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Abstract:
This paper presents a new multi-source domain adapta-

tion framework based on the Bayesian learning principle
(BayesMSDA), in which one target domain and more than one
source domains are used. In this framework, the label of a tar-
get data point is determined according to its posterior, which
is calculated using the Bayesian formula. To fulfill this frame-
work, a novel prior of the target domain based on Laplacian
matrix and a new likelihood dynamically obtained using the k-
nearest neighbors of a data point are defined. We focus on the
situation that there are no labeled data obtained from the tar-
get domain while there are large numbers of labeled data from
source domains. Experiments on synthetic data and real-world
data illustrate that our framework has a good performance.
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1. Introduction

Most theoretical models in machine learning, such as prob-
ably approximately correct models (PAC models), assume that
models are trained and tested using data drawn from certain
fixed distributions. Uniform convergence theory guarantees
that a model’s empirical training error is close to its true er-
ror under such assumptions. However, in practice assumptions
that data for training and testing come from the same distribu-
tion do not hold, because these two types of data usually come
from different distributions, or domains. In these cases there
is no hope for good generalization. We wish to learn a model
in one or more source domains (i.e. domains from which the
training data come), and then apply it to a different target do-
main (i.e. domain from which the test data come). This kind
of learning model is called “domain adaptation” models [1],
[2]. We confront this problem in many fields, such as senti-

mental analysis [3], [4], [5], natural language processing [6],
computer vision, etc. Often in these cases, source domains of-
fer large numbers of labeled data for learning, while target do-
mains may have no labeled data available. In this paper, we
concentrate on the situation that there are no labeled data in the
target domain, and there is only one target domain. The task is
to combine the labeled source data and unlabeled target data to
classify the target data as correctly as possible.

The problem of multi-source domain adaptation considered
in this paper has been researched by many researchers [7], [8],
[9], [10]. Crammer et al. [7] considered a problem about learn-
ing an accuracy model via the nearby data points from more
than one source domains. They gave a general algorithm as
follows: by using samples from different source domains to
estimate the divergence among these sources, the algorithm de-
termines which samples from each source should be selected to
train the model. Thus a corresponding subset that best suits the
target task was chosen from each source. On a binary classifi-
cation task the algorithm was demonstrated to be effective. Tu
and Sun [8] gave an emsemble learning framework for domain
adaptation. They presented a novel ensemble-based method
which dynamically assigns weights to different test examples
by using the so-called friendly classifiers. The model gave the
most favorable weights to different examples. Mansour et al.
[9] presented a theoretical analysis of domain adaptation learn-
ing with multiple sources. They gave a combination of the
source hypotheses weighted according to the source distribu-
tions. In practice they showed that for any fixed target function,
there existed a distribution weighted combining rule that has a
loss at most ε.

An interesting issue to consider in multi-source domain
adaptation is that what we should do if we do not know
in advance which domain performs best. On one hand, we
want to use the most suitable source to solve the target task.
On the other hand, we do not know which one to choose.
This paper gives a tradeoff for this problem. In this pa-



per, we present a multi-source domain adaptation framework
based on the Bayesian learning principle (BayesMSDA). Un-
der the Bayesian framework, the determination of classification
is based on the posterior probabilities. These posteriors are
proportional to the product of the priors and the likelihoods.
We define in BayesMSDA framework a novel prior using the
Laplacian matrix [11], [12], and a novel likelihood based on
the mean Euclidean distance of k-nearset points.

The remainder of this paper is organized as follows. The
new framework and its implementation for multi-source do-
main adaptation are introduced in detail in Section 2. In Sec-
tion 3, two experiments on synthetic and real-world data are
accomplished to illustrate the effectiveness of our framework.
In Section 4, conclusions and the future work are given.

2. The proposed framework

The proposed framework for multi-source domain adaptation
(BayesMSDA) is based on the Bayesian learning principle: the
probability of which class a target example belongs to is pro-
portional to the product of prior and likelihood assigned to this
example. For multi-source issues, the core problem is how to
combine these sources effectively to solve the target task. The
novel framework is described as follows.

Given M source domains Si, i = 1, 2, . . .M , and one target
domain T . The task is to label the data in T , using the unlabeled
data in T and the large numbers of labeled data in S i. Assume
that we can get M classifiers ci, based on the M source do-
mains Si. Then we define the prior, which measures the fitness
between the source domain and the target domain, and the like-
lihood of each target data, which represents the probability of
the target data occuring in the source. Applying the Bayesian
learning principle to get a posterior for classification, we can
use these posteriors to weight the M classifiers ci to get a final
label for the target data.

The framework we present with self-defined prior and like-
hood is applicable to the situation that the data are unlabeled in
the target domain, which is compared with the majority voting
algorithm.

2.1. Prior

Consider a weighted undirected graph G = (V,E), with the
data set V = (x1, x2, . . . xn), E = (e1, e2, . . . el). Assume
that G is a connected graph (if not, the process followed can be
used on each connected component). Let Y = (y1, y2 . . . yn)
be the image of the data set under certain mapping rules. The
problem now is how to make the images y i and yj as close as

possible when the data points xi and xj are close. A reasonable
criterion to guarantee this is to minimize the objective function

G =

j∑

i

(yi − yj)
2
Wij (1)

under appropriate constrains, where W ij = e−
‖xi−xj‖

T when xi

and xj are neighbors, and zero otherwise. Equation (1) means
that there is a heavy penalty when the images of neighborhood
points xi and xj are far away from each other. Minimizing
it attempts to make sure that yi and yj are close if xi and xj

are close. This property can be used in binary classification
problems effectively.

The prior gives a measurement of fitness when a source clas-
sifier is applied on the target task: for a sample x in the target
domain, it should be independent with x. In this paper, we
construct the prior with the Laplacian matrix [11], [12] of the
target domain. We consider the issue that data in the target do-
main which are all unlabeled are used to quantify the prior. For
any Y , the objective function becomes

G =

j∑

i

(yi − yj)
2
Wij

=

j∑

i

(
yi

2 + yj
2 − 2yiyj

)
Wij

=
∑

i

yi
2Dii +

∑

j

yj
2Djj − 2

j∑

i

yiyjWij

= 2Y TLY

where L = D − W is the Laplacian matrix. Notice that Wij

is symmetric and Dii =
∑
j

Wij is a diagonal matrix. D pro-

vides a natural measure on the vertices of the graph G. The
bigger the value Dii (corresponding to the ith vertex) is, the
more important the vertex is.

Given n points xi ∈ Rd, i = 1, 2, 3, . . . n. We construct such
an undirected graph G = (V,E), with the neighbors of x i are
its k-nearest neighbors. The steps of generating a Laplacian
matrix of the target data set are as follows.

Step 1: (calculating the adjacency matrix A) if xi and xj

are k-nearest neighbors, let Aij=1 as well as Aji=1, otherwise
Aij=0 and Aji=0.

Step 2: (calculating the weight matrix W ) one of the varia-
tions is the heat kernel:

Wij = e−
‖xi−xj‖

T (2)



where T ∈ R.
Step 3: (calculating the Laplacian matrix L) let Dii =∑

j

Wij , then L = D − W is the Laplacian matrix, which is

a symmetric, positive semidefinite matrix.
Once we have a Laplacian matrix, the prior is defined as

priorm =
1

j∑
i

(
ymi − ymj

)2
Wij

=
1

2(Y m)TLY m
(3)

where Y m is the output of the mth source classifier. In multi-
source domain cases, the different priors of each source show
the fitness between each source domain and the target domain.
The bigger the prior is, the better the corresponding source clas-
sifier is.

2.2. Likelihood

The likelihood we define here represents the probability of
the instance from the target domain occuring in the source do-
main, which can also refer to the similarity between the target
domain and the source domain. The higher the probability de-
scribed above is, the better the source classifier is. In this paper
we use the mean Euclidean distance of the K-nearest neigh-
bors of instance x (which is from the target domain, and these
K-nearest neighbors are from the source domain) to measure
this likelihood. For each instance xi in the target domain, the
likelihoods in the different source domains are different, which
give a dynamic classifying rule. The likelihood that the target
data point xi occurs in the source domain Sm is defined as

Likemi =
K∑ ‖ xi − xm

j ‖ (4)

where xm
j , which comes form the mth source, is among the

K-nearest neighbors of xi .
According to the Bayesian learning principle, the posterior

is proportional to the product of the prior and the likelihood:

postmi ∝ priormi × Likemi (5)

where postmi is the posterior of xi, based on the mth source
domain, priormi is the prior of xi based on the mth source do-
main, Likemi is the likelihood of xi based on the mth source
domain. The posteriors obtained here are used to weight the
source classifiers.

3. Experiments

In this section, we evaluate the proposed framework by ex-
periments on both synthetic and real-world data sets. Each
dataset has four domains. In the experiments, every domain
is treated as the target domain in turn while the other three as
source domains.

We use support vector machines (SVMs) [13], [14] for train-
ing and testing. For textual classification SVMs have been
found to perform better than other classification methods [13],
especially for the sentiment analysis [3]. The kernel we use is
RBF kernel. The parameters of SVMs are selected using cross
validation for each domain.

3.1. Synthetic data

−2 0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

18

Figure 1. Examples of synthetic data: ◦, �, +,
� stand for a, b, c, d, respectively. The smaller
ones (i.e. the bottom-left portion of each domain
in the figure) are “positive”, and the larger ones
(i.e. the top-right portion of each domain in the
figure) are “negative”. Each domain is treated
as the “target” in turn, while the other three as
the “sources”

The synthetic dataset consists of four different domains, each
of which is sampled from Gaussian distributions with different
covariances and means. Figure 1 shows 30 randomly selected
data points from each domain, and the different symbols stand
for different domains, says, “◦” for a, “�” for b, “+” for c,
and “�” for d. The smaller ones (i.e. the bottom-left portion of
each domain in Figure 1) are labeled as “positive”, while bigger



Figure 2. Classification accuracies (%) on syn-
thetic data

ones (i.e. the top-right portion of each domain in the Figure 1)
“negative”. The base classifiers are trained using SVMs with
RBF kernel. Figure 2 illustrates the classification accuracies
on these domains using BayesMSDA and the majority voting
algorithm. Each domain is treated as the “target” in turn, while
the other three as the “sources”.

It is shown in Figure 2 that on three domains (a, b, d),
BayesMSDA method outperforms the majority voting method,
while on the third one (c) both are equal. Significantly, accu-
racy of BayesMSDA is far higher than that of the voting method
on the fourth dataset (98.77% VS 69.69%). As four datasets are
randomly obtained, the results give us a confidence on the ef-
fectiveness of the proposed framework. In the next subsection,
we apply BayesMSDA on real-world data.

But on the other hand, as we can see, on the third dataset,
two results are equal. This phenomenon is acceptable since no
such an algorithm can fit the whole situations.

3.2. Real data

Given a piece of text, sentiment classification is a task to de-
termine whether the sentiment expressed by the text is positive
or negative. This problem has extended to many new domains,
such as stock message boards, congressional floor debates, and
blog reviews. Research results have been used to gauge market
reaction and summarize opinion from web pages, discussion
boards, and blogs.

We use the publicly available data sets 1 from Amazon web-

1http://www.cs.jhu.edu/∼mdredze/

TABLE 1. Accuracies of One-to-One Classifiers.
(T for Target Domain and S for Source Domain)

�����T
S

B(%) D(%) E(%) K(%)

B - 79.8 68.7 65.5
D 78.8 - 69.6 69.3
E 65 69.2 - 78.9
K 63.6 70.6 81.4 -

Figure 3. Classification accuracies (%) on real-
world data

site in our experiments [1], where there are many reviews for
several different types of products. We select four domains:
books, DVDs, kitchen & housewares, and electronics (B, D,
K, E for short, respectivelly). Each review consists of a rat-
ing (1-5 stars), a title, review text, and some other information
which are ignored. We make it a binary classification task by
binning reviews with 4-5 stars as “positive′′ and 1-2 stars as
“negative′′, while reviews with 3 stars are discarded.

As vocabularies of reviews for different products vary vastly,
classifiers trained on one domain may not fit a different domain
because some important lexical information may be missed.
This phenomenon motivates us to combine more than one
source domains to avoid the shortcomings.

Every domain contains 1000 positive reviews (P) and 1000
negative reviews (N). In our experiments we randomly choose
1000 out of these 2000 instances in each domain for computa-
tional convenience. So we have 1000× 4 instances in all. Each
instance is represented as a sparse feature vector. The feature
sets consist of the unigram that occur 5 to 1000 times in all the



reviews.
At the very beginning, one-to-one linear classifiers are firstly

trained without adaptation. These classifiers are regarded as
baselines. The baselines are trained using SVMs with RBF
kernel. Cross validations are employed once again to select the
parameters. Classification accuracies are reported in TABLE 1
where the first row represents the source domains.

On the adaptation stage, one of the four domains (B, D,
K, E) is treated as target domain in turn, while the others as
source domains. The one-to-one baselines are used here for
adaptation.

Figure 3 shows that BayesMSDA proposed in this paper
gives an encouraging result for binary classification. The
BayesMSDA beats the majority voting method on three do-
mains (B, E, K). Comparing TABLE 1 and Figure 3, we can
conclude that BayesMSDA is a tradeoff between the best and
the worst one-to-one linear classifiers. Because there are no la-
beled data at disposal in the target domain, we do not know in
advance which one-to-one classifier is the best one and which is
the worst. Choosing classifiers randomly is not accecptale. Our
method is a better choice to get a resonable result, because even
on domain D BayesMSDA outperforms the other two domains
(74.1% VS 69.6% & 69.3%) except the best baseline.

4. Conclusions and future work

In this paper, a new Bayesian framework for multi-source
domain adaptation (BayesMSDA) is proposed. We focus on
the case that there are lots of labeled data in source domains
but no labeled data are at disposal in the target domain. Our
experimental results show that BayesMSDA is a better choice
when no labeled data are available in the target domain.

It is also an interesting problem to consider the situation that
there are some labeled instances available in the target domain.
In the future, we will study this problem.
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