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Alternative Multi-View Maximum Entropy
Discrimination

Guoqing Chao, Shiliang Sun

Abstract—Maximum entropy discrimination (MED) is a gen-
eral framework for discriminative estimation based on maximum
entropy and maximum margin principles, and can produce
hard-margin support vector machines (SVMs) under some as-
sumptions. Recently, the multi-view version of MED multi-
view maximum entropy discrimination (MVMED) was proposed.
In this paper, we try to explore a more natural MVMED
framework by assuming two separate distributions p1(Θ1) over
the first view classifier parameter Θ1 and p2(Θ2) over the
second view classifier parameter Θ2. We name the new MVMED
framework as alternative MVMED (AMVMED) which enforces
the posteriors of two view margins to be equal. The proposed
AMVMED is more flexible than the existing MVMED, because
compared with MVMED which optimizes one relative entropy,
AMVMED assigns one relative entropy term to each of the two
views, thus incorporating a tradeoff between the two views. We
give the detailed solving procedure which can be divided into
two steps. The first step is solving our optimization problem
without considering the equal margin posteriors from two views,
and then in the second step we consider the equal posteriors.
Experimental results on multiple real-world data sets verify the
effectiveness of the AMVMED, and comparisons with MVMED
are also reported.

Index Terms—Multi-view learning, maximum entropy discrim-
ination, support vector machine, maximum margin.

I. INTRODUCTION

MAXIMUM entropy discrimination (MED) is an ef-
fective approach to discriminative training of model

parameters, which embodies the Bayesian integration of prior
information with maximum margin constraints on observa-
tions, and has achieved a success in a large number of machine
learning problems. It is a learning paradigm for combining the
discriminative learning and generative learning mechanisms.

MED was first presented by Jaakkola et al. [1] in 1999.
Instead of looking for a single classifier parameter Θ (the
classifier can be θTX + b for which Θ will be divided
into θ and b), MED considers a more general problem of
finding a distribution p(Θ) over the classifier parameter Θ.
The distribution p(Θ) can be obtained by seeking a joint
distribution p(Θ,γ) over the classifier (non-margin) parameter
Θ and margin parameter γ and then marginalizing out γ.
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MED regularizes p(Θ,γ) by minimizing its relative entropy
(also known as Kullback-Leibler divergence) towards some
prior target distribution p0(Θ,γ) under certain large margin
constraints. MED was applied successfully to classification
problems. It can even be well applied to the case when the
labels in the training set are uncertain or incomplete. By
introducing a selector variable into the discrimination function,
Jebara and Jaakkola [2] employed MED for feature selection.
Jebara [3] [4] further extended MED to the problem of multi-
task feature and kernel selection. On the theoretical side, Long
and Wu [5] established a mistake bound for an ensemble
method for MED and provided a refined bound that leads to a
nearly optimal algorithm for learning disjunctions based on the
maximum entropy principle. In recent years, Zhu and Xing [6]
proposed an MED Markov network which combines MED and
structure learning. By adopting a Laplace prior, Zhu et al. [7]
obtained a Laplace maximum margin Markov network which
is a sparse model suitable for learning complex structures. In
order to deal with the situation where latent variables exist,
Zhu et al. [8] further presented a partially observed MED
Markov network.

Multi-view learning (MVL) is the learning task that uses
multiple representations of the data. These views or rep-
resentations may be obtained from multiple feature sets or
different sources. MVL is a rapidly growing direction in
machine learning with well theoretical underpinnings and great
practical success. Its popularity is mainly motivated by the fact
that many real-world data have multiple views [9]–[14]. For
instance, a web page can be described by words appearing on
the web page itself and words underlying all links pointing
to the web page from other pages. In multimedia content
understanding, multimedia segments can be simultaneously
described by their video signals and audio signals. As another
example, in content-based web-image retrieval, an object can
be described by visual features from the image and at the
same time by the text surrounding the image. A noteworthy
fact for MVL is that when there are no natural multiple views,
using manually generated multiple views can still improve the
performance [15]. Ando and Zhang [16] presented a view
generating method which assumes that the views share the
same low dimensional manifold. The current MVL methods
can be divided into two major categories: co-training style
algorithms [9], [17]–[23] and co-regularization style algo-
rithms [24]–[32]. For a comprehensive survey on MVL, refer
to [33].

Inspired by the recent success of MVL, Farquhar et al. [34]
presented a two-view version of support vector machine
(SVM) called SVM-2K and inspected its Rademacher com-
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plexity. By making a weak conditional independence as-
sumption that multi-view observations and response variables
are independent given a set of latent variables, Chen et
al. [35] proposed a large margin approach for predicting
subspace learning for multi-view data, which is based on
an undirected latent space Markov network. With regard to
MED, recently a multi-view maximum entropy discrimina-
tion (MVMED) method was proposed [36]. Different from
existing MVL styles, MVMED exploits the multiple views in
a new fashion named margin consistency and compares an
instantiation with SVM-2K. MVMED employs a single joint
distribution p(Θ1,Θ2) over the first view classifier parameter
Θ1 and the second view classifier parameter Θ2 (the joint
distribution p(Θ1,Θ2) will be augmented as p(Θ1,Θ2,γ)
with the margin distribution p(γ)). In this paper, we propose a
more natural MVMED framework named alternative MVMED
(AMVMED), which utilizes two separate distributions p1(Θ1)
over Θ1 and p2(Θ2) over Θ2 (the distributions p1(Θ1)
and p2(Θ1) will be augmented as p1(Θ1,γ) and p2(Θ2,γ)
with the margin distributions p1(γ) and p2(γ)). Especially
MVMED optimizes one relative entropy, whereas AMVMED
assigns one relative entropy term to each of the two views,
hence incorporating a tradeoff between the two views. It is thus
very interesting to compare the new method and the previous
MVMED.

The main contributions of this paper include the following
two points:

1) We propose a new MVMED framework AMVMED,
which utilizes two separate Kullback-Leibler (KL) di-
vergences KL

(
p1(Θ1,γ) ‖ p0(Θ1,γ)

)
, KL

(
p2(Θ2,

γ) ‖ p0(Θ2,γ)
)

in the objective function. By balanc-
ing the two KL divergences, AMVMED demonstrates
its flexible property, which is intriguing and meaning-
ful.

2) We implement one approximate version of AMVMED
with a two-step procedure, and investigate how it
performs compared with its single-view versions and
MVMED.

The rest of this paper is organized as follows. Section II
briefly reviews MED. Section III describes the existing
MVMED. Section IV introduces our proposed AMVMED and
gives an instantiation. In Section V, we investigate the rela-
tionship of AMVMED to MVMED and SVM-2K. Section VI
reports experiments on multiple real-world data sets and makes
comparisons. Finally, we give conclusions and point out future
work directions in Section VII.

II. MAXIMUM ENTROPY DISCRIMINATION

MED is a general framework for discriminative estimation
which integrates the principles of the maximum entropy and
large margin. It is similar to Bayesian learning in the sense
that the posterior of model parameters requires to be inferred,
but it may not need the formulation of generative distributions
of data.

Consider a two-class problem where labels yt ∈ {+1,−1}
are assigned to the examples Xt, t = 1, ..., N . We need to
find one discriminant function L(Xt|Θ) whose sign is an

estimate of the label yt. The discriminant function L(Xt|Θ)
is specified by the parameter Θ. Common classifiers such
as SVM will seek a specific Θ value, but MED seeks for
a distribution p(Θ) over Θ such that the expected value of
the discriminant function under this distribution agrees with
the corresponding label. It is this characteristic that makes it
straightforward to augment the solution distributions to be joint
densities over parameters of several classifiers. In MED, the
distribution p(Θ) is augmented as p(Θ,γ) over the classifier
parameter Θ and margin parameter γ. MED regularizes the
distribution p(Θ,γ) by minimizing its relative entropy (KL
divergence) towards some prior target distribution p0(Θ,γ)
under the expected large margin constraints. Thus, MED
can be formulated as the following constrained optimization
problem

min
p(Θ,γ)

KL
(
p(Θ,γ) ‖ p0(Θ,γ)

)
s.t.
∫
p(Θ,γ)[ytL(Xt|Θ)− γt]dΘdγ ≥ 0

1 ≤ t ≤ N,

(1)

where γ = {γ1, . . . , γN} specifies the desired classification
margins which reflect the maximum margin principle as in
SVMs. In this framework, one joint distribution p(Θ,γ) over
the classifier parameter Θ and margin parameter γ is used.
p0(Θ,γ) is the assumed prior distribution that p(Θ,γ) tends
to be close to. By marginalizing out p(γ), the distribution
p(Θ) can be obtained to predict the label of a new exam-
ple. Instead of using one single discriminant function, MED
utilizes a convex combination of discriminant functions, i.e.,∫
p(Θ)L(Xt|Θ)dΘ to get model averaging for decisions.

As Domingos [37] proved, model averaging can improve
the classification performance by means of alleviating the
overfitting problem.

Since the KL divergence is convex with respect to p(Θ,γ),
and the large margin constraints are intrinsically linear, prob-
lem (1) is convex. The solution to MED can be given by the
usual maximum entropy method [1]

p(Θ,γ) =
1

Z(λ)
p0(Θ,γ)e

∑N
t=1 λt[ytL(Xt|Θ)−γt], (2)

where Z(λ) is the normalization constant and λ =
{λ1, ..., λN} defines a set of non-negative Lagrange multipli-
ers, one for each classification constraint. λ is set by finding
the unique maximum of the jointly concave objective function
J(λ) = −logZ(λ).

The solution is sparse with only a few non-zero Lagrange
multipliers, because many classification constraints become
irrelevant once the constraints are enforced for a small subset
of examples. Sparsity leads to immediate generalization guar-
antees expressed in terms of the number of non-zero Lagrange
multipliers [1].

III. MULTI-VIEW MAXIMUM ENTROPY DISCRIMINATION

Based on MED and MVL, Sun and Chao [36] presented
an MVMED approach exploiting multiple views in a style
named “margin consistency”. They enforced the margins from
two views to be identical, which means that the classification
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confidences from different views are deemed to match each
other exactly.

Given the multi-view data set {X1
t , X

2
t , yt} with N exam-

ples where X1
t and X2

t indicate the tth input from view 1 and
view 2, respectively, and yt ∈ {±1} denotes the corresponding
label. MVMED considers a joint distribution p(Θ1,Θ2) over
the first view classifier parameter Θ1 and the second view clas-
sifier parameter Θ2. It uses the augmented joint distribution
p(Θ1,Θ2,γ) with the common margin γ = {γ1, . . . , γN}.
The MVMED framework is formulated as



min
p(Θ1,Θ2,γ)

KL
(
p(Θ1,Θ2,γ) ‖ p0(Θ1,Θ2,γ)

)
s.t.
∫
p(Θ1,Θ2,γ)[ytL1(X1

t |Θ1)− γt]dΘ1dΘ2dγ ≥ 0∫
p(Θ1,Θ2,γ)[ytL2(X2

t |Θ2)− γt]dΘ1dΘ2dγ ≥ 0

1 ≤ t ≤ N,
(3)

where L1(X1
t |Θ1) and L2(X2

t |Θ2) are discriminant functions
from view 1 and view 2, respectively. The expected large
margin constraints are enforced on two views.

The solution to the MVMED problem relies on the follow-
ing theorem [1].

Theorem 1 The solution to the MVMED problem has the
following general form

p(Θ1,Θ2,γ) =
1

Z(λ1,λ2)
p0(Θ1,Θ2,γ)

e

(∑N
t=1 λ1t[ytL1(X

1
t |Θ1)−γt]+

∑N
t=1 λ2t[ytL2(X

2
t |Θ2)−γt]

)
,

(4)

where Z(λ1,λ2) is the normalization constant and λ1 =
{λ11, ..., λ1N}, λ2 = {λ21, ..., λ2N} define two sets of non-
negative Lagrange multipliers, one for each classification
constraint. λ1 and λ2 are set by finding the unique maximum
of the following jointly concave objective function

J(λ1,λ2) = −logZ(λ1,λ2). (5)

After λ1 and λ2 are obtained, the distribution p(Θ1,Θ2,γ)
will be specified accordingly. By marginalizing out γ, we will
get the distribution p(Θ1,Θ2) to further predict the label of
a new example (X1, X2) from view 1 and view 2 with the
following two formulae

ŷ1 = sign
(∫

p(Θ1,Θ2)L1(X1|Θ1)dΘ1dΘ2

)
, (6)

ŷ2 = sign
(∫

p(Θ1,Θ2)L2(X2|Θ2)dΘ1dΘ2

)
. (7)

The prediction formula can also be made by using the two
views together

ŷ = sign
(1

2

∫
p(Θ1,Θ2)

(
L1(X1|Θ1) + L2(X2|Θ2)

)
dΘ1dΘ2

)
.

(8)

IV. ALTERNATIVE MULTI-VIEW MAXIMUM ENTROPY
DISCRIMINATION

The settings are the same with MVMED. However, different
from MVMED, AMVMED considers two separate distribu-
tions p1(Θ1) over the first view classifier parameter Θ1 and
p2(Θ2) over the second view classifier parameter Θ2. Similar
to MVMED, AMVMED augments them with the margin
parameter γ. Thus we utilize two augmented distributions
p1(Θ1,γ) and p2(Θ2,γ) in the new framework. Moreover,
we enforce the margins of two views to be the same and at
the same time make the posteriors of the two view margins be
equal, achieving the purpose that the classification confidences
from different views are deemed to match each other. Our
AMVMED framework is formulated as follows:

min
p1(Θ1,γ), p2(Θ2,γ)

ρKL
(
p1(Θ1,γ) ‖ p0(Θ1,γ)

)
+ (1− ρ)KL

(
p2(Θ2,γ) ‖ p0(Θ2,γ)

)
s.t.

∫
p1(Θ1,γ)[ytL1(X1

t |Θ1)− γt]dΘ1dγ ≥ 0∫
p2(Θ2,γ)[ytL2(X2

t |Θ2)− γt]dΘ2dγ ≥ 0∫
p1(Θ1,γ)dΘ1 =

∫
p2(Θ2,γ)dΘ2

1 ≤ t ≤ N.

(9)

The parameter ρ in the objective function indicates the
tradeoff of the two KL terms (also known as two view relative
entropies). It can be tuned to emphasize one view against the
other. The constraints consist of two view maximum margin
constraints and one equal posterior constraint for two views.
It is noted that ρ ∈ [0, 1]. If ρ = 0 AMVMED is equivalent
to single-view MED on view 2, and if ρ = 1 it degenerates to
single-view MED on view 1.

A. The Solution to AMVMED

With respect to how to solve the above optimization prob-
lem, we propose to use a two-step procedure. The first step is
to solve the problem without considering the equal posteriors
of the two view margins, and the second step is to make the
posteriors of the two view margins the same. Otherwise, the
optimization problem will be tricky to solve.

In other words, we will consider the case that the optimiza-
tion can be divided into the above two steps. The other case
is an open problem that will be our future research direction.
The specific implementations are detailed below. Firstly, we
will solve the following problem,

min
p1(Θ1,γ), p2(Θ2,γ)

ρKL
(
p1(Θ1,γ) ‖ p0(Θ1,γ)

)
+ (1− ρ)KL

(
p2(Θ2,γ) ‖ p0(Θ2,γ)

)
s.t.
∫
p1(Θ1,γ)[ytL1(X1

t |Θ1)− γt]dΘ1dγ ≥ 0∫
p2(Θ2,γ)[ytL2(X2

t |Θ2)− γt]dΘ2dγ ≥ 0

1 ≤ t ≤ N.

(10)
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The Lagrangian of the optimization problem is

L = ρ

∫
p1(Θ1,γ)log

p1(Θ1,γ)

p0(Θ1,γ)
dΘ1dγ

+ (1− ρ)

∫
p2(Θ2,γ)log

p2(Θ2,γ)

p0(Θ2,γ)
dΘ2dγ

−
N∑
t=1

ρ

∫
p1(Θ1,γ)λ1t[ytL1(X1

t |Θ1)− γt]dΘ1dγ

−
N∑
t=1

(1− ρ)

∫
p2(Θ2,γ)λ2t[ytL2(X2

t |Θ2)− γt]dΘ2dγ,

(11)
where λ1 = {λ11, . . . , λ1N} and λ2 = {λ21, . . . , λ2N} are
the non-negative Lagrange multipliers for view 1 and view 2,
respectively. Making the partial derivatives of L to p1(Θ1,γ)
and p2(Θ2,γ) be zero, we get the solutions to (10) as follows:

p1(Θ1,γ) =
1

Z1(λ1)
p0(Θ1,γ)e

∑N
t=1 λ1t[ytL1(X

1
t |Θ1)−γt],

(12)

p2(Θ2,γ) =
1

Z2(λ2)
p0(Θ2,γ)e

∑N
t=1 λ2t[ytL2(X

2
t |Θ2)−γt],

(13)
where Z1(λ1) and Z2(λ2) are the normalization constants.

Accordingly,

Z1(λ1) =

∫
p0(Θ1,γ)e

∑N
t=1 λ1t[ytL1(X

1
t |Θ1)−γt]dΘ1dγ,

(14)

Z2(λ2) =

∫
p0(Θ2,γ)e

∑N
t=1 λ2t[ytL2(X

2
t |Θ2)−γt]dΘ2dγ.

(15)
Secondly, we will enforce the posteriors of the two view
margins to be equal∫

p1(Θ1,γ)dΘ1 =

∫
p2(Θ2,γ)dΘ2. (16)

Herein, we suppose

p0(Θ1,γ) = p0(Θ1)p0(γ) = p0(θ1)p0(b1)p0(γ), (17)

p0(Θ2,γ) = p0(Θ2)p0(γ) = p0(θ2)p0(b2)p0(γ), (18)

where p0(b1), p0(b2) approach the non-informative Gaussian
prior, p0(θ1), p0(θ2) are both Gaussian distributed with mean
0 and identity covariance I , and the prior over the margin
constraints γ is assumed to be fully factored

p0(γ) =

N∏
t=1

p0(γt), (19)

with p0(γt) = ce−c(1−γt), and γt ≤ 1. In addition, we will
use the usual linear classifier assumptions, that is,

L1(X1
t |Θ1) = θ1

TX1
t + b1 (20)

and
L2(X2

t |Θ2) = θ2
TX2

t + b2. (21)

Theorem 2 By making the above assumptions, we can obtain
that λ1t = λ2t, ∀t ∈ {1, ..., N}.

Proof: By substituting (12) and (13) into (16), we get∫
1

Z1(λ1)
p0(Θ1,γ)e

∑N
t=1 λ1t[ytL1(X

1
t |Θ1)−γt]dΘ1 =∫

1

Z2(λ2)
p0(Θ2,γ)e

∑N
t=1 λ2t[ytL2(X

2
t |Θ2)−γt]dΘ2.

(22)

Then substituting (17) and (20) into the left hand side of
equation (22), and substituting (18) and (21) into the right
hand side, results in∫

1

Z1(λ1)
p0(θ1)p0(b1)p0(γ)e

∑N
t=1 λ1t[yt(θ1

TX1
t+b1)−γt]dΘ1 =∫

1

Z2(λ2)
p0(θ2)p0(b2)p0(γ)e

∑N
t=1 λ2t[yt(θ2

TX2
t+b2)−γt]dΘ2.

(23)
Integrating the probability distributions p0(θ1), p0(θ2), p0(b1)
and p0(b2), and then putting the variables irrelevant to γ
into C(λ1) and D(λ2) (C(λ1) and D(λ2) can be consid-
ered as the normalization constants of p0(γ)e−

∑N
t=1 λ1tγt and

p0(γ)e−
∑N
t=1 λ2tγt ), we will obtain

p0(γ)e−
∑N
t=1 λ1tγt

C(λ1)
=
p0(γ)e−

∑N
t=1 λ2tγt

D(λ2)
. (24)

Cancelling out the common item p0(γ) on both sides of
equation (24), and making some simple transformations, we
get the following equation

e−
∑N
t=1(λ1t−λ2t)γt =

C(λ1)

D(λ2)
. (25)

Since C(λ1) and D(λ2) are irrelevant to γ, we reach the
conclusion that λ1t = λ2t, ∀t = 1, ..., N .

Let λ1 = λ2 = λ. Substituting (12) and (13) into (11)
results in the Lagrange dual objective function that needs to
be maximized

J(λ1,λ2) = −ρlogZ1(λ1)− (1− ρ)logZ2(λ2)

= −ρlogZ1(λ)− (1− ρ)logZ2(λ).
(26)

After λ is obtained, the following formulae are used to
predict the label of a new example (X1, X2) from view 1
and view 2, respectively and collectively

ŷ1 = sign
(∫

p1(Θ1)L1(X1|Θ1)dΘ1

)
, (27)

ŷ2 = sign
(∫

p2(Θ2)L2(X2|Θ2)dΘ2

)
, (28)

ŷ = sign
(
ρ

∫
p1(Θ1)L1(X1|Θ1)dΘ1

+ (1− ρ)

∫
p2(Θ2)L2(X2|Θ2)dΘ2

)
.

(29)

B. Instantiation of AMVMED and MVMED

The priors p0(Θ1,γ) and p0(Θ2,γ) play an important role
in our AMVMED framework as shown in (12) and (13).
Now we instantiate our AMVMED with two concrete prior
formulations of (17) and (18), and the prior over the margin
constraints γ is assumed to be fully factored as (19). A penalty
is incurred for margins smaller than 1−1/c (the prior mean of
γt) while vanishes otherwise. In fact, this choice of the margin
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prior corresponds to the use of slack variables and additive
penalties in SVMs. It allows some slackness to handle the
non-separable case, which is analogous to soft-margin SVMs.
Restricted to the margin prior, the slackness is less flexible
than soft-margin SVMs, i.e., irrespective of the c value chosen,
40% of the probability mass lies to the left of the mean value
and the remaining 60% lies to the right. The ratio 40/60 will
regularize the slackness that is allowed. But the margin prior
indeed provides an approach to deal with the non-separable
case. After making the prior assumptions, (14) becomes

Z1(λ1) =

∫
N (θ1|0, I)N (b1|0,σ1

2)

N∏
t=1

ce−c(1−γt)

e

(∑N
t=1 λ1t[ytL1(X

1
t |Θ1)−γt]

)
dΘ1dγ

= e

(
1
2

∑N
t,τ=1 λ1tλ1τytyτX

1
t
T
X1
τ+

σ1
2

2

(∑N
t=1 λ1tyt

)2)
N∏
t=1

( c

c− λ1t
e−λ1t

)
,

(30)
and (15) becomes

Z2(λ2) =

∫
N (θ2|0, I)N (b2|0,σ2

2)

N∏
t=1

ce−c(1−γt)

e

(∑N
t=1 λ2t[ytL2(X

2
t |Θ2)−γt]

)
dΘ2dγ

= e

(
1
2

∑N
t,τ=1 λ2tλ2τytyτX

2
t
T
X2
τ+

σ2
2

2

(∑N
t=1 λ2tyt

)2)
N∏
t=1

( c

c− λ2t
e−λ2t

)
,

(31)
where we have used (20) and (21). We substitute (30), (31)
into (26), and thus get

J(λ1,λ2) = ρ
( N∑
t=1

[
λ1t + log(1− λ1t

c
)
])

− 1

2
ρ
( N∑
t,τ=1

λ1tλ1τytyτX
1
t
T
X1
τ

)
− σ

2
1

2
ρ
( N∑
t=1

λ1tyt
)2

+ (1− ρ)
( N∑
t=1

[
λ2t + log(1− λ2t

c
)
])

− 1

2
(1− ρ)

( N∑
t,τ=1

λ2tλ2τytyτX
2
t
T
X2
τ

)
− σ

2
2

2
(1− ρ)

( N∑
t=1

λ2tyt
)2
.

(32)

Here, λ1 ≥ 0, λ2 ≥ 0. Since σ1
2 → ∞ and σ2

2 → ∞
correspond to using non-informative priors on the bias terms
b1 and b2, the above dual objective function requires the
constraints

∑N
t=1 λ1tyt = 0 and

∑N
t=1 λ2tyt = 0. Note that

λ1 = λ2 = λ. Thus we have the following dual optimization

problem

max
λ

N∑
t=1

(
λt + log

(
1− λt

c

))
− 1

2
ρ

N∑
t,τ=1

λtλτytyτX
1
t
T
X1
τ

− 1

2
(1− ρ)

N∑
t,τ=1

λtλτytyτX
2
t
T
X2
τ

s.t. λ ≥ 0
N∑
t=1

λtyt = 0.

(33)

The Lagrange multipliers λ is recovered by solving the convex
optimization problem (33), whose non-zero values indicate
support vectors. Xv

t
TXv

τ (v = 1, 2) can be replaced with
κ(Xv

t , X
v
τ ) (v = 1, 2) so that a nonlinear classifier can be

obtained by using some kernel function such as Gaussian and
polynomial.

The time complexity of AMVMED is O(N3), which is
about the same with SVMs, MED and MVMED. For large-
scale data, some specific speedup strategies are needed to make
AMVMED scalable.

Substituting equations (17) (19) (20) into equation (12), we
will get the solution distribution p1(Θ1,γ), from which we
have the following expected quantities

θ̂1 =

∫
p1(θ1)θ1dθ1 =

N∑
t=1

λ1tytX
1
t =

N∑
t=1

λtytX
1
t , (34)

γ̂t =

∫
p1(γ)γtdγ = 1− 1

c− λt
. (35)

The prediction formula on a new example (X1, X2) from
equation (27) can be given as

ŷ1 = sign
(
θ̂T1 X

1 + b̂1

)
. (36)

Putting equation (34) into (36), the prediction rule using view
1 is given as

ŷ1 = sign
( N∑
t=1

λtytX
1
t
T
X1 + b̂1

)
. (37)

Similarly, the prediction rule using view 2 is given as

ŷ2 = sign
( N∑
t=1

λtytX
2
t
T
X2 + b̂2

)
. (38)

If classifiers from the two views are combined together to
make predictions, the prediction rule can be given as

ŷ = sign
(
ρ
( N∑
t=1

λtytX
1
t
T
X1 + b̂1

)
+ (1− ρ)

( N∑
t=1

λtytX
2
t
T
X2 + b̂2

))
.

(39)

Next, we will give the procedure on how to solve b̂1. b̂2 can
be obtained similarly.
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For the approximate AMVMED primal problem (10), the
Karush-Kuhn-Tucker (KKT) conditions can be stated as:

∂L

p1(Θ1,γ)
= 0, (40)

∂L

p2(Θ2,γ)
= 0, (41)

∫
p1(Θ1,γ)[ytL1(X1

t |Θ1)− γt]dΘ1dγ ≥ 0, t = 1, ..., N,

(42)

∫
p2(Θ2,γ)[ytL2(X2

t |Θ2)− γt]dΘ2dγ ≥ 0, t = 1, ..., N,

(43)

λ1t ≥ 0, t = 1, ..., N, (44)

λ2t ≥ 0, t = 1, ..., N, (45)

∫
p1(Θ1,γ)λ1t[ytL1(X1

t |Θ1)−γt]dΘ1dγ ≥ 0, t = 1, ..., N,

(46)

∫
p2(Θ2,γ)λ2t[ytL2(X2

t |Θ2)−γt]dΘ2dγ ≥ 0, t = 1, ..., N.

(47)
For our approximate AMVMED problem, since its objective

function is convex and the constraints give a convex feasible
region, the KKT conditions will be necessary and sufficient
for p1(Θ1), p2(Θ2) to be a solution [38]. Now, we focus on
how to solve b̂1 and b̂2. We can get b̂1 with equation (46),
the KKT “complementarity” condition, by choosing any t for
which λ1t 6= 0. From (46), we can get

ys(θ̂
T
1 X

1
s + b̂1)− γ̂t = 0, (48)

from which we obtain

b̂1 =
γ̂t
ys
− θ̂T1 X1

s . (49)

Note that ys and X1
s denote the label and view 1 feature

of the data corresponding to a non-zero λt in (48). Putting
equations (34) and (35) into (49), we will get

b̂1 =
1− 1

c−λt
ys

−
N∑
t=1

λtytX
1
t
T
X1
s . (50)

Similarly, we will obtain b̂2 as

b̂2 =
1− 1

c−λt
ys

−
N∑
t=1

λtytX
2
t
T
X2
s . (51)

Here, we used the result λt = λ1t = λ2t.
In order to better understand the procedure of the

AMVMED instantiation, we give the algorithm of AMVMED
in Algorithm 1.

Algorithm 1 AMVMED
Input:
Data sets {X1

t , X
2
t , yt}, sample size N , parameter c, tradeoff parameter ρ.

Initialize λ.
Solve the following optimization problem

max
λ

N∑
t=1

(
λt + log

(
1−

λt

c

))

−
1

2
ρ

N∑
t,τ=1

λtλτytyτX
1
t
T
X1
τ

−
1

2
(1− ρ)

N∑
t,τ=1

λtλτytyτX
2
t
T
X2
τ

s.t. λ ≥ 0

N∑
t=1

λtyt = 0.

Once the Lagrange multiplier λ is obtained, use any of the formulae (37),
(38) and (39) to make prediction for a new example.

Correspondingly, the instantiation of MVMED is given
below. Suppose

p0(Θ1,Θ2,γ) = p0(Θ1)p0(Θ2)p0(γ)

= p0(θ1)p0(b1)p0(θ2)p0(b2)p0(γ),
(52)

where p0(b1), p0(b2) approach a non-informative Gaussian
prior, p0(θ1), p0(θ2) are both Gaussian distributed with mean
0 and identity covariance I , and the prior over the margin
constraints γ is assumed to be fully factored as (19). Then the
normalization constant Z(λ1,λ2) in (4) can be obtained as

Z(λ1,λ2) =

∫
p0(Θ1,Θ2,γ)

e

(∑N
t=1 λ1t

[
ytL1(X

1
t |Θ1)−γt

]
+
∑N
t=1 λ2t

[
ytL2(X

2
t |Θ2)−γt

])
dΘ1dΘ2dγ

= e

(
1
2

∑N
t,τ=1 λ1,tλ1,τytyτX

1
t
T
X1
τ+

1
2

∑N
t,τ=1 λ2,tλ2,τytyτX

2
t
T
X2
τ

)
e

(
σ1

2

2

(∑N
t=1 λ1tyt

)2
+

σ2
2

2

(∑N
t=1 λ2tyt

)2)
N∏
t=1

( c

c− λ1t − λ2t
e−λ1t−λ2t

)
.

(53)
By maximizing (5), we have the following dual optimization
problem

max
λ1,λ2

N∑
t=1

(
λ1t + λ2t + log

(
1− λ1t + λ2t

c

))
− 1

2

N∑
t,τ=1

λ1tλ1τytyτX
1
t
T
X1
τ

− 1

2

N∑
t,τ=1

λ2tλ2τytyτX
2
t
T
X2
τ

s.t. λ1 ≥ 0,λ2 ≥ 0
N∑
t=1

λ1tyt = 0,

N∑
t=1

λ2tyt = 0.

(54)
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After obtaining the Lagrange multipliers λ1 and λ2, the
prediction rules for view 1 and view 2 on a new example
(X1, X2) are respectively

ŷ1 = sign
( N∑
t=1

λ1tytX
1
t
T
X1 + b̂1

)
, (55)

ŷ2 = sign
( N∑
t=1

λ2tytX
2
t
T
X2 + b̂2

)
, (56)

where b̂1 and b̂2 are given by the KKT conditions using support
vectors. If classifiers from two views are combined together to
make predictions, the prediction rule can be given analogously
as (8).

V. RELATIONSHIP TO MVMED AND SVM-2K

AMVMED has a great relevance to other classification
methods such as MVMED and SVM-2K. We will investigate
the relationship of AMVMED to MVMED and SVM-2K in
this section. To facilitate the comparison and analysis, we put
the dual formula (33) of AMVMED and the dual formula (54)
of MVMED together as follows:

max
λ

N∑
t=1

(
λt + log

(
1− λt

c

))
− 1

2
ρ

N∑
t,τ=1

λtλτytyτX
1
t
T
X1
τ

− 1

2
(1− ρ)

N∑
t,τ=1

λtλτytyτX
2
t
T
X2
τ

s.t. λ ≥ 0
N∑
t=1

λtyt = 0.

(57)



max
λ1,λ2

N∑
t=1

(
λ1t + λ2t + log

(
1− λ1t + λ2t

c

))
− 1

2

N∑
t,τ=1

λ1tλ1τytyτX
1
t
T
X1
τ

− 1

2

N∑
t,τ=1

λ2tλ2τytyτX
2
t
T
X2
τ

s.t. λ1 ≥ 0,λ2 ≥ 0
N∑
t=1

λ1tyt = 0,

N∑
t=1

λ2tyt = 0.

(58)

By comparison, we can see that when ρ = 0.5 in (57)
and λ1 = λ2 in (58), the two optimization problems are
somewhat alike. In addition, the ρ in (57) makes AMVMED
more flexible, but compared to (58), there is only one λ in (57).

In order to analyze the relationship of MVMED and SVM-
2K, we rewrite (58) as (59) by replacing X1

t
T
X1
τ , X2

t
T
X2
τ

with Mercer kernel functions κ(X1
t , X

1
τ ), κ(X2

t , X
2
τ ) and

setting g1,t = λ1,tyt, g2,t = λ2,tyt.



max
λ1,λ2

N∑
t=1

(
λ1,t + λ2,t + log

(
1− λ1,t + λ2,t

c

))
− 1

2

N∑
t,τ=1

g1,tg1,τκ(X1
t , X

1
τ )

− 1

2

N∑
t,τ=1

g2,tg2,τκ(X2
t , X

2
τ )

s.t. g1,t = λ1,tyt, g2,t = λ2,tyt, 1 ≤ t ≤ N
N∑
t=1

g1,t = 0 =

N∑
t=1

g2,t

λ1 ≥ 0,λ2 ≥ 0.

(59)

Following the paper [34], we can write out the original SVM-
2K optimization problem as



min
wA,bA,wB ,bB

1

2
‖wA‖2 +

1

2
‖wB‖2 + CA

N∑
t=1

ξAi

+ CB
N∑
t=1

ξBi +D

N∑
t=1

ηi

s.t. |〈wA,ΦA(xi)〉+ bA − 〈wB ,ΦB(xi)〉 − bB | ≤ ηi + ε

yi(〈wA,ΦA(xi)〉+ bA) ≥ 1− ξAi
yi(〈wB ,ΦB(xi)〉+ bB) ≥ 1− ξBi
ξAi ≥ 0, ξBi ≥ 0, ηi ≥ 0

1 ≤ i ≤ N,
(60)

where wA, bA are the weight and threshold of the first view
SVM, and wB , bB are the weight and threshold of the second
view SVM. |〈wA,ΦA(xi)〉+ bA − 〈wB ,ΦB(xi)〉 − bB | ≤
ηi + ε is the ε-insensitive 1-norm constraint where slack
variables are used to measure the amount of how points fail
to meet the ε similarity.

Applying the usual Lagrange multiplier techniques, we get
the following dual problem:

max
λ1,λ2,β+,β−

N∑
t=1

(λ1,t + λ2,t)

− 1

2

N∑
t,τ=1

g1,tg1,τκ(X1
t , X

1
τ )

− 1

2

N∑
t,τ=1

g2,tg2,τκ(X2
t , X

2
τ )

s.t. g1,t = λ1,tyt − β+
t + β−t

g2,t = λ2,tyt + β+
t − β−t

N∑
t=1

g1,t = 0 =

N∑
t=1

g2,t

0 ≤ λ1,t ≤ CA, 0 ≤ λ2,t ≤ CB

0 ≤ β+/−
t , β+

t + β−t ≤ D
1 ≤ t ≤ N.

(61)
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Comparing (59) with (61), we can find that (59) has an
additional term log

(
1 − λ1,t+λ2,t

c

)
in the objective function,

while (61) has additional β+
t − β−t in g1,t and g2,t. In fact,

they both play the role of combining two views but in different
forms. If we set c → ∞ in (59) and set β+

t = β−t = 0,
CA → ∞, CB → ∞ in (61), the two formulae will be
exactly identical. On the one hand, MVMED is restricted
by some prior assumptions; on the other hand, MVMED
is flexible by obtaining different instantiations with different
prior specifications.

In order to analyze the relationship of AMVMED and SVM-
2K, we rewrite (57) as (62) by replacing X1

t
T
X1
τ , X2

t
T
X2
τ

with Mercer kernel functions κ(X1
t , X

1
τ ), κ(X2

t , X
2
τ ) and

setting g1,t = λ1,tyt, g2,t = λ2,tyt. Using the conclusion
λ1,t = λ2,t = λt, we will obtain

max
λ

N∑
t=1

(
λt + log

(
1− λt

c

))
− 1

2
ρ

N∑
t,τ=1

gtgτκ(X1
t , X

1
τ )

− 1

2
(1− ρ)

N∑
t,τ=1

gtgτκ(X2
t , X

2
τ )

s.t. gt = λtyt, gτ = λτyτ , 1 ≤ t ≤ N
λ ≥ 0
N∑
t=1

λtyt = 0.

(62)

Comparing (62) with (61), we can see that they are very
different in the formulation. But if we set ρ = 0.5, c → ∞
in (62) and set λ1,t = λ2,t, β+

t = β−t = 0, CA → ∞,
CB → ∞ in (61), the two formulae will be somewhat alike.
Although AMVMED is restricted by some prior assumptions
as MVMED, AMVMED is more flexible than SVM-2K. It
can tune the parameter ρ to balance the two views and obtain
different instantiations with different prior specifications.

VI. EXPERIMENTS

We performed experiments with our proposed AMVMED
on three real-world data sets: web-page classification, iono-
sphere classification and advertisement classification.

For all the experiments, we explore multiple values of the
parameters ρ and c for AMVMED and multiple values of
parameter c for single-view MED1, single-view MED2, and
MVMED. Given a division of the training and test set, we
use one half of the test set as the validation set for parameter
selection and the other half for test. The values of ρ and c
are determined on the validation set and then tested on the
unseen test set. All the experiments are run for ten times. The
average accuracies obtained by ten random divisions of the
training and test sets are reported. In addition, we initialize
λ = 0.5 × IN throughout the experiments and use the linear
kernel for the instantiations of AMVMED and MVMED.

The MVL methods MVMED and SVM-2K are also used
for comparison. Two single-view methods corresponding to

AMVMED named single-view MED1 and single-view MED2
are employed to compare with our AMVMED. In addition, the
ρ for AMVMED is chosen from {0, 0.1, 0.2, ..., 0.9, 1.0}. For
MVMED, AMVMED and SVM-2K, besides the prediction
functions sign(f1) and sign(f2) from the separate views, we
also consider the hybrid prediction function sign

(
(f1 +f2)/2

)
for MVMED and SVM-2K, sign

(
ρf1 + (1 − ρ)f2

)
for

AMVMED, and the one with the highest validation accuracy
will be selected.

We report the average accuracies and standard deviations of
the above five methods on three data sets with half of the data
as the training set in Table I. Then we decrease and increase
the training set sizes gradually, and show their performances
in Fig. 1, Fig. 2 and Fig. 3. Moreover, we report the sensitivity
of parameter ρ on the three data sets in Fig. 5.

To make the comparison of three multi-view multi-
hyperplane learning methods SVM-2K, AMVMED and
MVMED more sufficient, we perform an additional experi-
ment on AMVMED vs. MVMED and multi-hyperplane SVM-
2K. The experimental results are shown in Table II with
classification accuracies and standard deviations Fig. 4 using
the receiver operating characteristic (ROC) curve, and Table III
with area under roc curve (AUC) values.

A. Web-Page Classification

The data set for this experiment consists of 1051 two-view
web pages collected from computer science department web
sites at four universities: Cornell University, University of
Washington, University of Wisconsin, and University of Texas.
There are 230 course pages and 821 non-course pages. The
two natural views are words occurring in a web page and
words appearing in the links pointing to that page [9] [24].
The dimensions of the two views are 2333 and 87, respectively.
For convenience and effectiveness, we reduce the dimension
of view 1 from 2333 to 500 via principal component analysis
(PCA). The parameters CA and CB in SVM-2K and c
in AMVMED and MVMED are independently chosen by
validation from {2−5, 2−4, ..., 25}.

Clearly, Table I indicates that AMVMED and MVMED are
superior to single-view MED1, single-view MED2 and SVM-
2K. Fig. 1 with varying training sizes also shows that our
AMVMED consistently outperforms the other three methods
except MVMED. We can also find that SVM-2K does not
perform well at the first half part and gradually behaves
better than single-view MED1 and single-view MED2 at
last. Moreover, our AMVMED performs competitively with
MVMED especially with more training data.

B. Ionosphere Classification

The ionosphere data set which origins from UCI,1 was
collected by a system in Goose Bay, Labrador. This system
consists of a phased array of 16 high-frequency antennas
with a total transmitted power on the order of 6.4 kilowatts.
The targets were free electrons in the ionosphere. Good radar
returns are those showing evidence of some type of structure

1Data available at http://archive.ics.uci.edu/ml/.
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TABLE I
THE AVERAGE CLASSIFICATION ACCURACIES AND STANDARD DEVIATIONS (%) OF FIVE METHODS ON THREE DATA SETS.

Data single-view MED1 single-view MED2 SVM-2K MVMED AMVMED
Web-page 90.72±1.57 92.47±1.59 90.42±2.44 92.93±2.07 92.74±1.46
Ionosphere 92.95±1.29 100±0 98.19±1.27 100±0 100±0

Advertisement 93.47±1.03 93.20±1.83 93.57±1.73 94.60±0.81 94.47±1.30
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Fig. 1. Comparison of five methods on web-page data with increasing training
sizes.

in the ionosphere. Bad returns are those that do not and their
signals pass through the ionosphere. The data set includes 351
instances in total which are divided into 225 “good” (positive)
instances and 126 “bad” (negative) instances. This data set has
only one view, but we generate the other view through PCA.
Now, the two views have 35 and 24 dimensions, respectively.
The parameters CA and CB in SVM-2K and c in AMVMED
and MVMED are independently chosen by validation from
{21, 22, ..., 230}.

The superiority of MVMED, AMVMED and single-view
MED2 over other methods is demonstrated in Table I and
Fig. 2. In addition, Table I and Fig. 2 both show that SVM-
2K performs better than single-view MED1 but worse than
single-view MED2.

C. Advertisement Classification

The data set consists of 3279 examples including 459 ads
images (positive examples) and 2820 non-ads images (negative
examples). The first view describes the image itself (words
in the image’s URL, alt text and caption), while the other
view contains all other features (words from the URLs of
the pages that contain the image and the image points to).
The dimensions of two views are 587 and 967, respectively.
Here, we randomly select 600 examples therein to form the
used data set. The parameters CA and CB in SVM-2K and
c in AMVMED and MVMED are independently chosen by
validation from {21, 22, ..., 215}.

From Table I and Fig. 3, we can find that our method
AMVMED performs better than all the other methods except
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Fig. 2. Comparison of five methods on ionosphere data with increasing
training sizes.

MVMED. We can also find that single-view MED1 and single-
view MED2 perform worse than SVM-2K, MVMED and
AMVMED.
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Fig. 3. Comparison of five methods on advertisement data with increasing
training sizes.

D. AMVMED vs. MVMED and Multi-Hyperplane SVM-2K

We know that MED-based methods produce many classi-
fiers (hyperplanes) and then make posterior weighted deci-
sions. To make their comparisons with SVM-2K complete, we
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TABLE II
THE AVERAGE CLASSIFICATION ACCURACIES AND STANDARD

DEVIATIONS (%) OF FOUR MULTI-VIEW MULTI-HYPERPLANE METHODS
ON THREE DATA SETS.

Data MVMED AMVMED aveSVM-2K voteSVM-2K
Web-page 92.93±2.07 92.74±1.46 86.03±1.74 88.38±0
Ionosphere 100±0 100±0 100±0 100±0

Advertisement 94.60±0.81 94.47±1.30 93.87±1.68 92.00±0

TABLE III
THE AUC VALUES (%) OF THREE MULTI-VIEW MULTI-HYPERPLANE

METHODS ON THREE DATA SETS.

Data MVMED AMVMED aveSVM-2K
Web-page 97.23 97.93 93.21
Ionosphere 99.92 99.92 99.51

Advertisement 95.52 95.80 92.25

add the experiment comparison with multi-hyperplane SVM-
2K which produces many SVM-2K classifiers and then makes
a collective decision. With half of each data set as the training
set (T data points), when performing validation, we take each
subset of T−1 points of the training set to train SVM-2K.
By this we obtain T SVM-2Ks and at the same time with the
T training points we train one AMVMED or MVMED. With
T SVM-2Ks, if we make decisions for a test data point by
inputting their average discriminant value into sign(·) function,
this SVM-2K is named as aveSVM-2K; if the test data point is
classified by voting among the decisions of these SVM-2Ks,
we name it as voteSVM-2K.

The experimental settings are the same with the above
experiments. We first report the accuracies and standard devia-
tions of AMVMED, MVMED and multi-hyperplane SVM-2K
(both aveSVM-2K and voteSVM-2K) on all the three data sets
in Table II. For AMVMED, MVMED and aveSVM-2K, we
also show their performance with the ROC curve in Fig. 4
and with the AUC value in Table III. As we have mentioned,
we produce many SVM-2Ks by the independent validation
procedure, and then we average their predictions. With the
average prediction, we create its ROC curve.

From Table II and Fig. 4, we can see that both AMVMED
and MVMED perform better than multi-hyperplane SVM-
2K on each data set. Table II demonstrates that AMVMED
performs comparable with MVMED, while Fig. 4 and Table III
show that for the AUC measure, AMVMED performs a little
better than or as well as MVMED and they both perform better
than multi-hyperplane SVM-2K.

This experiment shows that for many-hyperplanes-to-many-
hyperplanes comparison, MED-based methods illustrate a bet-
ter performance than SVM-based methods. The effectiveness
of the AMVMED is also further verified.

E. Sensitivity Analysis of Parameter ρ

We test the sensitivity of AMVMED to different choices of
the parameter ρ. Throughout the experiment, the ρ varies in
{0, 0.1, ..., 1} and we give the experimental results on three
data sets with half of the data as the training set. It is noted
that AMVMED with ρ = 0 corresponds to single-view MED2
while AMVMED with ρ = 1 corresponds to single-view
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Fig. 4. The ROC curve of the methods on three real-world data sets.
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(c) Advertisement classification

Fig. 5. The classification accuracy sensitivity with respect to ρ on three
real-world data sets.

MED1. When ρ takes other values, AMVMED will combine
the two views at the same time and make a balance between
both views.

Fig. 5(a) shows the variation of the classification accuracy
with varying ρ on web-page data. We can find that the
accuracies of ρ = 0.1 and ρ = 0.2 are the highest, which
demonstrate the effectiveness of AMVMED. At the same time,
we can also see that the AMVMED with ρ = 0 (single-view
MED2) performs better than the case of ρ = 1 (single-view
MED1) and the AMVMED with ρ = 1 (single-view MED1)
performs the worst.

In Fig. 5(b), the accuracy of AMVMED on ionosphere data
decreases with the increasing ρ. The AMVMED with ρ = 0
shows the best performance while that with ρ = 1 behaves
the worst. That is to say, the single-view MED2 performs
the best while the single-view MED1 performs the worst.
Though AMVMED with two views does not demonstrate its
advantage, AMVMED indeed possesses its unique merit since
it can include the two single-view MEDs as its special cases.

The performance of AMVMED with increasing ρ on ad-
vertisement data is demonstrated in Fig. 5(c). The AMVMED
with ρ = 1 (single-view MED1) performs better than the case
of ρ = 0 (single-view MED2) and the AMVMED with ρ = 0
(single-view MED2) performs the worst. The best performance
occurs at ρ = 0.7 and ρ = 0.9, which demonstrates the
effectiveness of AMVMED.

From Fig. 5, we can conclude that the experimental results
on three data sets indeed demonstrate the effectiveness of
AMVMED and the parameter ρ is important for the sake of
performance. Especially when there exists some complemen-
tary property in multiple views, AMVMED usually combines
the information of different views well.

F. Summary

From the above experimental results, we can conclude that
on these data sets usually MVMED performs the best, our
AMVMED performs a little worse than MVMED (see Table I),
but sometimes AMVMED can behave better than MVMED
(see the end points of curves in Fig. 1). Both MVMED and
AMVMED perform better than the other methods including
multi-hyperplane SVM-2K. By the sensitivity analysis of
parameter ρ, the effectiveness of AMVMED for MVL is
verified. However, it should be noted that our method is only
an approximation of the original problem, because perfectly
solving the original problem is tricky. But it may achieve better
results, and thus it is valuable to explore the perfect solution
of the original problem.

VII. CONCLUSION AND FUTURE WORK

We have proposed an AMVMED framework which is the
alternative version of MVMED. Different from MVMED, we
not only enforce the margins of two views to be equal, but
also make the posteriors of the two view margins be the
same. Compared with MVMED which optimizes one relative
entropy, AMVMED assigns one relative entropy term to each
of the two views, hence incorporating a tradeoff between the
two views. We also provide its approximate solution and give
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an instantiation of the AMVMED framework with a factored
prior. Experimental results on real-world applications web-
page classification, ionosphere classification and advertise-
ment classification validate the effectiveness of the proposed
AMVMED.

It is worthy to further investigate how to reach the perfect
solution of the original problem. In present, in order to make
the solution of the AMVMED feasible, we use a two-step
procedure. However, there may exist a gap between the resul-
tant solution and the perfect solution to the original problem.
Thus, we believe that analyzing the difference between our
approximate solving procedure and the perfect solution, and
exploring a better solving procedure are both meaningful. In
addition, it is interesting to apply our method to large-scale
data sets. In this paper, we have just utilized the standard
toolbox to optimize AMVMED instead of specifically design-
ing a speedup optimization algorithm for large-scale data sets.
Thus it is important to investigate how to specifically deal with
large-scale data sets in the future.
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