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Abstract As a recently proposed machine learning method, active learning of Gaus-

sian processes can effectively use a small number of labeled examples to train a classifier,

which in turn is used to select the most informative examples from unlabeled data for

manual labeling. However, in the process of example selection, active learning usually

need consider all the unlabeled data without exploiting the structural space connec-

tivity among them. This will decrease the classification accuracy to some extent since

the selected points may not be the most informative. To overcome this shortcoming, in

this paper we present a method which applies the manifold-preserving graph reduction

(MPGR) algorithm to the traditional active learning method of Gaussian processes.

MPGR is a simple and efficient example sparsification algorithm which can construct

a subset to represent the global structure and simultaneously eliminate the influence of

noisy points and outliers. Thereby, when actively selecting examples to label, we just

choose from the subset constructed by MPGR instead of the whole unlabeled data. We

report experimental results on multiple data sets which demonstrate that our method

obtains better classification performance compared with the original active learning

method of Gaussian processes.
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1 Introduction

In machine learning, labeled examples are very useful which can offer effective dis-

criminative information. In many real-world problems, sufficient labeled examples are

required to train a good classifier. Although people can get large numbers of unlabeled

examples easily, it usually needs much manual labor to label them, which can be gruel-

ing, difficult or time-consuming. As a consequence, the number of available unlabeled

examples are generally much larger than labeled ones. Thus learning from both labeled

and unlabeled data has drawn more and more attentions. Active learning is one of the

effective strategies to solve this kind of problem.

Active learning, sometimes called “experimental design”, is a learning mechanism

which can actively query the user for labels. In other words, unlabeled examples that

are considered the most informative and important can be optimally selected for human

labeling [19]. It is a process of guiding the sampling process by following some criteria

to select those that can enhance the classification accuracy during the iteration from

a large pool of unlabeled data. Compared with supervised learning algorithms, active

learning can perform as efficiently as a regular supervised learning framework but with

fewer labels by interactive queries [21]. Due to this interactive setting, the number of

examples needed to be labeled can be much less. There are mainly three strategies

used in active learning [22]. The first strategy of active learning methods is based on

the query-by-committee sampling (QBC) [5,6,26]. The committee members are com-

posed of some classification models. QBC selects for labeling the unlabeled examples

whose classification is the most uncertain among the committee member classifiers.

The second class is the margin sampling (MS) strategy [3,16]. MS selects for labeling

the unlabeled data which is the nearest to the classification margin of classifiers. The

third one relies on the estimation of the posterior probability distribution function of

the classes [9]. It selects the examples for manual labeling based on the values of their

posterior probabilities. In this paper, we mainly focus on the last strategy using the

probabilistic model of Gaussian processes (GP), since they can provide probabilistic

prediction estimates at unlabeled examples. The uncertainty model provided by GP

can be well-suited for active learning. In addition, active learning of Gaussian processes

(GPAL) has been successfully used for object categorization [11–13].

Despite the excellent performance of active learning algorithms, there are still some

shortcomings that we should not omit. For example, in the process of active example

selection, we usually need take all the unlabeled instances into account without con-

sidering the structural information and spatial diversity among them. This will lead to

a result that in the same area there are more than one point to be selected, and thus

it is possible to produce redundancy which can decrease the classification accuracy.

In order to avoid the influence of noisy points and simultaneously consider the space

connectivity among instances, we introduce an algorithm called manifold-preserving

graph reduction (MPGR) [20] beyond the original active learning method. MPGR is a

simple example sparsification algorithm which can effectively remove outliers and noisy

points. By using MPGR, we can construct a subset which can represent the global man-

ifold structure using fewer examples. This can eliminate the influence of noisy points

and promote the example-selection quality of predictors. Learning with this kind of

manifold assumption has been successfully applied to many machine learning tasks [1,

2,18,20,27].

The main contribution of this paper is that we introduce the MPGR algorithm to

the original GPAL. We denote this new method which effectively exploits the manifold
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information as GPMAL. In our method, when selecting unlabeled points to label, it

chooses from a subset constructed by MPGR instead of the whole unlabeled data set.

This subset has more important discriminative information and excludes noisy points

and outliers. We can see that the classification accuracy has improved a lot compared

with the original active learning method.

The remainder of this paper proceeds as follow. In Section 2, we briefly review some

background about GPAL. In Section 3, we describe our method which applies MPGR

to the original active learning method. In Section 4, we show the experimental results

on one artificial data set and five real data sets to demonstrate the effectiveness of our

method. Finally, we provide concluding remarks in Section 5.

2 Background

In this section, we briefly review some basic knowledge related to active learning of

Gaussian processes.

2.1 Active learning

Active learning is a process of guiding the sampling process by actively selecting and

labeling the most informative candidates from a large pool of unlabeled examples. As a

method of constructing an effective training set, the goal of active learning algorithms

is to find informative examples which can enhance the classification accuracy of the

model during the iteration, thereby reducing the size of the training set and improving

the efficiency of the model within the limited time and resources. Instead of randomly

picking unlabeled examples, active learning selects valuable examples according to

some certain criteria. Through this, a predictor trained on a small set of well-chosen

examples performs as effectively as a predictor trained on a larger number of randomly

chosen examples [4,14,24].

As a topic of recent interest, a lot of active learning methods have been proposed

for selecting unlabeled examples for tagging. As mentioned above, this paper is mainly

focused on the third strategy to select unlabeled points, which can be used in both two-

class [9] and multi-class problems [15]. Generally speaking, the posterior probability

reflects the confidence level of the category an example belongs to. Take two-class

classification (positive/negative) for example. If the posterior of being positive of an

example is closer to 0.5, the example possesses more information, and it is more likely

to be selected.

Compared with traditional supervised methods, active learning has the following

advantages: It can handle large training data set, choose the discriminative points,

and reduce the number of training data and artificially labeled examples. Active learn-

ing has been applied to many real-world applications, such as video classification and

retrieval [7], medical image classification [8], cancer diagnosis [10], information extrac-

tion [17], and image classification and retrieval [25].

2.2 Gaussian processes

Here we briefly summarize Gaussian processes to facilitate the subsequent introduction

of GPAL.
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As mentioned above, Gaussian processes provide probabilistic prediction estimates

and thus are well-suited for active learning. The Gaussian process model is a very

flexible tool for data modeling, which can adapt itself to data through changing the

involved parameters. When it is used for prediction, both the training and test data

are assumed to be modeled by the same underlying process. The model parameters

are fixed from the training data, which together with the training data will then be

used to predict test data. However, in some cases when people know that the data

don’t have a normal distribution, they can use more complex models such as mixtures

of Gaussian processes to model the data. A Gaussian process is a stochastic process

specified by its mean and covariance function [14]. Given a data set with N examples

X = {x1, x2, . . . xN}, the corresponding class labels are t = [t1, t2, . . . tN ]⊤ and latent

variables are Y = {y1, y2, . . . yN}. For simplicity, here we just discuss the two-class

problem. Hence, the label ti belongs to {1,−1}. As to multi-class classification, we can

just use one-vs-rest to convert the multi-class problem to multiple two-class problems.

The prior distribution that defines the probabilistic relationship between the ex-

amples X and the latent variables Y is assumed to be Gaussian:

p(Y |X, θ) = N(Y |0,K) (1)

with a zero mean and a covariance matrix K where K is a kernel matrix parameterized

by the hyperparameter θ. The likelihood models the probabilistic relationship between

the label t and the latent variable y. In this work we assume that t and y are related

via a Gaussian noise model. For regression, a Gaussian observation likelihood often

uses a Gaussian noise model:

p(t|y) = 1√
2πσ2

exp−
(t−y)2

2σ2 (2)

where σ2 is the noise model variance. Although the Gaussian noise model is originally

developed for regression, it has also been proved effective for classification, and its

performance typically is comparable to the more complex probit and logit likelihood

models used in classification problems [11]. For its simplicity and a closed form solution

for iterations, we use the GP noise model in our experiments. Given the data points,

the marginal likelihood will be:

P (t|X) = N(t|0,K + σ2I). (3)

When there is a new point xu, the posterior P (yu|X, t) over the latent label yu is also

a Gaussian which can be written as:

P (yu|X, t) ∼ N(Yu, Σu), (4)

where

Yu = Kt(xu)
⊤(σ2I +K)−1t, (5)

Σu = k(xu, xu)−Kt(xu)
⊤(σ2I +K)−1Kt(xu). (6)

Here, k is the covariance function and Kt(xu) is the vector of covariances between xu
and the training points, which is given by Kt(xu) = [k(xu, x1), ..., k(xu, xN )]⊤. Since

the Gaussian noise model links tu to yu, the predictive distribution over the unknown

label tu is also a Gaussian: P (tu|X, t) ∼ N(Yu, Σu + σ2).
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2.3 Active learning of Gaussian processes

Considering a large pool of unlabeled data, the task of active learning of Gaussian

processes is to actively query labels for the examples with the most uncertainty and

then update training data by adding them to the existing labeled data set to train a

classifier. Here we use the uncertainty sampling criterion. With the uncertainty esti-

mates provided by GP, we should select the points which are the most uncertain (Take

two-class classification problems for example, the posterior of being positive is nearest

to 0.5).

Generally speaking, there are usually three active learning criteria for example se-

lection in Gaussian processes [11]: one criterion is exploiting the distance from the

classification boundary to identify points for active learning. Used with Gaussian pro-

cesses classification models, it would be inclined to select the next point with the

minimum posterior mean by examining the magnitude of the posterior mean |Ym|
(xaℓ = argminxu∈Xu

|Ym|). The second criterion is considering the variances and se-

lects the point that has the maximum variance (xaℓ = argmaxxu∈Xu
Σu). However,

the mean and variance are both important parameters of a Gaussian process model. If

we just consider the posterior mean or variance in the process of selecting unlabeled

points, the available information will be very limited. The third criterion is to consider

their posterior mean and variance simultaneously, which includes more comprehensive

information. Here, we follow an approach suggested in [12] to select the unlabeled

points, exploiting both the posterior mean as well as the posterior variance:

xaℓ = arg min
xu∈Xu

|Ym|√
Σu + σ2

. (7)

Note that the value p(tu > 0) = ψ( Ym√
Σu+σ2

), where ψ(·) denotes the cumulative dis-

tribution function of a standard normal Gaussian distribution N(0, 1). When selecting

examples, we want to choose the points with the most uncertainty. It means the ex-

amples should have a value for p(tu > 0) which is nearest to 0.5 using the posterior

probability for representation. That is equivalent to say, the value of
|Ym|√
Σu+σ2

should be

very close to zero. Therefore, we just select an example xu which minimizes
|Ym|√
Σu+σ2

.

The GPAL algorithm used in this paper is represented in Algorithm 1.

Algorithm 1: Active Learning of Gaussian Processes (GPAL)

Input: Labeled set T , unlabeled pool U , selected batch size Q
Output: Error rates of classification

1 for p=1 to maximum number of iterations do
2 Select the most informative Q points by the following steps:
3 while q=1 to Q do
4 Select the most uncertain point (according to Eq. (7))
5 Move the point from U to T :
6 T = T ∪ (xaℓ, label(xaℓ)), U = U − xaℓ

7 end
8 Train a classifier with the new T ;
9 Calculate the error rate on the new U ;

10 end
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3 Our proposed approach

In order to perform active learning, people use the labeled examples to train a classi-

fier, which is then used on unlabeled points to select the most informative examples

for user labeling. But when selecting the unlabeled points, they usually consider all

the points without considering the structural information and spatial diversity among

them. This will lead to a result that in one small area there will be more than one

point to be selected. However, points in this small area are likely to offer the same

information, and thus there is no need to select all of them. More importantly, it will

cause data redundancy which decreases the classification accuracy. To overcome this

shortcoming, we apply a manifold-preserving graph reduction algorithm to the original

active learning method.

3.1 MPGR

In machine learning, manifold assumption is an important assumption which indicates

that examples in a small area should have similar property and their labels should be

also similar. That is to say, similar inputs should have similar outputs. This assumption

reflects local smoothness of the decision function which can alleviate the overfitting

problems. However, there are several disadvantages in manifold learning methods. First,

when constructing manifolds, they usually rely on a high-density data set, which causes

high complexity in computation. Second, they are very sensitive to noisy points and

outliers. To avoid these two shortcomings, we use a sparse manifold graph, which can be

deemed as a discrete representation of the manifold. Sparse manifolds have significant

advantages as follows: it can effectively eliminate the influence of outliers and noisy

points and simultaneously accelerate the evaluation of predictors learned from the

manifolds [20]. Manifold-preserving graph reduction (MPGR) is a simple but efficient

graph reduction algorithm based on the manifold assumption.

Through the MPGR algorithm, we can construct a manifold-preserving sparse

graph. Manifold-preserving properties mean that an example outside of the sparse

graph should have a high space connectivity with an example retained in it. Given a

graph composed of all unlabeled examples, the manifold-preserving sparse graphs are

those sparse graph candidates which have a high space connectivity with the original

graph [20]. The value of space connectivity is:

1

M −m

M∑
i=m+1

(
max

j=1,...,m
Wij

)
, (8)

whereM is the number of all unlabeled points,m is the number of points to be reserved,

and W is the weight matrix. It has been proved that maximizing Eq. (8) can obtain

a larger lower bound of the expected connectivity between the m points retained in

sparse graph and M −m points outside of it by using the McDiarmid’s inequality [20].

This provides guarantees to obtain a good space connectivity. However, the problem

of directly seeking manifold-preserving sparse graphs is NP-hard, and thus the MPGR

algorithm was proposed to seek an approximation to maximizing the above equation.

For a graph, normally speaking, weight can measure the similarity of linked points,

and a higher weight means linked examples are more similar. Here we introduce a

definition of degree d(i). We denote it to be d(i) =
∑

i∼j wij , where i ∼ j means that
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example i is connected with example j (e.g., defined by the k-nearest-neighbor rule)

and wij is their corresponding weight. If two examples are not linked, their weight is

regarded as 0. Due to its simplicity, d(i) is generally used as a criterion of constructing

sparse graphs. The bigger d(i) is, the more information the example i has. Equivalently,

the example i is more likely to be selected into the sparse graphs.

3.2 Active learning of Gaussian processes with MPGR

In this section, we will introduce our method which applies MPGR to active learning

of Gaussian processes.

As mentioned above, there are some shortcomings in traditional active learning

methods, such as not exploiting the space connectivity and not considering spatial di-

versity among the examples. In order to overcome these shortcomings, we apply the

MPGR algorithm to the original active learning method of Gaussian processes. We

denote the new method as GPMAL. By exploiting aforementioned MPGR, GPMAL

tends to select globally representative examples (the examples that are closer to sur-

rounding examples are deemed as representative and having important information)

and examples with high space connectivity. Since these examples are high representa-

tive, we can just select them to represent the whole data set to a large extent. Compared

with the original GPAL, GPMAL considers the structural space connectivity among

the unlabeled data. Moreover, GPMAL can effectively maintain the manifold structure

and eliminate the influence of noisy points and outliers which will be excluded due to

the low space connectivity. The GPMAL algorithm is represented in Algorithm 2.

Algorithm 2: Active Learning of Gaussian Processes with MPGR (GPMAL)

Input: Labeled set T , unlabeled pool U , selected batch size Q
Output: Error rates of classification

1 for p=1 to maximum number of iterations do
2 Construct graph G with all the unlabeled points;
3 Select a subset Ts with m points (m > Q) by the following steps:
4 while i=1. . .m do
5 Compute degree d(j) (j=1. . .m− i+ 1)
6 Pick a point h with the maximum degree, add h to Ts

7 Remove h and associated edges from G

8 end
9 Reselect Q points from Ts by GPAL;

10 Add Q points to T and correspondingly remove these points from U ;
11 Train a classifier with the new T ;
12 Calculate the error rate on the new U ;

13 end

The difference between Algorithm 1 and Algorithm 2 is the scale of unlabeled

examples to be queried. The former queries all the unlabeled examples, while the latter

is just querying a subset. By using the subset constructed by the MPGR algorithm, we

select m examples with important information from all unlabeled examples. It means

that only a portion of unlabeled examples are needed to evaluate kernel functions.

Moreover, a classifier learned from these examples will generalize well to the unselected

examples. This owns to the property of manifold-preserving sparse graphs: examples
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outside of the sparse graph have similar features and labels with the points in the

sparse graph.

It can be seen that our method is a refinement of the original active learning

method of Gaussian processes. Essentially, it consists of two steps. First, we construct

a sparse subset by MPGR. Due to the property of high space connectivity, the subset

is high representative and preserving the global structure of the original distribution

of training set. Then we use the active learning procedure to reselect unlabeled points

based on the subset. Thus it can not only reduce the number of unlabeled points to

be queried, but also provide a guarantee that the selected points are important and

valuable. Further it can remove the noisy points and outliers from the candidate points.

4 Experiments

We evaluate our method on one artificial data set and five real data sets. The five real

data sets are separately the Blood Transfusion Service Center (BTSC) data set [23],

the Monk’s Problems (MP) data set, the Vertebral Column (VC) data set, the Balance

Scale (BS) data set, and the Concrete and Cardiotoco graphic (CCG) data set. All the

real data sets are public which can be downloaded from the UCI Machine Learning

Repository 1. To demonstrate the generality of our method, these data sets include

both binary classification and multi-class classification.

In our experiments we set the noise model variance σ = 10−5 (experiments show

that the final results are not sensitive to this value). The GPML toolbox 2 is used

to construct Gaussian processes for MPGR, GPAL and GPMAL, providing the mean

function, covariance function, likelihood function and inference method. For the graph

weight matrix in MPGR, we generally use the RBF (radio basis function) kernel as the

symmetrical weight matrix. The weight is defined as:

Wij =

{
exp(− ||xi−xj ||2

cβ ), if xi, xj are neighbors ,

0, otherwise .
(9)

Here c is a parameter varying in {1,5,10}, and β is the mean of all the smallest distances

between one point and its neighbors. The k-nearest-neighbor rule is used to construct

the adjacency graph where k is set to 10 in this paper. We proceed to choose all the

parameters by five-fold cross-validation on the training set and conduct experiments

ten times on each data set.

To show the effectiveness of our method, three methods are compared in this paper:

GPMAL, GPAL and random selection. In our experiments, we focus on the average

error rates per class of ten times about six data sets. During each iteration, we select

several points to add into the training set and accordingly reduce them from the test

data. The difference is that GPMAL selects these points from the subset constructed

by MPGR, while GPAL selects them from the whole unlabeled data set. As a baseline,

the method of random selection is randomly picking these points. In the following

experiments except for the CCG data set, the number of the original training data set

and selected data points at each iteration are all five. For the CCG data set, the number

of the original training data set and selected points are 50 and 10, respectively. Here

1 http://archive.ics.uci.edu/ml/
2 http://gaussianprocess.org/gpml/
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Fig. 1 The distribution of the Clouds data set.

we must consider a fact that the size of the subset constructed by MPGR should not

be too large. From [20], we can see that the classification accuracy often first increases

and then decreases as the proportion of unlabeled examples retained increases.

4.1 Artificial data

The first data set is an artificial data set (Clouds data set) 3. Fig. 1 depicts its distribu-

tion which is a two-class classification problem. This data set contains 5000 examples,

and 2500 examples per class. Each data point has two attributes. For simplification, we

randomly choose 600 points to perform the experiment and the number of each class is

set to 300. We randomly choose five labeled examples as the training data and the rest

unlabeled examples as the test data. In GPMAL, the size of subsets constructed by the

MPGR algorithm is 100. Fig. 2 shows the unlabeled points selected by GPMAL and

GPAL, respectively. The red points with “+” mean that they are the points selected

for active learning. From Fig. 2, it is straightforward to see that the points selected by

GPMAL are more representative of the global information than GPAL.

Fig. 3 shows the average classification error rates of three methods: GPMAL, GPAL

and Random (the random example selection method). From Fig. 3 we can clearly see

that our new approach obtains a lower classification error rate compared with GPAL

and random selection.

4.2 UCI data sets

To demonstrate the generality and effectiveness of our approach, we further evaluate

it on five real data sets which are benchmark data for machine learning algorithms.

The BTSC data set seeks to predict if a man donated blood or not. It is also a

binary classification problem which consists of 748 examples. Each example has four

3 https://www.dice.ucl.ac.be/neural-nets/Research/Projects/ELENA/databases/
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(a) The points selected by GPMAL

−3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

4

5

(b) The points selected by GPAL

Fig. 2 The distribution of the points selected by GPMAL and GPAL.

attributes which describe some information about donation and a binary output feature

representing whether a man donated blood. As mentioned above, the original training

data set is five and the subset size is 200.

The MP data set is the basis of the first international comparison of learning algo-

rithms. The data set includes 432 examples where each data point includes 7 features

and an output attribute. The size of the subset constructed by MPGR is 100. It is also

a two-class classification problem.

The VC data set contains six biomechanical features. It is used to classify or-

thopaedic patients into two classes (normal or abnormal). There are 310 examples in

total and the subset size is 100.

The above experiments are all binary classification problems. Fig. 4∼6 show the

experimental results. It is straightforward to see that GPMAL obtains a better classi-

fication performance than GPAL and random selection.
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Fig. 3 Experimental results on the Artificial data set.
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Fig. 4 Experimental results on the BTSC data set.

The BS data set is generated to model psychological experimental results. Each

example is classified as: tip to the left (left), tip to the right (right), or to be balanced

(balance). There are 625 examples in total. We set the subset size to be 100. It is a

multi-class classification problem which has four feature attributes and one predicted

attribute. Fig. 7 shows the performance comparison of GPMAL classification with

GPAL and random selection on this data set.

The CCG data set consists of measurements of fetal heart rate (FHR) and uterine

contraction (UC) features on cardiotocograms classified by expert obstetricians. It

consists of 2126 examples. Each data point includes 21 feature attributes and two

predicted attributes. It can be a three-class classification or a ten-class classification

problem. For simplicity, we predict the NSP (Normal, Suspect, Pathologic) feature,

setting it as a three-class classification problem. The original labeled points are 50 and
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Fig. 5 Experimental results on the MP data set.

0 10 20 30 40 50 60
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Number of Labeled Points

E
rr

or
 R

at
e

 

 

GPMAL

GPAL

Random

Fig. 6 Experimental results on the VC data set.

Table 1 The error rates for all real data sets with the maximum numbers of labeled points

Method BTSC MP VC BS CCG

GPMAL 21.20 ± 0.21 8.87 ± 0.40 9.55 ± 1.40 2.81 ± 1.01 11.83 ± 0.38
GPAL 22.45 ± 0.16 15.91 ± 0.81 12.65 ± 1.32 4.47 ± 1.32 14.21 ± 0.46
Random 24.84 ± 0.13 26.68 ± 0.94 19.33 ± 1.26 13.66 ± 1.26 21.91 ± 0.41

the number of points added into training data is set to 10. The subset size is 500. Fig. 8

shows the performance comparison of GPMAL classification with GPAL and random

selection for classification problems on this data set.

The experimental results on the six data sets, which include binary classification

and multi-class classification problems, show that our approach GPMAL obtains a



13

lower error rate than GPAL and random selection. Moreover, we list the error rates for

all real data sets with the maximum numbers of labeled points (50 or 140) in Table 1.

It is straightforward to see the superior performance of GPMAL. This might be due to

the following reasons. Firstly, compared with GPAL, MPGR constructs an important

and informative subset to represent the global manifold structure and describe local

characteristics. Secondly, it can effectively eliminate the influence of noisy points and

outliers. Essentially, GPMAL is a refinement of the original GPAL.

4.3 Comparing with feature selection

As mentioned above, the main advantage of GPMAL is that it constructs a subset which

well considers the global structural information before labeling points. The structural

information of points, to a great extent, relies on their feature representation. Feature

selection can thus influence the structural information. To show our method is more

competitive, in this section, we apply principal component analysis (PCA) to the data

points before GPAL (PCA-GPAL) and further compare it with other methods.

PCA is an unsupervised dimensionality reduction method. It seeks a set of orthog-

onal projection directions along which the sum of the variances of data is maximized,

while retaining as much as possible of the variation present in the data set. In our

method, we capture 99% of the data variance to decide the number of bases used. We

compare the four methods on three data sets including the aforementioned VC data

set, the CCG data set and another new Ionosphere data set which can also be down-

loaded from the UCI Machine Learning Repository. The Ionosphere data set includes

351 examples where each data point includes 34 features and an output attribute. It is

a binary classification problem. The experiment setting of the Ionosphere data set is

the same as the VC data set (The number of the original training data set and selected

data points at each iteration are all five. The size of the subset constructed by MPGR

is 100).

When using PCA-GPAL, we capture 99% of the data variance while reducing the

dimensionality from 6 to 4 with PCA before GPAL on the VC data set. Similarly, the

dimensionality is reduced from 34 to 21 on the Ionosphere data set and from 21 to 8

on the CCG data set. Fig. 9∼11 show the performance comparison on the three data

sets, which further indicate the superiority of GPMAL.

5 Conclusions

In this paper, we applied the MPGR algorithm to an active learning method based on

Gaussian processes, and presented our new method GPMAL. As a manifold-preserving

graph reduction algorithm, MPGR constructs a subset which well exploits the struc-

tural space connectivity and spatial diversity among examples, and thus the subset is

high representative and maintains a good global manifold structure. Especially when

there are noisy examples and outliers in the training data, the MPGR algorithm can

effectively remove them. By using MPGR, an active learner selects the most informa-

tive candidates from the subset instead of the whole unlabeled data set when we select

unlabeled examples for human labeling. Compared with the original GPAL, GPMAL

is a refinement making use of the MPGR algorithm. Moreover, we compare GPMAL

with feature selection (PCA-GPAL) and further show the superiority of GPMAL.
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Experimental results on multiple data sets show that our new method GPMAL

outperforms random selection and the original GPAL. MPGR for active learning of

Gaussian processes has got good performance. In addition, extensions of the MPGR

algorithm to other learning contexts will be a topic of interest for future work.
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Fig. 7 Performance comparison of GPMAL, GPAL and random selection on the BS data set.
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Fig. 8 Performance comparison of GPMAL, GPAL and random selection on the CCG data
set.
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Fig. 9 Performance comparison of PCA-GPAL, GPMAL, GPAL and random selection on the
VC data set.
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Fig. 10 Performance comparison of PCA-GPAL, GPMAL, GPAL and random selection on
the Ionosphere data set.
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Fig. 11 Performance comparison of PCA-GPAL, GPMAL, GPAL and random selection on
the CCG data set.


