. In our methods, X * is obtained
by the weighted k-NN method on the observed data. For
future flow prediction, data are estimated by combining GPDM
reconstruction and k-NN regression.

A. Latent Variable Prediction

Given the learned fourth-order GPDM, we compute the
most likely latent variable X* = [X*[ X1 ]T through the
weighted £-NN on observed data. We can get information from
the learned model. The parameters & and W reflect the time
and spatial dependence among data.

From the perspective of time dependence, we know that
data from different time intervals make different effect on
the current data. In the fourth-order GPDM, for the current
latent variable x;, the hyperparameter & controls the affects
of X¢_4,...,x;—1 on the value the kernel kx. For example
in (4), ay and a5 as the coefficients of ||x¢;—1 — x,_1]|| and
%, 1X,_1 control the importance of x;_1’s role. We want to
use the relative magnitudes of s, ..., ag to measure the affects
of historic flows at different time intervals on the current flow.
For this purpose, we define a new variable & which will be

Algorithm 1 Prediction with fourth-order GPDM and £-NN.

Input: Data Y, Yp"rev Integers {d, I, J, k}.
Output: Data yJ,..
1: Alternate for I iterations to learn the GPDM with MAP estima-
tion of {X a B,WT}
L. Do w} <« N( KUY+ &) with j = 1..D.
1L Opumlze {X, a, B} by max1rmzing (5) using the scaled
conjugate gradient (SCG) for J iterations.
2: Calculate the latent variable X ™ for test data Y*.
L. Calculate the distances between Y., and Y by (9).
II. Calculate X™* using the weighted k-NN.
3: Predict Y3, by combining GPDM reconstruction and k-NN
regression.
1. Estimate the future data Yippy according to GPDM recon-
struction and Y}y according to k-NN regression.
II. Ensure the final Y™ as the average of Yippy and Y-

used for calculating the distance of two time series. It is a
four-element vector, with each element

&; = w. (8)

YT
From the perspective of spatial dependence, we know that the
affects of different road links on the target road link are also
different. In our GPDM, the parameter W models the variance
in each observation dimension. It plays a role at the connection
between the observed data Y and the latent variable X. We
can analyze that the bigger the value of wd is, the larger the

affect of y4 on the model. Thus we use f as the weight of
1

distance. We use instead of —— w; o reduce the spatial
dependence to a certain extent. This makes a contribution
to balancing spatial and time dependence during calculating
distances.

For latent variable prediction, the distances should be calcu-
lated between Y}, and Y. The distance between two series
e.g., S and 9, is defined as

DIS = _—
2 Jale

where © represents pointwise product. With the distance
defined by (9), and the latent variable X learned by the
fourth-order GPDM, we can compute the latent variable X*
according to the weighted k-NN.

d—Sy) © @l )

B. Future Flow Prediction

We have computed the previous latent variables X7 ..
corresponding to Y[ .. and the current latent variable X7,
corresponding to Y . accordmg to the weighted k-NN. The
current data Y% € R can be estimated using the learned
fourth-order GPDM and previous data Yj,ev as well as X*.
Defining Y = [V, V] |7, and X = [XT,X* |7, the

prev,: prev
posterior density of Y . is

‘X* ;rev’r)
Wit
(27.1-)4D|I(~
—ATKJ'Y and Ky. = B —
and (B) ij = Ky (X

( curr

1
|Dexp(—§tr(K;12yW2Z;)),

where Zy = ATK;IA.

CllI'I'

(A)ij = Ky (X, Xour) e Xeupp) are the
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Fig. 2. A patch taken from the urban traffic map of highways.

elements of the (N +4)x1 and 1x1 kernel matrices, respec-
tively. Considering that the posterior of Y, is Gaussian, we
can use its mean ATK_'Y to estimate it.
Since the training data are sufficient, k-NN regression can
obtain good performance in this case. We finally combine the
results from the fourth-order GPDM denoted with Yipp,, and
the result from k-NN regression denoted with Y, to predict
the future data Y., = 2 (Ydppy + Yiinn)- In order to make
the whole process easy understanding, we give the framework
of our method for traffic flow prediction in Algorithm 1. The
things to notice are as follows. Integers I and .J are the
iteration numbers which are set by hand. Integer d is set
according to specific data. Number k for £-NN is chosen from

a range by validation on the training set.

IV. EXPERIMENTS

In our experiments, the task is to predict the future traffic
flows of a certain road link in a real urban transportation
network [10]. Figure 2 shows a patch from the urban traffic
map of highways in Beijing. Each circle node in the sketch
map denotes a road link. An arrow shows the direction of the
traffic flow. Paths without arrows are of no traffic flow records.
The raw data are records from 25 days which include 2400
recording points for each road link. The first 22 days are used
for training, and the remaining three days are for testing.

We predict the traffic volumes (vehicles/hour) of the road
links (‘Bb’, ‘Bc’, ‘Cf’, ‘Ch’, ‘Dc¢’, ‘Dd’, ‘Fe’, ‘Gb’, ‘Hi’,
‘Ka’) based on their own historic traffic flows and their direct
upstream flows. For example, for the target road link ‘Ka’,
the traffic flows from its upstream road links ‘Hi’, “HI’, ‘HK’
are used. In our fourth-order GPDM, the dimension of latent
variables is fixed as two. This is because one target road link
may have one, two or three neighbors, which leads to the
dimension of observed data being two, three or four. The ex-
periments using the fourth-order GPDM with one-dimensional
latent space resulted in poor prediction performance due to
the fact that the one-dimensional latent space cannot capture
enough information. Thus the dimension of latent variables is
set to two uniformly for all the road links. We fix the number
of outer loop iteration as / = 10 and the number of SCG
iteration as J = 10. After learning the fourth-order GPDM,
number k for k-NN is determined in the training phase. It is
chosen by validating on the training set. Since the traffic flow
data have sequential relations, it is not suitable to use cross-
validation. We simply validate on the last three days of the

TABLE I
RMSE / MAPE OF PREDICTION RESULTS FOR TEN ROAD LINKS WITH
4TH-ORDER GPDM, 2ND-ORDER GPDM AND RW.

Road Link | 4th-order GPDM | 2nd-order GPDM RW
Bb 69.19 / 8.02 69.59 / 8.04 89.60 / 10.63
Bc 106.37 / 8.99 107.09 / 9.03 124.24 /1 11.75
Cf 89.84 / 8.48 90.08 / 8.52 108.24 / 9.91
Ch 61.92/9.31 61.95/9.38 80.03 / 13.33
Dc 79.04 /13.26 79.36 / 13.27 97.91 / 16.70
Dd 55.22/10.22 55.53/10.20 71.44 /14.90
Fe 113.72 /1 7.55 113.37/17.56 158.55 /10.22
Gb 83.03/12.47 83.24 / 12.47 101.80 / 15.60
Hi 85.20 / 11.34 85.07/11.33 108.34 / 15.67
Ka 70.09 / 8.26 70.99 / 8.22 99.77 / 11.65
AVG. 81.36/9.79 81.63 /9.80 103.99 / 13.04

1;

1000+ ' B

0 5‘0 1(‘)0 1‘50 Q‘OD 2‘50 300
Fig. 3. Prediction results of the fourth-order GPDM for road link ‘Dd’.

training set. We choose the best k from the range of 16 ~ 20
for every road link.

We compare our method to multiple existing methods
including basic methods (RW) and classical methods (k-NN
and GPR) as well as some advanced methods (IMGP and
MTLNN). The prediction performance is measured by the cri-
teria of root mean square error (RMSE) and mean absolute per-
centage error (MAPE). For a time series y* = (y1,v3, .--Y3/)
and its estimation y*, RMSE and MAPE are given by the
following formulae: RMSE = (& SV (5 — y1)?)'/2,
MAPE = L M ‘UT;‘” RMSE is a measuring criterion
from the perspective of the absolute error while MAPE is from
the perspective of the relative error.

First of all, in order to illustrate the reasonability and
advantage of using the high-order GPDM, we compare our
method with the second-order GPDM and RW. In the second-
order GPDM, the training process is similar to the fourth-
order GPDM, but with the latent variables being a second-
order Markov Gaussian process. Table I shows the results of
prediction using these three methods in terms of RMSE and
MAPE. The best results for each road link are in bold. From
the table, we find that both GPDM based methods have a
large increase on the prediction accuracy than the baseline RW
method. Further, the fourth-order GPDM works better than
the second-order GPDM since it has considered the previous
four time intervals’ data from own and adjacent road links.
It is popular to set the order number to four because four
time intervals’ historic data can provide enough information
for traffic flow prediction empirically [11]. Figure 3 shows
the prediction results of road link ‘Dd’ with the fourth-order
GPDM. The solid line shows the predicted data while the
dotted line shows the observed data.

Then, we compare our method with some classical methods,
GPR and k-NN regression. GPR is a kind of supervised
learning method. In our experiment, we construct the input
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RMSE / MAPE OF PREDICTION RESULTS FOR TEN ROAD LINKS WITH

TABLE I

4TH-ORDER GPDM, k-NN AND GPR.

RMSE / MAPE OF PREDICTION RESULTS FOR TEN ROAD LINKS WITH
4TH-ORDER GPDM, IMGP AND MTLNN.

TABLE III

Road Link | 4th-order GPDM %-NN GPR Road Link | 4th-Order GPDM IMGP MTLNN
Bb 69.19 / 8.02 69.05 / 8.11 69.49 / 8.51 Bb 69.19/ 8.02 71.33/8.12 72.26 / 8.42
Bc 106.37 / 8.99 110.83 / 9.23 107.14 /1 9.22 Bc 106.37 / 8.99 98.10/ 8.87 103.23 / 8.59
Cf 89.84 / 8.48 87.96 / 8.29 100.13 / 9.16 Cf 89.84 / 8.48 101.09 / 9.50 94.95 / 8.94
Ch 61.92/9.31 64.44 /1 9.75 61.17 /9.81 Ch 61.92/9.31 62.25/9.40 60.01 /9.52
Dc 79.04/ 13.26 81.58 / 13.55 83.40/13.16 Dc 79.04 / 13.26 79.03/12.99 80.13 / 13.22
Dd 55.22/10.22 56.50 / 10.31 56.20 / 10.86 Dd 55.22/10.22 59.42/ 11.00 55.74 / 10.64
Fe 113.72 /1 7.55 115.59 / 7.73 111.91/7.32 Fe 113.72 /1 7.55 111.99/7.30 116.09 / 7.72
Gb 83.03/12.47 83.39 / 12.53 82.52/13.30 Gb 83.03 /12.47 85.48 / 12.80 82.67 / 13.52
Hi 85.20/11.34 84.29 / 11.56 86.32/ 11.61 Hi 85.20/11.34 88.62 / 11.90 88.54 / 11.75
Ka 70.09 / 8.26 71.34 / 8.35 71.19 / 8.56 Ka 70.09 / 8.26 70.83 / 8.26 69.73 / 8.34
AVG. 81.36/9.79 82.50/9.94 82.95/10.15 AVG. 81.36 /9.79 82.81/10.01 82.34 / 10.07
data by Y,y and the output data by the current flow y; from TABLE IV
the target road link. Exact inference is used in the GPR and PAIR-T-TEST WITH ALL OTHER COMPARED METHODS.
the iteration number of SCG optimization for hyperparameters Methods Wil RMSE | wri MAPE
is set to 100. The other compared method, k-NN regression, 2nd-Order GPDM T (95%) T (80%)
is simply averaging the numerical target of the k nearest GPR T (82%) 1T (99%)
ighbors. Th ber k is chosen through validating th oo T02%) | 11 O8%)
neighbors. The number & is chosen through validating the IMGP 1 (63%) + (86%)
prediction results of the last three days in the training set. MTLNN 1 (74%) 11 (95%)
From Table II, we conclude that our method performs better RW 1T (100%) | 11 (100%)

than the other two methods on average, no matter in terms of
RMSE and MAPE. When making pairwise comparison, we
can see traffic flows from most road links are predicted more
accurately by the fourth-order GPDM than k-NN regression
and GPR, respectively. Especially in terms of MAPE, our
method improves a lot in most cases. We can analyze from
the point of view of the characteristics of these methods. The
fourth-order GPDM as a multiple layer GPs can grasp more
information from data than GPR. GPR makes little use of
the dynamics in the data. Moreover, the fourth-order GPDM
reconstructs data using latent variables instead of directly
finding data from the training set like k£-NN regression. The
results estimated by the fourth-order GPDM are the best.
Finally, we compare our method with two advanced meth-
ods, IMGP and MTLNN. IMGP is an mixture model of GPs,
which can model multi-modal data. In Sun and Xu [19], data
used for prediction are restricted to recordings from a single
road link. Here, we use the data from own and adjacent road
links to analyze the trend of the target road link. The input and
output are constructed as in GPR. The specific training process
for IMGP can be found in [19]. In the current experiment,
parameters in the algorithm input are fixed as 7" = 5, C' = 100,
S =50, My =10, Mgy, = 20, M, = 20, M,,, = 20 referring
to [19]. MTLNN in [13] for traffic flow prediction adds extra
but related units to the output layer of the neural network. The
input and output used for prediction is taken from a single
road link. Unlike [13], for one target road link, we use several
adjacent road links’ recordings to train the neural network.
Predictions of current traffic flows of multiple road links used
for training are added as multiple tasks. The layer number
and the method of ensuring unit number for one layer are
the same as [13]. Table III shows the experimental results,
in which our method performs best. This is attributed to the
ability of capturing dynamics of data by latent variables.

A. Overall Evaluation

In this part, we make the overall evaluation of our method
in terms of effectiveness, reasonability and efficiency. We per-

form paired t-tests for our method with the others, respectively.
Table IV lists the test results, in which symbol ] represents
the proposed method makes a significant improvement at 95%
confidence level and the value in parentheses represents the
confidence level. We find that at least under one kind of
criterions, the proposed approach has an improvement that is
statistically significant with respect to other methods except
the IMGP which is a mixture model.

The GPDM is a kind of latent variable model. The advan-
tage of the latent variable is to map the complex characteristics
of data into a low-dimensional space. The latent variables in
the low-dimensional space can capture the internal driving
force in dynamic data. From the experiments on ten road
links, we can verify that the fourth-order GPDM with two
dimensional latent space is reasonable. We plot the learned
latent variables for three days on road link ‘Ka’ in Figure 4.
From the figure, we can find that the latent variables on two
dimensions fluctuate at different frequencies and have physical
meanings. One dimension is at low frequencies, which grasps
the macroscopic dynamics of flows from the related road links.
Further, its fluctuation trend basically coincides with that of
the observed traffic flows. The other dimension is at high
frequencies, which grasps the details including the influences
from the adjacent road links. Therefore, it is reasonable to use
latent variable models to model traffic flow data.

In order to evaluate our method in terms of efficiency,
we compare the computation complexity and runtime for
different methods. We first analyze the complexity in training
procedure. The complexity of our method is cO(N?3), where ¢
is a constant representing the number of iterations. For GPR,
the most time-consuming part is also to calculate the inverse
of covariance matrix whose complexity is O(N?3). For k-NN
regression, the complexity of choosing k is cO(N) where ¢
is the size of the searching range for k. For IMGP, the most
time-consuming operation is to optimize the hyperparameters
with complexity O(NT). In addition, there is nested loops in
IMGP for optimization, which greatly increases the runtime.
For MTLNN, the complexity depends on the architecture of
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Fig. 4. Learned latent variables for three days on road link ‘Ka’.

TABLE V
RUNTIME (IN MINUTES) OF TRAINING FOR ONE TARGET ROAD LINK.
Methods | Proposed Method | GPR | k-NN | IMGP | MTLNN
Time 68 2 3 2005 6

the network. We list the runtime of training processes for one
target road link in Table V. Note that the training time for the
second-order GPDM is almost the same to the fourth-order
GPDM. We only list the runtime for the fourth-order GPDM.
In general, the training time of our method is acceptable as
the training procedure is offline. In addition, the reconstruction
and averaging procedures in our method lead to efficient
prediction.

V. CONCLUSION

In this paper, we adapted the GPDM to a high-order GPDM
in which the latent variables are assumed to be a fourth-order
Markov GP. The resulting fourth-order GPDM can well model
the traffic flow data. Weighted £-NN is embedded into the
model, which helps to achieve efficient prediction. Compared
with other popular methods, the proposed method performs
best on prediction and yields significant improvements. In the
future work, it is interesting to use mixtures of GPDMs to
model time series and try other ways of defining distances for
the weighted k-NN.
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