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ABSTRACT
Trajectory-based human activity recognition aims at under-
standing human behaviors in video sequences. Some exist-
ing approaches to this problem, e.g., hidden Markov models
(HMM), have a severe limitation, namely the number of mo-
tions has to be preset. In fact, this number is difficult to define
in advance in real practice. To overcome this shortcoming,
we propose a new method for modeling human trajectories
based on the hierarchical Dirichlet process hidden Markov
models (HDP-HMM), and adopt a Gibbs sampling algorithm
for model training. Using our proposed technique, the num-
ber of motions can be inferred automatically from data and
is also allowed to vary among different classes of activities.
Experiments on both synthetic and real data sets demonstrate
the effectiveness of our approach.

Index Terms— Human activity recognition, trajectory
classification, HDP-HMM, Gibbs sampler

1. INTRODUCTION

Effective human activity recognition (HAR) is crucial for
the successful application of intelligent surveillance systems.
The purpose of HAR is to understand what people are do-
ing from their position [1], figure [2], motion [3], or other
spatio-temporal information derived from video sequences.
In this paper, we focus on recognizing human behaviors from
trajectory data [4]. From daily experience we know that a
human activity can be modeled by transitions among simple
motions. For example, in a certain shopping mall, the activity
of a customer “entering the shop” may be decomposed into
“moving east first” and “then moving north”. This observa-
tion underlies the use of models with hidden states, which
have the capability to capture intrinsic structures of activities.

In this paper, we propose a method for trajectory-based
HAR tasks. In our method, activities are modeled by transi-
tions of different motions and the number of motions can vary
among activities. A truncated approximation of the hierarchi-
cal Dirichlet process (HDP) [5] is adopted for efficient model
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training. To keep the number of the hidden motions from
being unnecessarily large, we further employ ideas from the
sticky HDP-HMM [6]. Parameters of our model are estimated
by a Gibbs sampler. The final classifier for HAR tasks is given
by maximizing the log-likelihood of a test trajectory. We ex-
amine our method on both synthetic and real data sets and
compare its performance against other state-of-the-art meth-
ods. Experimental results show the superiority of our method.

2. THE PROPOSED HUMAN ACTIVITY MODEL

Our task is to map a sequential trajectory x to a single activ-
ity label y. Formally, let x = (x1, x2, ..., xT ) be a specific
trajectory where xt ∈ R2 denotes the displacement of a per-
son from time t − 1 to time t. Note that the two components
of vector xt respectively correspond to vertical and horizontal
displacement. zt denotes the invisible motion label of xt. In
our model each xt is a draw from a Gaussian distribution with
unknown mean and covariance:

xt ∼ N(µzt ,Σzt). (1)

We place a Gaussian prior on the mean and an inverse-Wishart
prior on the covariance:

µzt ∼ N(µ0,Σ0), Σzt ∼ IW (Ψ, ν). (2)

As in usual HMMs, we model the sequence of motion
labels as a Markov chain:

zt | zt−1 ∼ Multinomial(πzt−1), (3)

where πzt−1 is the transition probability vector of state zt−1.
Let k = 1, 2, ... denote the distinct values that the motion

labels zt can take on. The classical HDP-HMM has given
us a traditional way to model πk [5]. However, it has a se-
vere rapid-switching problem. In particular, a standard HDP-
HMM creates redundant states and rapidly switches among
them. For HAR tasks, the redundant motions may cause a
poor performance. To the best of our knowledge, one ap-
proach to avoiding the rapid-switching problem is the sticky



HDP-HMM [6], which extends the HDP-HMM by introduc-
ing a self-transition bias. Consequently, we model πk as:

β = (βk)
L
k=1 ∼ Dir(γ/L, ..., γ/L),

πk ∼ Dir(α0β1, ..., α0βL + κ, ..., α0βL),
(4)

where Dir(·) means a Dirichlet distribution and L is the max-
imum number of possible motions. α0, κ and γ are hyperpa-
rameters and we place priors over them when we do not have
strong beliefs about them, e.g., (α0 + κ) ∼ Gamma(a1, b1)
and γ ∼ Gamma(a2, b2). Although the fixed truncation level
reduces our model to a parametric model, it is substantially
different from a classical parametric model with model se-
lection. Actually by setting the truncation level reasonably
higher than the true motion number, we will not lose any use-
ful information. Comparing with the classical nonparametric
HDP, a significant time saving can be achieved by using this
technique [7].

2.1. Training with a Gibbs sampler

Let T = {T 1, ..., T Y} be all the training data, where each
collection T y = {(x1, y), ..., (xNy , y)} denotes the training
set of activity y. Ny is the number of training trajectories
belonging to activity y. The parameters to be learned are
Π = {π1, ...,πY} and Θ = {(µ,Σ)1, ..., (µ,Σ)Y}, where
πy = {πy

0 ,π
y
1 , ...,π

y
L} denotes the transitions of activity y

and (µ,Σ)y = {(µy
1,Σ

y
1), ..., (µ

y
L,Σ

y
L)} denotes the emis-

sion parameters of activity y. Since the Y groups of parame-
ters are learned separately in the same way, for simplicity, we
will represent the targeted group-specific parameters πy and
(µ,Σ)y by π and (µ,Σ), respectively.

Consider a trajectory x = (x1, x2, ..., xT ) with z =
(z1, z2, ..., zT ) representing the hidden motion labels. By the
Markov property, the joint posterior distribution of z is:

p(z|x,π, (µ,Σ))

= p(z1|x,π, (µ,Σ))
T∏

t=2

p(zt|zt−1,x,π, (µ,Σ)).
(5)

This implies that, we can first sample z1, and then sam-
ple state zt conditionally on the previous state zt−1 (t =
2, . . . , T ).

Sampling z. By introducing the truncation level L, the
backward message passing algorithm [8] can be used to sam-
ple each zt. Let mt,t−1(zt−1) denote the backward message
passed from zt to zt−1, which are defined as:

mt,t−1(zt−1)

∝


∑

zt
p(zt|πzt−1)N(xt|µzt ,Σzt)

·mt+1,t(zt) if t = 2, ..., T,

1, if t = T + 1.

(6)

Thus the conditional distribution of z1 is:

p(z1|x,π, (µ,Σ)) ∝ p(z1)N(x1|µz1 ,Σz1)m2,1(z1). (7)

For t = 2, ..., T , the conditional distribution of zt is:

p(zt|zt−1,x,π, (µ,Σ))

∝ p(zt|πzt−1)N(xt|µzt ,Σzt)mt+1,t(zt).
(8)

Sampling (µk,Σk). As mentioned in (2), we place a
Gaussian prior N(µ0,Σ0) on the mean µk and an inverse-
Wishart prior IW (Ψ, ν) on the covariance Σk. For a specific
iteration of the sampler, let Xk denote the set of observations
with the same hidden motion, i.e., Xk = {xt|zt = k}. Thus
the posterior distributions of µk and Σk are:

Σk|µk ∼ IW (ν̄kΨ̄k, ν̄k), µk|Σk ∼ N(µ̄k, Σ̄k), (9)

where ν̄k = ν + |Xk|, ν̄kΨ̄k = νΨ +
∑

xt∈Xk
(xt −

µk)(xt − µk)
′, Σ̄k = (Σ−1

0 +|Xk|Σ−1
k )−1, µ̄k = Σ̄k(Σ

−1
0 µ0+

Σk

∑
xt∈Xk

xt).
Sampling π. Given the priors of β and π defined by (4),

the posteriors of β and π are:

β|m̄, γ ∼ Dir(γ/L+ m̄·1, ..., γ/L+ m̄·L),

πk|z, α0,β ∼ Dir(α0β1 + nk1,

..., α0βk + κ+ nkk, ..., α0βL + nkL).

(10)

For k = 1, ..., L, nkj is the number of transitions from state
k to state j in the current iteration. For k = 0, n0j is the
number that state j starting a trajectory, we write n̄j = n0j

for simplicity. m̄jk corresponds to the number of tables in
restaurant j that are serving dish k in the sticky HDP-HMM,
and m̄·k =

∑
j m̄jk. In the following algorithm, we will de-

scribe the procedures to obtain m̄jk. For a detailed derivation
of the sticky HDP-HMM, please follow fox et al. [6].

In general, given the training trajectories T y and a
previous set of the targeted parameters πold, βold, and
(µold,Σold), the Gibbs sampler updates them in the current
iteration as follows.

• Set π = πold and (µ,Σ) = (µold,Σold).

• Set nkj = 0, n̄j = 0 and Xk = ∅ for (k, j) ∈
{1, ..., L}2.

• For i = 1, ..., Ny:

– Select trajectory xi, set T = Txi .

– For t = T, ..., 1, compute each message as de-
fined by (6).

– For t = 1, ..., T :

∗ Sample each zt as defined by (7) or (8).
∗ For a new assignment zt = k, update n̄z1 or
nzt−1,zt , and update the set of observations
Xk.

• Sample m̄:



– For (j, k) ∈ {1, ..., L}2, set mjk = 0 and c = 0.
For i = 1, ..., njk, sample a temporary variable
trial ∼ Bernoulli(

α0βk+κδjk
c+α0βk+κδjk

). If trial = 1,
increase mjk. Increase c.

– For j ∈ 1, ...,K, sample a temporary variable
ωj ∼ Binomial(mjj ,

η
η+βj(1−η)) ), where η =

κ
α0+κ . Set m̄jk to m̄jk =

{
mjk if j ̸= k,

mjj − ωj if j = k.

• Sample the global transition distribution β as defined
by (10).

• For k = 0, ..., L, sample the transition probabilities πk

as defined by (10).

• For k = 1, ..., L, sample each emission parameters
(µk,Σk) as defined by (9).

• Optionally, sample the hyperparameters α0, κ, and γ as
described in Fox et al. [6].

• Set πnew = π and (µnew,Σnew) = (µ,Σ).

2.2. Classification

For testing, given a new trajectory x, we classify it into activ-
ity y∗ ∈ {1, ...,Y} by maximizing the log-likelihood:

y∗ = argmax
y∈Y

{log p(x|πy, (µy,Σy))}, (11)

where πy and (µy,Σy)) were obtained from the training pro-
cedure. The observation likelihood p(x|πy, (µy,Σy)) can be
compute directly using a forward message passing [8] which
we will not describe here.

3. EXPERIMENTS

We test the performance of our model on both synthetic and
real data. The synthetic data have two classes of simple ac-
tivities, which aims at demonstrating the capability of our ap-
proach to recover the true model. Experimental results on
data from real-world scenes include comparisons with state-
of-the-art methods.

3.1. Synthetic data

First, we concentrate on an ideal scenario which is similar to
the synthetic case discussed in [1]. We consider two different
classes of activities both of which are made up of two differ-
ent motions: moving horizontally and moving vertically. The
mean of horizontal displacements is µ1 = [0.02 0]T and the
mean of vertical displacements is µ2 = [0 0.02]T . The corre-
sponding covariances are Σ1 = Σ2 = 10−3I. The difference
between the two classes resides on the transitions, where one

(a) (b) (c) (d)

Fig. 1. The two real-world scenes with example trajectories:
(a) E, in the shopping center scene, (b) L, in shopping center
scene, (c) CPU, in the campus scene, (d) CPD, in the campus
scene.

class has a low probability of switching between two differ-
ent motions while the other has an identical probability of
switching between any two motions. Respectively for the two
activities, training sets are generated from HMMs with tran-
sitions:

TA =

[
0.95 0.05
0.05 0.95

]
, TB =

[
0.5 0.5
0.5 0.5

]
.

Given the above setting, we generate 100 training trajectories
and 100 test trajectories.

We run 500 iterations using the Gibbs sampler with a trun-
cation level L = 5. As expected, For the both classes, the
Gibbs sampler converges to the right motion numbers (which
is two) after a few iterations and the numbers become stable
afterwards. We also check the emission parameters and tran-
sition matrices sampled at the 500th iteration. For the two
activities, they are respectively

µ̃A
1 = [0.0200 0.0000]T , µ̃B

1 = [0.0199 0.0001]T ,

µ̃A
2 = [0.0001 0.0200]T , µ̃B

2 = [0.0000 0.0200]T ,

T̃
A
=

[
0.9650 0.0350
0.0602 0.9398

]
, T̃

B
=

[
0.5345 0.4655
0.5191 0.4809

]
.

As we can see, the estimated emission parameters and transi-
tion matrices are very close to the true setting.

Finally, we apply the results of the 500th iteration to the
test data. The classification accuracy is 100%, showing that
our model is feasible to recognize trajectories.

3.2. Two real-world scenes

We then consider HAR under two real-world scenes, which
include a shopping center and a university campus [1]. For
the shopping center scene, four classes of activities are pre-
defined, which are “entering” (E), “leaving” (L), “passing”
(P), and “browsing” (B). For the university campus scene,
seven classes of activities are predefined, which are “enter-
ing” (E), “leaving” (L), “crossing park up” (CPU), “crossing
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Fig. 2. Experimental results about motion numbers. (a) Up-
dates of the motion number through the iterations with the
shopping data (“browsing”). (b) Average motion numbers for
the shopping center scene. (c) Average motion numbers for
the campus scene.

True class E L P B
E 93.80 6.20 0 0
L 0 97.67 0 2.33
P 2.31 0 97.69 0
B 2.17 0 0 97.83

Table 1. Classification accuracies (%) of the shopping center
scene obtained in our experiment.

park down” (CPD), “passing through” (PT), “walking along”
(WA), and “wandering” (W). After processing, we get 53 tra-
jectories in the shopping scene and 143 trajectories in the
campus scene. Fig. 1 shows the two scenes with example
trajectories.

The SD-HMM approach [1] is a recent state-of-the-art
method for trajectory-based HAR. In order to assess the ac-
curacy of our approach and perform a comparison with the
SD-HMM, we consider a specific procedure for splitting the
available data into training and test sets, which is totally iden-
tical with the first splitting procedure used in the SD-HMM.
In particular, the training set contains three randomly picked
trajectories from each class of activity and the test set contains
the remaining trajectories.

We run 5000 iterations on the shopping training set with
the truncation level L = 10. Fig. 2(a) shows the updates
of the motion number throughout the iterations in the case
of “B”. As we can see, the Gibbs sampler finally converges
to a stable motion number. Due to space constraints, we do
not plot results of other classes of activities, which are sim-
ilar to Fig. 2(a). To evaluate the classification accuracy, we
randomly select 100 sets of trained parameters between the
4000th and 5000th iteration. Fig. 2(b) shows the average
motion numbers of the four classes with the 100 iterations.
As we can see, “B” has the largest number. A reasonable

True class E L CPU CPD PT WA W
E 97.69 0 0 0 0 2.31 0
L 1.40 97.87 0 0 0 0.73 0

CPU 0 0 97.14 0 0 0 2.86
CPD 0 0 4.59 94.68 0 0.73 0
PT 0 1.64 0 0 98.36 0 0
WA 0 0 0 4.42 0 95.58 0
W 1.17 0 0 0 0 0 98.83

Table 2. Classification accuracies (%) of the campus scene
obtained in our experiment.

Approach Shopping Campus
HMM + AIC 16.67 8.55

HMM+BIC/MDL 5.56 7.24
SD-HMM 3.70 3.29

PROPOSED APPROACH 3.24 3.38

Table 3. Comparison of overall error rates (%).

explanation is that the “B” activity is the most flexible and
diverse one since people have no specific purpose when they
browse in front of the shop. Similarly, we run 5000 itera-
tions using the campus training set with the truncation level
L = 15 and randomly select 100 sets of trained parameters
between the 4000th and 5000th iteration to evaluate the per-
formance. The average motion numbers of the seven classes
with the 100 iterations are shown in Fig. 2(c). As we can see,
“E” and “L” have the same number of motions, which is also
true for “CPU” and “CPD”. The reason may be that they are
essentially similar activities though with opposite directions
(see Fig. 1). Furthermore, “W” has the largest number of mo-
tions, which corresponds to the result of “B” in the previous
shopping center scene. The confusion matrices for the shop-
ping center scene and the campus scene are respectively given
in Table 1 and Table 2. As we can see, our approach achieves
a good performance for all classes of activities, even in the
cases of complicated activities like “B” and “W”.

To illustrate the general performance, we show the overall
error rate of our method in Table 3. Moreover, the results of
other methods from [1] are employed as a comparison. As
we can see, our method either outperforms (on the shopping
data) or closely matches (on the campus data) the SD-HMM.

4. CONCLUSION

In this paper, we have presented a method based on the HDP-
HMM framework for modeling and recognizing human ac-
tivities. We model the distributions of displacements in a tra-
jectory as Gaussians and the temporal evolution of invisible
motions as a Markov chain. By adopting an approximation
and extension to the standard HDP-HMM, our method can
infer an appropriate number of motions from data. For recog-
nition, a test trajectory is categorized by maximizing the log-
likelihood. Experimental results have validated the good per-
formance of our method in comparison with other methods.
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